/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "induction_var_range.h" #include namespace art { /** Returns true if 64-bit constant fits in 32-bit constant. */ static bool CanLongValueFitIntoInt(int64_t c) { return std::numeric_limits::min() <= c && c <= std::numeric_limits::max(); } /** Returns true if 32-bit addition can be done safely. */ static bool IsSafeAdd(int32_t c1, int32_t c2) { return CanLongValueFitIntoInt(static_cast(c1) + static_cast(c2)); } /** Returns true if 32-bit subtraction can be done safely. */ static bool IsSafeSub(int32_t c1, int32_t c2) { return CanLongValueFitIntoInt(static_cast(c1) - static_cast(c2)); } /** Returns true if 32-bit multiplication can be done safely. */ static bool IsSafeMul(int32_t c1, int32_t c2) { return CanLongValueFitIntoInt(static_cast(c1) * static_cast(c2)); } /** Returns true if 32-bit division can be done safely. */ static bool IsSafeDiv(int32_t c1, int32_t c2) { return c2 != 0 && CanLongValueFitIntoInt(static_cast(c1) / static_cast(c2)); } /** Returns true for 32/64-bit integral constant. */ static bool IsIntAndGet(HInstruction* instruction, int32_t* value) { if (instruction->IsIntConstant()) { *value = instruction->AsIntConstant()->GetValue(); return true; } else if (instruction->IsLongConstant()) { const int64_t c = instruction->AsLongConstant()->GetValue(); if (CanLongValueFitIntoInt(c)) { *value = static_cast(c); return true; } } return false; } /** * An upper bound a * (length / a) + b, where a > 0, can be conservatively rewritten as length + b * because length >= 0 is true. This makes it more likely the bound is useful to clients. */ static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v) { int32_t value; if (v.a_constant > 1 && v.instruction->IsDiv() && v.instruction->InputAt(0)->IsArrayLength() && IsIntAndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) { return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant); } return v; } // // Public class methods. // InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis) : induction_analysis_(induction_analysis) { DCHECK(induction_analysis != nullptr); } InductionVarRange::Value InductionVarRange::GetMinInduction(HInstruction* context, HInstruction* instruction) { HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); if (loop != nullptr) { return GetVal(induction_analysis_->LookupInfo(loop, instruction), GetTripCount(loop, context), /* is_min */ true); } return Value(); } InductionVarRange::Value InductionVarRange::GetMaxInduction(HInstruction* context, HInstruction* instruction) { HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); if (loop != nullptr) { return SimplifyMax( GetVal(induction_analysis_->LookupInfo(loop, instruction), GetTripCount(loop, context), /* is_min */ false)); } return Value(); } // // Private class methods. // HInductionVarAnalysis::InductionInfo* InductionVarRange::GetTripCount(HLoopInformation* loop, HInstruction* context) { // The trip-count expression is only valid when the top-test is taken at least once, // that means, when the analyzed context appears outside the loop header itself. // Early-exit loops are okay, since in those cases, the trip-count is conservative. // // TODO: deal with runtime safety issues on TCs // if (context->GetBlock() != loop->GetHeader()) { HInductionVarAnalysis::InductionInfo* trip = induction_analysis_->LookupInfo(loop, loop->GetHeader()->GetLastInstruction()); if (trip != nullptr) { // Wrap the trip-count representation in its own unusual NOP node, so that range analysis // is able to determine the [0, TC - 1] interval without having to construct constants. return induction_analysis_->CreateInvariantOp(HInductionVarAnalysis::kNop, trip, trip); } } return nullptr; } InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction, HInductionVarAnalysis::InductionInfo* trip, bool is_min) { // Detect constants and chase the fetch a bit deeper into the HIR tree, so that it becomes // more likely range analysis will compare the same instructions as terminal nodes. int32_t value; if (IsIntAndGet(instruction, &value)) { return Value(value); } else if (instruction->IsAdd()) { if (IsIntAndGet(instruction->InputAt(0), &value)) { return AddValue(Value(value), GetFetch(instruction->InputAt(1), trip, is_min)); } else if (IsIntAndGet(instruction->InputAt(1), &value)) { return AddValue(GetFetch(instruction->InputAt(0), trip, is_min), Value(value)); } } else if (is_min) { // Special case for finding minimum: minimum of trip-count is 1. if (trip != nullptr && instruction == trip->op_b->fetch) { return Value(1); } } return Value(instruction, 1, 0); } InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, bool is_min) { if (info != nullptr) { switch (info->induction_class) { case HInductionVarAnalysis::kInvariant: // Invariants. switch (info->operation) { case HInductionVarAnalysis::kNop: // normalized: 0 or TC-1 DCHECK_EQ(info->op_a, info->op_b); return is_min ? Value(0) : SubValue(GetVal(info->op_b, trip, is_min), Value(1)); case HInductionVarAnalysis::kAdd: return AddValue(GetVal(info->op_a, trip, is_min), GetVal(info->op_b, trip, is_min)); case HInductionVarAnalysis::kSub: // second reversed! return SubValue(GetVal(info->op_a, trip, is_min), GetVal(info->op_b, trip, !is_min)); case HInductionVarAnalysis::kNeg: // second reversed! return SubValue(Value(0), GetVal(info->op_b, trip, !is_min)); case HInductionVarAnalysis::kMul: return GetMul(info->op_a, info->op_b, trip, is_min); case HInductionVarAnalysis::kDiv: return GetDiv(info->op_a, info->op_b, trip, is_min); case HInductionVarAnalysis::kFetch: return GetFetch(info->fetch, trip, is_min); } break; case HInductionVarAnalysis::kLinear: // Linear induction a * i + b, for normalized 0 <= i < TC. return AddValue(GetMul(info->op_a, trip, trip, is_min), GetVal(info->op_b, trip, is_min)); case HInductionVarAnalysis::kWrapAround: case HInductionVarAnalysis::kPeriodic: // Merge values in the wrap-around/periodic. return MergeVal(GetVal(info->op_a, trip, is_min), GetVal(info->op_b, trip, is_min), is_min); } } return Value(); } InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, HInductionVarAnalysis::InductionInfo* trip, bool is_min) { Value v1_min = GetVal(info1, trip, /* is_min */ true); Value v1_max = GetVal(info1, trip, /* is_min */ false); Value v2_min = GetVal(info2, trip, /* is_min */ true); Value v2_max = GetVal(info2, trip, /* is_min */ false); if (v1_min.is_known && v1_min.a_constant == 0 && v1_min.b_constant >= 0) { // Positive range vs. positive or negative range. if (v2_min.is_known && v2_min.a_constant == 0 && v2_min.b_constant >= 0) { return is_min ? MulValue(v1_min, v2_min) : MulValue(v1_max, v2_max); } else if (v2_max.is_known && v2_max.a_constant == 0 && v2_max.b_constant <= 0) { return is_min ? MulValue(v1_max, v2_min) : MulValue(v1_min, v2_max); } } else if (v1_min.is_known && v1_min.a_constant == 0 && v1_min.b_constant <= 0) { // Negative range vs. positive or negative range. if (v2_min.is_known && v2_min.a_constant == 0 && v2_min.b_constant >= 0) { return is_min ? MulValue(v1_min, v2_max) : MulValue(v1_max, v2_min); } else if (v2_max.is_known && v2_max.a_constant == 0 && v2_max.b_constant <= 0) { return is_min ? MulValue(v1_max, v2_max) : MulValue(v1_min, v2_min); } } return Value(); } InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, HInductionVarAnalysis::InductionInfo* trip, bool is_min) { Value v1_min = GetVal(info1, trip, /* is_min */ true); Value v1_max = GetVal(info1, trip, /* is_min */ false); Value v2_min = GetVal(info2, trip, /* is_min */ true); Value v2_max = GetVal(info2, trip, /* is_min */ false); if (v1_min.is_known && v1_min.a_constant == 0 && v1_min.b_constant >= 0) { // Positive range vs. positive or negative range. if (v2_min.is_known && v2_min.a_constant == 0 && v2_min.b_constant >= 0) { return is_min ? DivValue(v1_min, v2_max) : DivValue(v1_max, v2_min); } else if (v2_max.is_known && v2_max.a_constant == 0 && v2_max.b_constant <= 0) { return is_min ? DivValue(v1_max, v2_max) : DivValue(v1_min, v2_min); } } else if (v1_min.is_known && v1_min.a_constant == 0 && v1_min.b_constant <= 0) { // Negative range vs. positive or negative range. if (v2_min.is_known && v2_min.a_constant == 0 && v2_min.b_constant >= 0) { return is_min ? DivValue(v1_min, v2_min) : DivValue(v1_max, v2_max); } else if (v2_max.is_known && v2_max.a_constant == 0 && v2_max.b_constant <= 0) { return is_min ? DivValue(v1_max, v2_min) : DivValue(v1_min, v2_max); } } return Value(); } InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) { if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) { const int32_t b = v1.b_constant + v2.b_constant; if (v1.a_constant == 0) { return Value(v2.instruction, v2.a_constant, b); } else if (v2.a_constant == 0) { return Value(v1.instruction, v1.a_constant, b); } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) { return Value(v1.instruction, v1.a_constant + v2.a_constant, b); } } return Value(); } InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) { if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) { const int32_t b = v1.b_constant - v2.b_constant; if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) { return Value(v2.instruction, -v2.a_constant, b); } else if (v2.a_constant == 0) { return Value(v1.instruction, v1.a_constant, b); } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) { return Value(v1.instruction, v1.a_constant - v2.a_constant, b); } } return Value(); } InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) { if (v1.is_known && v2.is_known) { if (v1.a_constant == 0) { if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant); } } else if (v2.a_constant == 0) { if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant); } } } return Value(); } InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) { if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) { if (IsSafeDiv(v1.b_constant, v2.b_constant)) { return Value(v1.b_constant / v2.b_constant); } } return Value(); } InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) { if (v1.is_known && v2.is_known) { if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) { return Value(v1.instruction, v1.a_constant, is_min ? std::min(v1.b_constant, v2.b_constant) : std::max(v1.b_constant, v2.b_constant)); } } return Value(); } } // namespace art