/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "induction_var_range.h" namespace art { static bool IsValidConstant32(int32_t c) { return INT_MIN < c && c < INT_MAX; } static bool IsValidConstant64(int64_t c) { return INT_MIN < c && c < INT_MAX; } /** Returns true if 32-bit addition can be done safely (and is not an unknown range). */ static bool IsSafeAdd(int32_t c1, int32_t c2) { if (IsValidConstant32(c1) && IsValidConstant32(c2)) { return IsValidConstant64(static_cast(c1) + static_cast(c2)); } return false; } /** Returns true if 32-bit subtraction can be done safely (and is not an unknown range). */ static bool IsSafeSub(int32_t c1, int32_t c2) { if (IsValidConstant32(c1) && IsValidConstant32(c2)) { return IsValidConstant64(static_cast(c1) - static_cast(c2)); } return false; } /** Returns true if 32-bit multiplication can be done safely (and is not an unknown range). */ static bool IsSafeMul(int32_t c1, int32_t c2) { if (IsValidConstant32(c1) && IsValidConstant32(c2)) { return IsValidConstant64(static_cast(c1) * static_cast(c2)); } return false; } /** Returns true if 32-bit division can be done safely (and is not an unknown range). */ static bool IsSafeDiv(int32_t c1, int32_t c2) { if (IsValidConstant32(c1) && IsValidConstant32(c2) && c2 != 0) { return IsValidConstant64(static_cast(c1) / static_cast(c2)); } return false; } /** Returns true for 32/64-bit integral constant within known range. */ static bool IsIntAndGet(HInstruction* instruction, int32_t* value) { if (instruction->IsIntConstant()) { const int32_t c = instruction->AsIntConstant()->GetValue(); if (IsValidConstant32(c)) { *value = c; return true; } } else if (instruction->IsLongConstant()) { const int64_t c = instruction->AsLongConstant()->GetValue(); if (IsValidConstant64(c)) { *value = c; return true; } } return false; } // // Public class methods. // InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis) : induction_analysis_(induction_analysis) { } InductionVarRange::Value InductionVarRange::GetMinInduction(HInstruction* context, HInstruction* instruction) { HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); if (loop != nullptr && induction_analysis_ != nullptr) { return GetMin(induction_analysis_->LookupInfo(loop, instruction), GetTripCount(loop, context)); } return Value(INT_MIN); } InductionVarRange::Value InductionVarRange::GetMaxInduction(HInstruction* context, HInstruction* instruction) { HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); if (loop != nullptr && induction_analysis_ != nullptr) { return GetMax(induction_analysis_->LookupInfo(loop, instruction), GetTripCount(loop, context)); } return Value(INT_MAX); } // // Private class methods. // HInductionVarAnalysis::InductionInfo* InductionVarRange::GetTripCount(HLoopInformation* loop, HInstruction* context) { // The trip-count expression is only valid when the top-test is taken at least once, // that means, when the analyzed context appears outside the loop header itself. // Early-exit loops are okay, since in those cases, the trip-count is conservative. if (context->GetBlock() != loop->GetHeader()) { HInductionVarAnalysis::InductionInfo* trip = induction_analysis_->LookupInfo(loop, loop->GetHeader()->GetLastInstruction()); if (trip != nullptr) { // Wrap the trip-count representation in its own unusual NOP node, so that range analysis // is able to determine the [0, TC - 1] interval without having to construct constants. return induction_analysis_->CreateInvariantOp(HInductionVarAnalysis::kNop, trip, trip); } } return nullptr; } InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction, HInductionVarAnalysis::InductionInfo* trip, int32_t fail_value) { // Detect constants and chase the fetch a bit deeper into the HIR tree, so that it becomes // more likely range analysis will compare the same instructions as terminal nodes. int32_t value; if (IsIntAndGet(instruction, &value)) { return Value(value); } else if (instruction->IsAdd()) { if (IsIntAndGet(instruction->InputAt(0), &value)) { return AddValue(Value(value), GetFetch(instruction->InputAt(1), trip, fail_value), fail_value); } else if (IsIntAndGet(instruction->InputAt(1), &value)) { return AddValue(GetFetch(instruction->InputAt(0), trip, fail_value), Value(value), fail_value); } } else if (fail_value < 0) { // Special case: within the loop-body, minimum of trip-count is 1. if (trip != nullptr && instruction == trip->op_b->fetch) { return Value(1); } } return Value(instruction, 1, 0); } InductionVarRange::Value InductionVarRange::GetMin(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip) { if (info != nullptr) { switch (info->induction_class) { case HInductionVarAnalysis::kInvariant: // Invariants. switch (info->operation) { case HInductionVarAnalysis::kNop: // normalized: 0 DCHECK_EQ(info->op_a, info->op_b); return Value(0); case HInductionVarAnalysis::kAdd: return AddValue(GetMin(info->op_a, trip), GetMin(info->op_b, trip), INT_MIN); case HInductionVarAnalysis::kSub: // second max! return SubValue(GetMin(info->op_a, trip), GetMax(info->op_b, trip), INT_MIN); case HInductionVarAnalysis::kNeg: // second max! return SubValue(Value(0), GetMax(info->op_b, trip), INT_MIN); case HInductionVarAnalysis::kMul: return GetMul(info->op_a, info->op_b, trip, INT_MIN); case HInductionVarAnalysis::kDiv: return GetDiv(info->op_a, info->op_b, trip, INT_MIN); case HInductionVarAnalysis::kFetch: return GetFetch(info->fetch, trip, INT_MIN); } break; case HInductionVarAnalysis::kLinear: // Minimum over linear induction a * i + b, for normalized 0 <= i < TC. return AddValue(GetMul(info->op_a, trip, trip, INT_MIN), GetMin(info->op_b, trip), INT_MIN); case HInductionVarAnalysis::kWrapAround: case HInductionVarAnalysis::kPeriodic: // Minimum over all values in the wrap-around/periodic. return MinValue(GetMin(info->op_a, trip), GetMin(info->op_b, trip)); } } return Value(INT_MIN); } InductionVarRange::Value InductionVarRange::GetMax(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip) { if (info != nullptr) { switch (info->induction_class) { case HInductionVarAnalysis::kInvariant: // Invariants. switch (info->operation) { case HInductionVarAnalysis::kNop: // normalized: TC - 1 DCHECK_EQ(info->op_a, info->op_b); return SubValue(GetMax(info->op_b, trip), Value(1), INT_MAX); case HInductionVarAnalysis::kAdd: return AddValue(GetMax(info->op_a, trip), GetMax(info->op_b, trip), INT_MAX); case HInductionVarAnalysis::kSub: // second min! return SubValue(GetMax(info->op_a, trip), GetMin(info->op_b, trip), INT_MAX); case HInductionVarAnalysis::kNeg: // second min! return SubValue(Value(0), GetMin(info->op_b, trip), INT_MAX); case HInductionVarAnalysis::kMul: return GetMul(info->op_a, info->op_b, trip, INT_MAX); case HInductionVarAnalysis::kDiv: return GetDiv(info->op_a, info->op_b, trip, INT_MAX); case HInductionVarAnalysis::kFetch: return GetFetch(info->fetch, trip, INT_MAX); } break; case HInductionVarAnalysis::kLinear: // Maximum over linear induction a * i + b, for normalized 0 <= i < TC. return AddValue(GetMul(info->op_a, trip, trip, INT_MAX), GetMax(info->op_b, trip), INT_MAX); case HInductionVarAnalysis::kWrapAround: case HInductionVarAnalysis::kPeriodic: // Maximum over all values in the wrap-around/periodic. return MaxValue(GetMax(info->op_a, trip), GetMax(info->op_b, trip)); } } return Value(INT_MAX); } InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, HInductionVarAnalysis::InductionInfo* trip, int32_t fail_value) { Value v1_min = GetMin(info1, trip); Value v1_max = GetMax(info1, trip); Value v2_min = GetMin(info2, trip); Value v2_max = GetMax(info2, trip); if (v1_min.a_constant == 0 && v1_min.b_constant >= 0) { // Positive range vs. positive or negative range. if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) { return (fail_value < 0) ? MulValue(v1_min, v2_min, fail_value) : MulValue(v1_max, v2_max, fail_value); } else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) { return (fail_value < 0) ? MulValue(v1_max, v2_min, fail_value) : MulValue(v1_min, v2_max, fail_value); } } else if (v1_min.a_constant == 0 && v1_min.b_constant <= 0) { // Negative range vs. positive or negative range. if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) { return (fail_value < 0) ? MulValue(v1_min, v2_max, fail_value) : MulValue(v1_max, v2_min, fail_value); } else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) { return (fail_value < 0) ? MulValue(v1_max, v2_max, fail_value) : MulValue(v1_min, v2_min, fail_value); } } return Value(fail_value); } InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, HInductionVarAnalysis::InductionInfo* trip, int32_t fail_value) { Value v1_min = GetMin(info1, trip); Value v1_max = GetMax(info1, trip); Value v2_min = GetMin(info2, trip); Value v2_max = GetMax(info2, trip); if (v1_min.a_constant == 0 && v1_min.b_constant >= 0) { // Positive range vs. positive or negative range. if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) { return (fail_value < 0) ? DivValue(v1_min, v2_max, fail_value) : DivValue(v1_max, v2_min, fail_value); } else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) { return (fail_value < 0) ? DivValue(v1_max, v2_max, fail_value) : DivValue(v1_min, v2_min, fail_value); } } else if (v1_min.a_constant == 0 && v1_min.b_constant <= 0) { // Negative range vs. positive or negative range. if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) { return (fail_value < 0) ? DivValue(v1_min, v2_min, fail_value) : DivValue(v1_max, v2_max, fail_value); } else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) { return (fail_value < 0) ? DivValue(v1_max, v2_min, fail_value) : DivValue(v1_min, v2_max, fail_value); } } return Value(fail_value); } InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2, int32_t fail_value) { if (IsSafeAdd(v1.b_constant, v2.b_constant)) { const int32_t b = v1.b_constant + v2.b_constant; if (v1.a_constant == 0) { return Value(v2.instruction, v2.a_constant, b); } else if (v2.a_constant == 0) { return Value(v1.instruction, v1.a_constant, b); } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) { return Value(v1.instruction, v1.a_constant + v2.a_constant, b); } } return Value(fail_value); } InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2, int32_t fail_value) { if (IsSafeSub(v1.b_constant, v2.b_constant)) { const int32_t b = v1.b_constant - v2.b_constant; if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) { return Value(v2.instruction, -v2.a_constant, b); } else if (v2.a_constant == 0) { return Value(v1.instruction, v1.a_constant, b); } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) { return Value(v1.instruction, v1.a_constant - v2.a_constant, b); } } return Value(fail_value); } InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2, int32_t fail_value) { if (v1.a_constant == 0) { if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant); } } else if (v2.a_constant == 0) { if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant); } } return Value(fail_value); } InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2, int32_t fail_value) { if (v1.a_constant == 0 && v2.a_constant == 0) { if (IsSafeDiv(v1.b_constant, v2.b_constant)) { return Value(v1.b_constant / v2.b_constant); } } return Value(fail_value); } InductionVarRange::Value InductionVarRange::MinValue(Value v1, Value v2) { if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) { return Value(v1.instruction, v1.a_constant, std::min(v1.b_constant, v2.b_constant)); } return Value(INT_MIN); } InductionVarRange::Value InductionVarRange::MaxValue(Value v1, Value v2) { if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) { return Value(v1.instruction, v1.a_constant, std::max(v1.b_constant, v2.b_constant)); } return Value(INT_MAX); } } // namespace art