/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/stl_util.h" #include "dex_file.h" #include "dex_instruction.h" #include "dex_instruction-inl.h" #include "base/mutex.h" #include "base/mutex-inl.h" #include "mirror/art_method.h" #include "mirror/art_method-inl.h" #include "mirror/class.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/dex_cache-inl.h" #include "mirror/object.h" #include "mirror/object-inl.h" #include "verified_methods_data.h" #include "verifier/dex_gc_map.h" #include "verifier/method_verifier.h" #include "verifier/method_verifier-inl.h" #include "verifier/register_line.h" #include "verifier/register_line-inl.h" namespace art { VerifiedMethodsData::VerifiedMethodsData() : dex_gc_maps_lock_("compiler GC maps lock"), dex_gc_maps_(), safecast_map_lock_("compiler Cast Elision lock"), safecast_map_(), devirt_maps_lock_("compiler Devirtualization lock"), devirt_maps_(), rejected_classes_lock_("compiler rejected classes lock"), rejected_classes_() { } VerifiedMethodsData::~VerifiedMethodsData() { Thread* self = Thread::Current(); { WriterMutexLock mu(self, dex_gc_maps_lock_); STLDeleteValues(&dex_gc_maps_); } { WriterMutexLock mu(self, safecast_map_lock_); STLDeleteValues(&safecast_map_); } { WriterMutexLock mu(self, devirt_maps_lock_); STLDeleteValues(&devirt_maps_); } } bool VerifiedMethodsData::ProcessVerifiedMethod(verifier::MethodVerifier* method_verifier) { MethodReference ref = method_verifier->GetMethodReference(); bool compile = IsCandidateForCompilation(ref, method_verifier->GetAccessFlags()); if (compile) { /* Generate a register map and add it to the method. */ const std::vector* dex_gc_map = GenerateGcMap(method_verifier); if (dex_gc_map == NULL) { DCHECK(method_verifier->HasFailures()); return false; // Not a real failure, but a failure to encode } if (kIsDebugBuild) { VerifyGcMap(method_verifier, *dex_gc_map); } SetDexGcMap(ref, dex_gc_map); // TODO: move this out when DEX-to-DEX supports devirtualization. if (method_verifier->HasVirtualOrInterfaceInvokes()) { PcToConcreteMethodMap* pc_to_concrete_method = GenerateDevirtMap(method_verifier); if (pc_to_concrete_method != NULL) { SetDevirtMap(ref, pc_to_concrete_method); } } } if (method_verifier->HasCheckCasts()) { MethodSafeCastSet* method_to_safe_casts = GenerateSafeCastSet(method_verifier); if (method_to_safe_casts != NULL) { SetSafeCastMap(ref, method_to_safe_casts); } } return true; } const std::vector* VerifiedMethodsData::GetDexGcMap(MethodReference ref) { ReaderMutexLock mu(Thread::Current(), dex_gc_maps_lock_); DexGcMapTable::const_iterator it = dex_gc_maps_.find(ref); CHECK(it != dex_gc_maps_.end()) << "Didn't find GC map for: " << PrettyMethod(ref.dex_method_index, *ref.dex_file); CHECK(it->second != NULL); return it->second; } const MethodReference* VerifiedMethodsData::GetDevirtMap(const MethodReference& ref, uint32_t dex_pc) { ReaderMutexLock mu(Thread::Current(), devirt_maps_lock_); DevirtualizationMapTable::const_iterator it = devirt_maps_.find(ref); if (it == devirt_maps_.end()) { return NULL; } // Look up the PC in the map, get the concrete method to execute and return its reference. PcToConcreteMethodMap::const_iterator pc_to_concrete_method = it->second->find(dex_pc); if (pc_to_concrete_method != it->second->end()) { return &(pc_to_concrete_method->second); } else { return NULL; } } bool VerifiedMethodsData::IsSafeCast(MethodReference ref, uint32_t pc) { ReaderMutexLock mu(Thread::Current(), safecast_map_lock_); SafeCastMap::const_iterator it = safecast_map_.find(ref); if (it == safecast_map_.end()) { return false; } // Look up the cast address in the set of safe casts // Use binary_search for lookup in the sorted vector. return std::binary_search(it->second->begin(), it->second->end(), pc); } void VerifiedMethodsData::AddRejectedClass(ClassReference ref) { { WriterMutexLock mu(Thread::Current(), rejected_classes_lock_); rejected_classes_.insert(ref); } DCHECK(IsClassRejected(ref)); } bool VerifiedMethodsData::IsClassRejected(ClassReference ref) { ReaderMutexLock mu(Thread::Current(), rejected_classes_lock_); return (rejected_classes_.find(ref) != rejected_classes_.end()); } bool VerifiedMethodsData::IsCandidateForCompilation(MethodReference& method_ref, const uint32_t access_flags) { #ifdef ART_SEA_IR_MODE bool use_sea = Runtime::Current()->IsSeaIRMode(); use_sea = use_sea && (std::string::npos != PrettyMethod( method_ref.dex_method_index, *(method_ref.dex_file)).find("fibonacci")); if (use_sea) return true; #endif // Don't compile class initializers, ever. if (((access_flags & kAccConstructor) != 0) && ((access_flags & kAccStatic) != 0)) { return false; } return (Runtime::Current()->GetCompilerFilter() != Runtime::kInterpretOnly); } const std::vector* VerifiedMethodsData::GenerateGcMap( verifier::MethodVerifier* method_verifier) { size_t num_entries, ref_bitmap_bits, pc_bits; ComputeGcMapSizes(method_verifier, &num_entries, &ref_bitmap_bits, &pc_bits); // There's a single byte to encode the size of each bitmap if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) { // TODO: either a better GC map format or per method failures method_verifier->Fail(verifier::VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " << ref_bitmap_bits << " registers"; return NULL; } size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8; // There are 2 bytes to encode the number of entries if (num_entries >= 65536) { // TODO: either a better GC map format or per method failures method_verifier->Fail(verifier::VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " << num_entries << " entries"; return NULL; } size_t pc_bytes; verifier::RegisterMapFormat format; if (pc_bits <= 8) { format = verifier::kRegMapFormatCompact8; pc_bytes = 1; } else if (pc_bits <= 16) { format = verifier::kRegMapFormatCompact16; pc_bytes = 2; } else { // TODO: either a better GC map format or per method failures method_verifier->Fail(verifier::VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)"; return NULL; } size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4; std::vector* table = new std::vector; if (table == NULL) { method_verifier->Fail(verifier::VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")"; return NULL; } table->reserve(table_size); // Write table header table->push_back(format | ((ref_bitmap_bytes & ~0xFF) >> 5)); table->push_back(ref_bitmap_bytes & 0xFF); table->push_back(num_entries & 0xFF); table->push_back((num_entries >> 8) & 0xFF); // Write table data const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { table->push_back(i & 0xFF); if (pc_bytes == 2) { table->push_back((i >> 8) & 0xFF); } verifier::RegisterLine* line = method_verifier->GetRegLine(i); line->WriteReferenceBitMap(*table, ref_bitmap_bytes); } } DCHECK_EQ(table->size(), table_size); return table; } void VerifiedMethodsData::VerifyGcMap(verifier::MethodVerifier* method_verifier, const std::vector& data) { // Check that for every GC point there is a map entry, there aren't entries for non-GC points, // that the table data is well formed and all references are marked (or not) in the bitmap verifier::DexPcToReferenceMap map(&data[0]); DCHECK_EQ(data.size(), map.RawSize()); size_t map_index = 0; const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { const uint8_t* reg_bitmap = map.FindBitMap(i, false); if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { CHECK_LT(map_index, map.NumEntries()); CHECK_EQ(map.GetDexPc(map_index), i); CHECK_EQ(map.GetBitMap(map_index), reg_bitmap); map_index++; verifier::RegisterLine* line = method_verifier->GetRegLine(i); for (size_t j = 0; j < code_item->registers_size_; j++) { if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) { CHECK_LT(j / 8, map.RegWidth()); CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1); } else if ((j / 8) < map.RegWidth()) { CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0); } else { // If a register doesn't contain a reference then the bitmap may be shorter than the line } } } else { CHECK(reg_bitmap == NULL); } } } void VerifiedMethodsData::ComputeGcMapSizes(verifier::MethodVerifier* method_verifier, size_t* gc_points, size_t* ref_bitmap_bits, size_t* log2_max_gc_pc) { size_t local_gc_points = 0; size_t max_insn = 0; size_t max_ref_reg = -1; const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { local_gc_points++; max_insn = i; verifier::RegisterLine* line = method_verifier->GetRegLine(i); max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg); } } *gc_points = local_gc_points; *ref_bitmap_bits = max_ref_reg + 1; // if max register is 0 we need 1 bit to encode (ie +1) size_t i = 0; while ((1U << i) <= max_insn) { i++; } *log2_max_gc_pc = i; } void VerifiedMethodsData::SetDexGcMap(MethodReference ref, const std::vector* gc_map) { DCHECK(Runtime::Current()->IsCompiler()); { WriterMutexLock mu(Thread::Current(), dex_gc_maps_lock_); DexGcMapTable::iterator it = dex_gc_maps_.find(ref); if (it != dex_gc_maps_.end()) { delete it->second; dex_gc_maps_.erase(it); } dex_gc_maps_.Put(ref, gc_map); } DCHECK(GetDexGcMap(ref) != NULL); } VerifiedMethodsData::MethodSafeCastSet* VerifiedMethodsData::GenerateSafeCastSet( verifier::MethodVerifier* method_verifier) { /* * Walks over the method code and adds any cast instructions in which * the type cast is implicit to a set, which is used in the code generation * to elide these casts. */ if (method_verifier->HasFailures()) { return NULL; } UniquePtr mscs; const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const Instruction* inst = Instruction::At(code_item->insns_); const Instruction* end = Instruction::At(code_item->insns_ + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { Instruction::Code code = inst->Opcode(); if ((code == Instruction::CHECK_CAST) || (code == Instruction::APUT_OBJECT)) { uint32_t dex_pc = inst->GetDexPc(code_item->insns_); const verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); bool is_safe_cast = false; if (code == Instruction::CHECK_CAST) { const verifier::RegType& reg_type(line->GetRegisterType(inst->VRegA_21c())); const verifier::RegType& cast_type = method_verifier->ResolveCheckedClass(inst->VRegB_21c()); is_safe_cast = cast_type.IsStrictlyAssignableFrom(reg_type); } else { const verifier::RegType& array_type(line->GetRegisterType(inst->VRegB_23x())); // We only know its safe to assign to an array if the array type is precise. For example, // an Object[] can have any type of object stored in it, but it may also be assigned a // String[] in which case the stores need to be of Strings. if (array_type.IsPreciseReference()) { const verifier::RegType& value_type(line->GetRegisterType(inst->VRegA_23x())); const verifier::RegType& component_type = method_verifier->GetRegTypeCache() ->GetComponentType(array_type, method_verifier->GetClassLoader()); is_safe_cast = component_type.IsStrictlyAssignableFrom(value_type); } } if (is_safe_cast) { if (mscs.get() == nullptr) { mscs.reset(new MethodSafeCastSet()); } else { DCHECK_LT(mscs->back(), dex_pc); // Verify ordering for push_back() to the sorted vector. } mscs->push_back(dex_pc); } } } return mscs.release(); } void VerifiedMethodsData::SetSafeCastMap(MethodReference ref, const MethodSafeCastSet* cast_set) { WriterMutexLock mu(Thread::Current(), safecast_map_lock_); SafeCastMap::iterator it = safecast_map_.find(ref); if (it != safecast_map_.end()) { delete it->second; safecast_map_.erase(it); } safecast_map_.Put(ref, cast_set); DCHECK(safecast_map_.find(ref) != safecast_map_.end()); } VerifiedMethodsData::PcToConcreteMethodMap* VerifiedMethodsData::GenerateDevirtMap( verifier::MethodVerifier* method_verifier) { // It is risky to rely on reg_types for sharpening in cases of soft // verification, we might end up sharpening to a wrong implementation. Just abort. if (method_verifier->HasFailures()) { return NULL; } UniquePtr pc_to_concrete_method_map; const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const uint16_t* insns = code_item->insns_; const Instruction* inst = Instruction::At(insns); const Instruction* end = Instruction::At(insns + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { bool is_virtual = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) || (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE); bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) || (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE); if (!is_interface && !is_virtual) { continue; } // Get reg type for register holding the reference to the object that will be dispatched upon. uint32_t dex_pc = inst->GetDexPc(insns); verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE) || (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE); const verifier::RegType& reg_type(line->GetRegisterType(is_range ? inst->VRegC_3rc() : inst->VRegC_35c())); if (!reg_type.HasClass()) { // We will compute devirtualization information only when we know the Class of the reg type. continue; } mirror::Class* reg_class = reg_type.GetClass(); if (reg_class->IsInterface()) { // We can't devirtualize when the known type of the register is an interface. continue; } if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) { // We can't devirtualize abstract classes except on arrays of abstract classes. continue; } mirror::ArtMethod* abstract_method = method_verifier->GetDexCache()->GetResolvedMethod( is_range ? inst->VRegB_3rc() : inst->VRegB_35c()); if (abstract_method == NULL) { // If the method is not found in the cache this means that it was never found // by ResolveMethodAndCheckAccess() called when verifying invoke_*. continue; } // Find the concrete method. mirror::ArtMethod* concrete_method = NULL; if (is_interface) { concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method); } if (is_virtual) { concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method); } if (concrete_method == NULL || concrete_method->IsAbstract()) { // In cases where concrete_method is not found, or is abstract, continue to the next invoke. continue; } if (reg_type.IsPreciseReference() || concrete_method->IsFinal() || concrete_method->GetDeclaringClass()->IsFinal()) { // If we knew exactly the class being dispatched upon, or if the target method cannot be // overridden record the target to be used in the compiler driver. if (pc_to_concrete_method_map.get() == NULL) { pc_to_concrete_method_map.reset(new PcToConcreteMethodMap()); } MethodReference concrete_ref( concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(), concrete_method->GetDexMethodIndex()); pc_to_concrete_method_map->Put(dex_pc, concrete_ref); } } return pc_to_concrete_method_map.release(); } void VerifiedMethodsData::SetDevirtMap(MethodReference ref, const PcToConcreteMethodMap* devirt_map) { WriterMutexLock mu(Thread::Current(), devirt_maps_lock_); DevirtualizationMapTable::iterator it = devirt_maps_.find(ref); if (it != devirt_maps_.end()) { delete it->second; devirt_maps_.erase(it); } devirt_maps_.Put(ref, devirt_map); DCHECK(devirt_maps_.find(ref) != devirt_maps_.end()); } } // namespace art