/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "induction_var_analysis.h" namespace art { /** * Returns true if instruction is invariant within the given loop. */ static bool IsLoopInvariant(HLoopInformation* loop, HInstruction* instruction) { HLoopInformation* other_loop = instruction->GetBlock()->GetLoopInformation(); if (other_loop != loop) { // If instruction does not occur in same loop, it is invariant // if it appears in an outer loop (including no loop at all). return other_loop == nullptr || loop->IsIn(*other_loop); } return false; } /** * Returns true if instruction is proper entry-phi-operation for given loop * (referred to as mu-operation in Gerlek's paper). */ static bool IsEntryPhi(HLoopInformation* loop, HInstruction* instruction) { return instruction->IsPhi() && instruction->InputCount() == 2 && instruction->GetBlock() == loop->GetHeader(); } /** * Returns true for 32/64-bit integral constant, passing its value as output parameter. */ static bool IsIntAndGet(HInstruction* instruction, int64_t* value) { if (instruction->IsIntConstant()) { *value = instruction->AsIntConstant()->GetValue(); return true; } else if (instruction->IsLongConstant()) { *value = instruction->AsLongConstant()->GetValue(); return true; } return false; } /** * Returns a string representation of an instruction * (for testing and debugging only). */ static std::string InstructionToString(HInstruction* instruction) { if (instruction->IsIntConstant()) { return std::to_string(instruction->AsIntConstant()->GetValue()); } else if (instruction->IsLongConstant()) { return std::to_string(instruction->AsLongConstant()->GetValue()) + "L"; } return std::to_string(instruction->GetId()) + ":" + instruction->DebugName(); } // // Class methods. // HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph) : HOptimization(graph, kInductionPassName), global_depth_(0), stack_(graph->GetArena()->Adapter()), scc_(graph->GetArena()->Adapter()), map_(std::less(), graph->GetArena()->Adapter()), cycle_(std::less(), graph->GetArena()->Adapter()), induction_(std::less(), graph->GetArena()->Adapter()) { } void HInductionVarAnalysis::Run() { // Detects sequence variables (generalized induction variables) during an inner-loop-first // traversal of all loops using Gerlek's algorithm. The order is only relevant if outer // loops would use induction information of inner loops (not currently done). for (HPostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) { HBasicBlock* graph_block = it_graph.Current(); if (graph_block->IsLoopHeader()) { VisitLoop(graph_block->GetLoopInformation()); } } } void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) { // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's // algorithm. Due to the descendant-first nature, classification happens "on-demand". global_depth_ = 0; DCHECK(stack_.empty()); map_.clear(); for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) { HBasicBlock* loop_block = it_loop.Current(); DCHECK(loop_block->IsInLoop()); if (loop_block->GetLoopInformation() != loop) { continue; // Inner loops already visited. } // Visit phi-operations and instructions. for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) { HInstruction* instruction = it.Current(); if (!IsVisitedNode(instruction)) { VisitNode(loop, instruction); } } for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* instruction = it.Current(); if (!IsVisitedNode(instruction)) { VisitNode(loop, instruction); } } } DCHECK(stack_.empty()); map_.clear(); } void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) { const uint32_t d1 = ++global_depth_; map_.Put(instruction, NodeInfo(d1)); stack_.push_back(instruction); // Visit all descendants. uint32_t low = d1; for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) { low = std::min(low, VisitDescendant(loop, instruction->InputAt(i))); } // Lower or found SCC? if (low < d1) { map_.find(instruction)->second.depth = low; } else { scc_.clear(); cycle_.clear(); // Pop the stack to build the SCC for classification. while (!stack_.empty()) { HInstruction* x = stack_.back(); scc_.push_back(x); stack_.pop_back(); map_.find(x)->second.done = true; if (x == instruction) { break; } } // Classify the SCC. if (scc_.size() == 1 && !IsEntryPhi(loop, scc_[0])) { ClassifyTrivial(loop, scc_[0]); } else { ClassifyNonTrivial(loop); } scc_.clear(); cycle_.clear(); } } uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) { // If the definition is either outside the loop (loop invariant entry value) // or assigned in inner loop (inner exit value), the traversal stops. HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation(); if (otherLoop != loop) { return global_depth_; } // Inspect descendant node. if (!IsVisitedNode(instruction)) { VisitNode(loop, instruction); return map_.find(instruction)->second.depth; } else { auto it = map_.find(instruction); return it->second.done ? global_depth_ : it->second.depth; } } void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) { InductionInfo* info = nullptr; if (instruction->IsPhi()) { for (size_t i = 1, count = instruction->InputCount(); i < count; i++) { info = TransferPhi(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(i))); } } else if (instruction->IsAdd()) { info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(1)), kAdd); } else if (instruction->IsSub()) { info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(1)), kSub); } else if (instruction->IsMul()) { info = TransferMul(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(1))); } else if (instruction->IsShl()) { info = TransferShl(LookupInfo(loop, instruction->InputAt(0)), LookupInfo(loop, instruction->InputAt(1)), instruction->InputAt(0)->GetType()); } else if (instruction->IsNeg()) { info = TransferNeg(LookupInfo(loop, instruction->InputAt(0))); } else if (instruction->IsBoundsCheck()) { info = LookupInfo(loop, instruction->InputAt(0)); // Pass-through. } else if (instruction->IsTypeConversion()) { HTypeConversion* conversion = instruction->AsTypeConversion(); // TODO: accept different conversion scenarios. if (conversion->GetResultType() == conversion->GetInputType()) { info = LookupInfo(loop, conversion->GetInput()); } } // Successfully classified? if (info != nullptr) { AssignInfo(loop, instruction, info); } } void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) { const size_t size = scc_.size(); DCHECK_GE(size, 1u); HInstruction* phi = scc_[size - 1]; if (!IsEntryPhi(loop, phi)) { return; } HInstruction* external = phi->InputAt(0); HInstruction* internal = phi->InputAt(1); InductionInfo* initial = LookupInfo(loop, external); if (initial == nullptr || initial->induction_class != kInvariant) { return; } // Singleton entry-phi-operation may be a wrap-around induction. if (size == 1) { InductionInfo* update = LookupInfo(loop, internal); if (update != nullptr) { AssignInfo(loop, phi, NewInduction(kWrapAround, initial, update)); } return; } // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns // temporary meaning to its nodes, seeded from the phi instruction and back. for (size_t i = 0; i < size - 1; i++) { HInstruction* instruction = scc_[i]; InductionInfo* update = nullptr; if (instruction->IsPhi()) { update = SolvePhi(loop, phi, instruction); } else if (instruction->IsAdd()) { update = SolveAddSub( loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true); } else if (instruction->IsSub()) { update = SolveAddSub( loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true); } if (update == nullptr) { return; } cycle_.Put(instruction, update); } // Success if the internal link received a meaning. auto it = cycle_.find(internal); if (it != cycle_.end()) { InductionInfo* induction = it->second; switch (induction->induction_class) { case kInvariant: // Classify phi (last element in scc_) and then the rest of the cycle "on-demand". // Statements are scanned in the Tarjan SCC order, with phi first. AssignInfo(loop, phi, NewInduction(kLinear, induction, initial)); for (size_t i = 0; i < size - 1; i++) { ClassifyTrivial(loop, scc_[i]); } break; case kPeriodic: // Classify all elements in the cycle with the found periodic induction while rotating // each first element to the end. Lastly, phi (last element in scc_) is classified. // Statements are scanned in the reverse Tarjan SCC order, with phi last. for (size_t i = 2; i <= size; i++) { AssignInfo(loop, scc_[size - i], induction); induction = RotatePeriodicInduction(induction->op_b, induction->op_a); } AssignInfo(loop, phi, induction); break; default: break; } } } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction( InductionInfo* induction, InductionInfo* last) { // Rotates a periodic induction of the form // (a, b, c, d, e) // into // (b, c, d, e, a) // in preparation of assigning this to the previous variable in the sequence. if (induction->induction_class == kInvariant) { return NewInduction(kPeriodic, induction, last); } return NewInduction(kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last)); } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(InductionInfo* a, InductionInfo* b) { // Transfer over a phi: if both inputs are identical, result is input. if (InductionEqual(a, b)) { return a; } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a, InductionInfo* b, InductionOp op) { // Transfer over an addition or subtraction: any invariant, linear, wrap-around, or periodic // can be combined with an invariant to yield a similar result. Even two linear inputs can // be combined. All other combinations fail, however. if (a != nullptr && b != nullptr) { if (a->induction_class == kInvariant && b->induction_class == kInvariant) { return NewInvariantOp(op, a, b); } else if (a->induction_class == kLinear && b->induction_class == kLinear) { return NewInduction( kLinear, TransferAddSub(a->op_a, b->op_a, op), TransferAddSub(a->op_b, b->op_b, op)); } else if (a->induction_class == kInvariant) { InductionInfo* new_a = b->op_a; InductionInfo* new_b = TransferAddSub(a, b->op_b, op); if (b->induction_class != kLinear) { DCHECK(b->induction_class == kWrapAround || b->induction_class == kPeriodic); new_a = TransferAddSub(a, new_a, op); } else if (op == kSub) { // Negation required. new_a = TransferNeg(new_a); } return NewInduction(b->induction_class, new_a, new_b); } else if (b->induction_class == kInvariant) { InductionInfo* new_a = a->op_a; InductionInfo* new_b = TransferAddSub(a->op_b, b, op); if (a->induction_class != kLinear) { DCHECK(a->induction_class == kWrapAround || a->induction_class == kPeriodic); new_a = TransferAddSub(new_a, b, op); } return NewInduction(a->induction_class, new_a, new_b); } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a, InductionInfo* b) { // Transfer over a multiplication: any invariant, linear, wrap-around, or periodic // can be multiplied with an invariant to yield a similar but multiplied result. // Two non-invariant inputs cannot be multiplied, however. if (a != nullptr && b != nullptr) { if (a->induction_class == kInvariant && b->induction_class == kInvariant) { return NewInvariantOp(kMul, a, b); } else if (a->induction_class == kInvariant) { return NewInduction(b->induction_class, TransferMul(a, b->op_a), TransferMul(a, b->op_b)); } else if (b->induction_class == kInvariant) { return NewInduction(a->induction_class, TransferMul(a->op_a, b), TransferMul(a->op_b, b)); } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferShl(InductionInfo* a, InductionInfo* b, Primitive::Type t) { // Transfer over a shift left: treat shift by restricted constant as equivalent multiplication. if (a != nullptr && b != nullptr && b->induction_class == kInvariant && b->operation == kFetch) { int64_t value = -1; // Obtain the constant needed for the multiplication. This yields an existing instruction // if the constants is already there. Otherwise, this has a side effect on the HIR. // The restriction on the shift factor avoids generating a negative constant // (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that generalization // for shift factors outside [0,32) and [0,64) ranges is done by earlier simplification. if (IsIntAndGet(b->fetch, &value)) { if (t == Primitive::kPrimInt && 0 <= value && value < 31) { return TransferMul(a, NewInvariantFetch(graph_->GetIntConstant(1 << value))); } else if (t == Primitive::kPrimLong && 0 <= value && value < 63) { return TransferMul(a, NewInvariantFetch(graph_->GetLongConstant(1L << value))); } } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) { // Transfer over a unary negation: an invariant, linear, wrap-around, or periodic input // yields a similar but negated induction as result. if (a != nullptr) { if (a->induction_class == kInvariant) { return NewInvariantOp(kNeg, nullptr, a); } return NewInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b)); } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HLoopInformation* loop, HInstruction* phi, HInstruction* instruction) { // Solve within a cycle over a phi: identical inputs are combined into that input as result. const size_t count = instruction->InputCount(); DCHECK_GT(count, 0u); auto ita = cycle_.find(instruction->InputAt(0)); if (ita != cycle_.end()) { InductionInfo* a = ita->second; for (size_t i = 1; i < count; i++) { auto itb = cycle_.find(instruction->InputAt(i)); if (itb == cycle_.end() || !HInductionVarAnalysis::InductionEqual(a, itb->second)) { return nullptr; } } return a; } // Solve within a cycle over another entry-phi: add invariants into a periodic. if (IsEntryPhi(loop, instruction)) { InductionInfo* a = LookupInfo(loop, instruction->InputAt(0)); if (a != nullptr && a->induction_class == kInvariant) { if (instruction->InputAt(1) == phi) { InductionInfo* initial = LookupInfo(loop, phi->InputAt(0)); return NewInduction(kPeriodic, a, initial); } auto it = cycle_.find(instruction->InputAt(1)); if (it != cycle_.end()) { InductionInfo* b = it->second; if (b->induction_class == kPeriodic) { return NewInduction(kPeriodic, a, b); } } } } return nullptr; } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop, HInstruction* phi, HInstruction* instruction, HInstruction* x, HInstruction* y, InductionOp op, bool is_first_call) { // Solve within a cycle over an addition or subtraction: adding or subtracting an // invariant value, seeded from phi, keeps adding to the stride of the induction. InductionInfo* b = LookupInfo(loop, y); if (b != nullptr && b->induction_class == kInvariant) { if (x == phi) { return (op == kAdd) ? b : NewInvariantOp(kNeg, nullptr, b); } auto it = cycle_.find(x); if (it != cycle_.end()) { InductionInfo* a = it->second; if (a->induction_class == kInvariant) { return NewInvariantOp(op, a, b); } } } // Try some alternatives before failing. if (op == kAdd) { // Try the other way around for an addition if considered for first time. if (is_first_call) { return SolveAddSub(loop, phi, instruction, y, x, op, false); } } else if (op == kSub) { // Solve within a tight cycle for a periodic idiom k = c - k; if (y == phi && instruction == phi->InputAt(1)) { InductionInfo* a = LookupInfo(loop, x); if (a != nullptr && a->induction_class == kInvariant) { InductionInfo* initial = LookupInfo(loop, phi->InputAt(0)); return NewInduction(kPeriodic, NewInvariantOp(kSub, a, initial), initial); } } } return nullptr; } void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop, HInstruction* instruction, InductionInfo* info) { auto it = induction_.find(loop); if (it == induction_.end()) { it = induction_.Put(loop, ArenaSafeMap( std::less(), graph_->GetArena()->Adapter())); } it->second.Put(instruction, info); } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop, HInstruction* instruction) { auto it = induction_.find(loop); if (it != induction_.end()) { auto loop_it = it->second.find(instruction); if (loop_it != it->second.end()) { return loop_it->second; } } if (IsLoopInvariant(loop, instruction)) { InductionInfo* info = NewInvariantFetch(instruction); AssignInfo(loop, instruction, info); return info; } return nullptr; } bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1, InductionInfo* info2) { // Test structural equality only, without accounting for simplifications. if (info1 != nullptr && info2 != nullptr) { return info1->induction_class == info2->induction_class && info1->operation == info2->operation && info1->fetch == info2->fetch && InductionEqual(info1->op_a, info2->op_a) && InductionEqual(info1->op_b, info2->op_b); } // Otherwise only two nullptrs are considered equal. return info1 == info2; } std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) { if (info != nullptr) { if (info->induction_class == kInvariant) { std::string inv = "("; inv += InductionToString(info->op_a); switch (info->operation) { case kNop: inv += " @ "; break; case kAdd: inv += " + "; break; case kSub: case kNeg: inv += " - "; break; case kMul: inv += " * "; break; case kDiv: inv += " / "; break; case kFetch: DCHECK(info->fetch); inv += InstructionToString(info->fetch); break; } inv += InductionToString(info->op_b); return inv + ")"; } else { DCHECK(info->operation == kNop); if (info->induction_class == kLinear) { return "(" + InductionToString(info->op_a) + " * i + " + InductionToString(info->op_b) + ")"; } else if (info->induction_class == kWrapAround) { return "wrap(" + InductionToString(info->op_a) + ", " + InductionToString(info->op_b) + ")"; } else if (info->induction_class == kPeriodic) { return "periodic(" + InductionToString(info->op_a) + ", " + InductionToString(info->op_b) + ")"; } } } return ""; } } // namespace art