summaryrefslogtreecommitdiff
path: root/runtime/runtime_image.cc
diff options
context:
space:
mode:
Diffstat (limited to 'runtime/runtime_image.cc')
-rw-r--r--runtime/runtime_image.cc1914
1 files changed, 1914 insertions, 0 deletions
diff --git a/runtime/runtime_image.cc b/runtime/runtime_image.cc
new file mode 100644
index 0000000000..f41d4c97f4
--- /dev/null
+++ b/runtime/runtime_image.cc
@@ -0,0 +1,1914 @@
+/*
+ * Copyright (C) 2022 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "runtime_image.h"
+
+#include <lz4.h>
+#include <sstream>
+#include <unistd.h>
+
+#include "android-base/file.h"
+#include "android-base/stringprintf.h"
+#include "android-base/strings.h"
+
+#include "base/arena_allocator.h"
+#include "base/arena_containers.h"
+#include "base/bit_utils.h"
+#include "base/file_utils.h"
+#include "base/length_prefixed_array.h"
+#include "base/scoped_flock.h"
+#include "base/stl_util.h"
+#include "base/systrace.h"
+#include "base/unix_file/fd_file.h"
+#include "base/utils.h"
+#include "class_loader_context.h"
+#include "class_loader_utils.h"
+#include "class_root-inl.h"
+#include "dex/class_accessor-inl.h"
+#include "gc/space/image_space.h"
+#include "image.h"
+#include "mirror/object-inl.h"
+#include "mirror/object-refvisitor-inl.h"
+#include "mirror/object_array-alloc-inl.h"
+#include "mirror/object_array-inl.h"
+#include "mirror/object_array.h"
+#include "mirror/string-inl.h"
+#include "nterp_helpers.h"
+#include "oat.h"
+#include "profile/profile_compilation_info.h"
+#include "scoped_thread_state_change-inl.h"
+#include "vdex_file.h"
+
+namespace art {
+
+using android::base::StringPrintf;
+
+/**
+ * The native data structures that we store in the image.
+ */
+enum class NativeRelocationKind {
+ kArtFieldArray,
+ kArtMethodArray,
+ kArtMethod,
+ kImTable,
+ // For dex cache arrays which can stay in memory even after startup. Those are
+ // dex cache arrays whose size is below a given threshold, defined by
+ // DexCache::ShouldAllocateFullArray.
+ kFullNativeDexCacheArray,
+ // For dex cache arrays which we will want to release after app startup.
+ kStartupNativeDexCacheArray,
+};
+
+/**
+ * Helper class to generate an app image at runtime.
+ */
+class RuntimeImageHelper {
+ public:
+ explicit RuntimeImageHelper(gc::Heap* heap) :
+ allocator_(Runtime::Current()->GetArenaPool()),
+ objects_(allocator_.Adapter()),
+ art_fields_(allocator_.Adapter()),
+ art_methods_(allocator_.Adapter()),
+ im_tables_(allocator_.Adapter()),
+ metadata_(allocator_.Adapter()),
+ dex_cache_arrays_(allocator_.Adapter()),
+ string_reference_offsets_(allocator_.Adapter()),
+ sections_(ImageHeader::kSectionCount, allocator_.Adapter()),
+ object_offsets_(allocator_.Adapter()),
+ classes_(allocator_.Adapter()),
+ array_classes_(allocator_.Adapter()),
+ dex_caches_(allocator_.Adapter()),
+ class_hashes_(allocator_.Adapter()),
+ native_relocations_(allocator_.Adapter()),
+ boot_image_begin_(heap->GetBootImagesStartAddress()),
+ boot_image_size_(heap->GetBootImagesSize()),
+ image_begin_(boot_image_begin_ + boot_image_size_),
+ // Note: image relocation considers the image header in the bitmap.
+ object_section_size_(sizeof(ImageHeader)),
+ intern_table_(InternStringHash(this), InternStringEquals(this)),
+ class_table_(ClassDescriptorHash(this), ClassDescriptorEquals()) {}
+
+ bool Generate(std::string* error_msg) {
+ if (!WriteObjects(error_msg)) {
+ return false;
+ }
+
+ // Generate the sections information stored in the header.
+ CreateImageSections();
+
+ // Now that all sections have been created and we know their offset and
+ // size, relocate native pointers inside classes and ImTables.
+ RelocateNativePointers();
+
+ // Generate the bitmap section, stored page aligned after the sections data
+ // and of size `object_section_size_` page aligned.
+ size_t sections_end = sections_[ImageHeader::kSectionMetadata].End();
+ image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create(
+ "image bitmap",
+ reinterpret_cast<uint8_t*>(image_begin_),
+ RoundUp(object_section_size_, kPageSize));
+ for (uint32_t offset : object_offsets_) {
+ DCHECK(IsAligned<kObjectAlignment>(image_begin_ + sizeof(ImageHeader) + offset));
+ image_bitmap_.Set(
+ reinterpret_cast<mirror::Object*>(image_begin_ + sizeof(ImageHeader) + offset));
+ }
+ const size_t bitmap_bytes = image_bitmap_.Size();
+ auto* bitmap_section = &sections_[ImageHeader::kSectionImageBitmap];
+ *bitmap_section = ImageSection(RoundUp(sections_end, kPageSize),
+ RoundUp(bitmap_bytes, kPageSize));
+
+ // Compute boot image checksum and boot image components, to be stored in
+ // the header.
+ gc::Heap* const heap = Runtime::Current()->GetHeap();
+ uint32_t boot_image_components = 0u;
+ uint32_t boot_image_checksums = 0u;
+ const std::vector<gc::space::ImageSpace*>& image_spaces = heap->GetBootImageSpaces();
+ for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
+ const ImageHeader& header = image_spaces[i]->GetImageHeader();
+ boot_image_components += header.GetComponentCount();
+ boot_image_checksums ^= header.GetImageChecksum();
+ DCHECK_LE(header.GetImageSpaceCount(), size - i);
+ i += header.GetImageSpaceCount();
+ }
+
+ header_ = ImageHeader(
+ /* image_reservation_size= */ RoundUp(sections_end, kPageSize),
+ /* component_count= */ 1,
+ image_begin_,
+ sections_end,
+ sections_.data(),
+ /* image_roots= */ image_begin_ + sizeof(ImageHeader),
+ /* oat_checksum= */ 0,
+ /* oat_file_begin= */ 0,
+ /* oat_data_begin= */ 0,
+ /* oat_data_end= */ 0,
+ /* oat_file_end= */ 0,
+ heap->GetBootImagesStartAddress(),
+ heap->GetBootImagesSize(),
+ boot_image_components,
+ boot_image_checksums,
+ static_cast<uint32_t>(kRuntimePointerSize));
+
+ // Data size includes everything except the bitmap and the header.
+ header_.data_size_ = sections_end - sizeof(ImageHeader);
+
+ // Write image methods - needs to happen after creation of the header.
+ WriteImageMethods();
+
+ return true;
+ }
+
+ void FillData(std::vector<uint8_t>& data) {
+ // Note we don't put the header, we only have it reserved in `data` as
+ // Image::WriteData expects the object section to contain the image header.
+ auto compute_dest = [&](const ImageSection& section) {
+ return data.data() + section.Offset();
+ };
+
+ auto objects_section = header_.GetImageSection(ImageHeader::kSectionObjects);
+ memcpy(compute_dest(objects_section) + sizeof(ImageHeader), objects_.data(), objects_.size());
+
+ auto fields_section = header_.GetImageSection(ImageHeader::kSectionArtFields);
+ memcpy(compute_dest(fields_section), art_fields_.data(), fields_section.Size());
+
+ auto methods_section = header_.GetImageSection(ImageHeader::kSectionArtMethods);
+ memcpy(compute_dest(methods_section), art_methods_.data(), methods_section.Size());
+
+ auto im_tables_section = header_.GetImageSection(ImageHeader::kSectionImTables);
+ memcpy(compute_dest(im_tables_section), im_tables_.data(), im_tables_section.Size());
+
+ auto intern_section = header_.GetImageSection(ImageHeader::kSectionInternedStrings);
+ intern_table_.WriteToMemory(compute_dest(intern_section));
+
+ auto class_table_section = header_.GetImageSection(ImageHeader::kSectionClassTable);
+ class_table_.WriteToMemory(compute_dest(class_table_section));
+
+ auto string_offsets_section =
+ header_.GetImageSection(ImageHeader::kSectionStringReferenceOffsets);
+ memcpy(compute_dest(string_offsets_section),
+ string_reference_offsets_.data(),
+ string_offsets_section.Size());
+
+ auto dex_cache_section = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays);
+ memcpy(compute_dest(dex_cache_section), dex_cache_arrays_.data(), dex_cache_section.Size());
+
+ auto metadata_section = header_.GetImageSection(ImageHeader::kSectionMetadata);
+ memcpy(compute_dest(metadata_section), metadata_.data(), metadata_section.Size());
+
+ DCHECK_EQ(metadata_section.Offset() + metadata_section.Size(), data.size());
+ }
+
+
+ ImageHeader* GetHeader() {
+ return &header_;
+ }
+
+ const gc::accounting::ContinuousSpaceBitmap& GetImageBitmap() const {
+ return image_bitmap_;
+ }
+
+ const std::string& GetDexLocation() const {
+ return dex_location_;
+ }
+
+ private:
+ bool IsInBootImage(const void* obj) const {
+ return reinterpret_cast<uintptr_t>(obj) - boot_image_begin_ < boot_image_size_;
+ }
+
+ // Returns the image contents for `cls`. If `cls` is in the boot image, the
+ // method just returns it.
+ mirror::Class* GetClassContent(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
+ if (cls == nullptr || IsInBootImage(cls.Ptr())) {
+ return cls.Ptr();
+ }
+ const dex::ClassDef* class_def = cls->GetClassDef();
+ DCHECK(class_def != nullptr) << cls->PrettyClass();
+ auto it = classes_.find(class_def);
+ DCHECK(it != classes_.end()) << cls->PrettyClass();
+ mirror::Class* result = reinterpret_cast<mirror::Class*>(objects_.data() + it->second);
+ DCHECK(result->GetClass()->IsClass());
+ return result;
+ }
+
+ // Returns a pointer that can be stored in `objects_`:
+ // - The pointer itself for boot image objects,
+ // - The offset in the image for all other objects.
+ template <typename T> T* GetOrComputeImageAddress(ObjPtr<T> object)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ if (object == nullptr || IsInBootImage(object.Ptr())) {
+ DCHECK(object == nullptr || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(object));
+ return object.Ptr();
+ }
+
+ if (object->IsClassLoader()) {
+ // DexCache and Class point to class loaders. For runtime-generated app
+ // images, we don't encode the class loader. It will be set when the
+ // runtime is loading the image.
+ return nullptr;
+ }
+
+ if (object->GetClass() == GetClassRoot<mirror::ClassExt>()) {
+ // No need to encode `ClassExt`. If needed, it will be reconstructed at
+ // runtime.
+ return nullptr;
+ }
+
+ uint32_t offset = 0u;
+ if (object->IsClass()) {
+ offset = CopyClass(object->AsClass());
+ } else if (object->IsDexCache()) {
+ offset = CopyDexCache(object->AsDexCache());
+ } else {
+ offset = CopyObject(object);
+ }
+ return reinterpret_cast<T*>(image_begin_ + sizeof(ImageHeader) + offset);
+ }
+
+ void CreateImageSections() {
+ sections_[ImageHeader::kSectionObjects] = ImageSection(0u, object_section_size_);
+ sections_[ImageHeader::kSectionArtFields] =
+ ImageSection(sections_[ImageHeader::kSectionObjects].End(), art_fields_.size());
+
+ // Round up to the alignment for ArtMethod.
+ static_assert(IsAligned<sizeof(void*)>(ArtMethod::Size(kRuntimePointerSize)));
+ size_t cur_pos = RoundUp(sections_[ImageHeader::kSectionArtFields].End(), sizeof(void*));
+ sections_[ImageHeader::kSectionArtMethods] = ImageSection(cur_pos, art_methods_.size());
+
+ // Round up to the alignment for ImTables.
+ cur_pos = RoundUp(sections_[ImageHeader::kSectionArtMethods].End(), sizeof(void*));
+ sections_[ImageHeader::kSectionImTables] = ImageSection(cur_pos, im_tables_.size());
+
+ // Round up to the alignment for conflict tables.
+ cur_pos = RoundUp(sections_[ImageHeader::kSectionImTables].End(), sizeof(void*));
+ sections_[ImageHeader::kSectionIMTConflictTables] = ImageSection(cur_pos, 0u);
+
+ sections_[ImageHeader::kSectionRuntimeMethods] =
+ ImageSection(sections_[ImageHeader::kSectionIMTConflictTables].End(), 0u);
+
+ // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
+ cur_pos = RoundUp(sections_[ImageHeader::kSectionRuntimeMethods].End(), sizeof(uint64_t));
+
+ size_t intern_table_bytes = intern_table_.WriteToMemory(nullptr);
+ sections_[ImageHeader::kSectionInternedStrings] = ImageSection(cur_pos, intern_table_bytes);
+
+ // Obtain the new position and round it up to the appropriate alignment.
+ cur_pos = RoundUp(sections_[ImageHeader::kSectionInternedStrings].End(), sizeof(uint64_t));
+
+ size_t class_table_bytes = class_table_.WriteToMemory(nullptr);
+ sections_[ImageHeader::kSectionClassTable] = ImageSection(cur_pos, class_table_bytes);
+
+ // Round up to the alignment of the offsets we are going to store.
+ cur_pos = RoundUp(sections_[ImageHeader::kSectionClassTable].End(), sizeof(uint32_t));
+ sections_[ImageHeader::kSectionStringReferenceOffsets] = ImageSection(
+ cur_pos, string_reference_offsets_.size() * sizeof(string_reference_offsets_[0]));
+
+ // Round up to the alignment dex caches arrays expects.
+ cur_pos =
+ RoundUp(sections_[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(void*));
+ sections_[ImageHeader::kSectionDexCacheArrays] =
+ ImageSection(cur_pos, dex_cache_arrays_.size());
+
+ // Round up to the alignment expected for the metadata, which holds dex
+ // cache arrays.
+ cur_pos = RoundUp(sections_[ImageHeader::kSectionDexCacheArrays].End(), sizeof(void*));
+ sections_[ImageHeader::kSectionMetadata] = ImageSection(cur_pos, metadata_.size());
+ }
+
+ // Returns the copied mirror Object if in the image, or the object directly if
+ // in the boot image. For the copy, this is really its content, it should not
+ // be returned as an `ObjPtr` (as it's not a GC object), nor stored anywhere.
+ template<typename T> T* FromImageOffsetToRuntimeContent(uint32_t offset) {
+ if (offset == 0u || IsInBootImage(reinterpret_cast<const void*>(offset))) {
+ return reinterpret_cast<T*>(offset);
+ }
+ uint32_t vector_data_offset = FromImageOffsetToVectorOffset(offset);
+ return reinterpret_cast<T*>(objects_.data() + vector_data_offset);
+ }
+
+ uint32_t FromImageOffsetToVectorOffset(uint32_t offset) const {
+ DCHECK(!IsInBootImage(reinterpret_cast<const void*>(offset)));
+ return offset - sizeof(ImageHeader) - image_begin_;
+ }
+
+ class InternStringHash {
+ public:
+ explicit InternStringHash(RuntimeImageHelper* helper) : helper_(helper) {}
+
+ // NO_THREAD_SAFETY_ANALYSIS as these helpers get passed to `HashSet`.
+ size_t operator()(mirror::String* str) const NO_THREAD_SAFETY_ANALYSIS {
+ int32_t hash = str->GetStoredHashCode();
+ DCHECK_EQ(hash, str->ComputeHashCode());
+ // An additional cast to prevent undesired sign extension.
+ return static_cast<uint32_t>(hash);
+ }
+
+ size_t operator()(uint32_t entry) const NO_THREAD_SAFETY_ANALYSIS {
+ return (*this)(helper_->FromImageOffsetToRuntimeContent<mirror::String>(entry));
+ }
+
+ private:
+ RuntimeImageHelper* helper_;
+ };
+
+ class InternStringEquals {
+ public:
+ explicit InternStringEquals(RuntimeImageHelper* helper) : helper_(helper) {}
+
+ // NO_THREAD_SAFETY_ANALYSIS as these helpers get passed to `HashSet`.
+ bool operator()(uint32_t entry, mirror::String* other) const NO_THREAD_SAFETY_ANALYSIS {
+ if (kIsDebugBuild) {
+ Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
+ }
+ return other->Equals(helper_->FromImageOffsetToRuntimeContent<mirror::String>(entry));
+ }
+
+ bool operator()(uint32_t entry, uint32_t other) const NO_THREAD_SAFETY_ANALYSIS {
+ return (*this)(entry, helper_->FromImageOffsetToRuntimeContent<mirror::String>(other));
+ }
+
+ private:
+ RuntimeImageHelper* helper_;
+ };
+
+ using InternTableSet =
+ HashSet<uint32_t, DefaultEmptyFn<uint32_t>, InternStringHash, InternStringEquals>;
+
+ class ClassDescriptorHash {
+ public:
+ explicit ClassDescriptorHash(RuntimeImageHelper* helper) : helper_(helper) {}
+
+ uint32_t operator()(const ClassTable::TableSlot& slot) const NO_THREAD_SAFETY_ANALYSIS {
+ uint32_t ptr = slot.NonHashData();
+ if (helper_->IsInBootImage(reinterpret_cast32<const void*>(ptr))) {
+ return reinterpret_cast32<mirror::Class*>(ptr)->DescriptorHash();
+ }
+ return helper_->class_hashes_.Get(helper_->FromImageOffsetToVectorOffset(ptr));
+ }
+
+ private:
+ RuntimeImageHelper* helper_;
+ };
+
+ class ClassDescriptorEquals {
+ public:
+ ClassDescriptorEquals() {}
+
+ bool operator()(const ClassTable::TableSlot& a, const ClassTable::TableSlot& b)
+ const NO_THREAD_SAFETY_ANALYSIS {
+ // No need to fetch the descriptor: we know the classes we are inserting
+ // in the ClassTable are unique.
+ return a.Data() == b.Data();
+ }
+ };
+
+ using ClassTableSet = HashSet<ClassTable::TableSlot,
+ ClassTable::TableSlotEmptyFn,
+ ClassDescriptorHash,
+ ClassDescriptorEquals>;
+
+ // Helper class to collect classes that we will generate in the image.
+ class ClassTableVisitor {
+ public:
+ ClassTableVisitor(Handle<mirror::ClassLoader> loader, VariableSizedHandleScope& handles)
+ : loader_(loader), handles_(handles) {}
+
+ bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
+ // Record app classes and boot classpath classes: app classes will be
+ // generated in the image and put in the class table, boot classpath
+ // classes will be put in the class table.
+ ObjPtr<mirror::ClassLoader> class_loader = klass->GetClassLoader();
+ if (class_loader == loader_.Get() || class_loader == nullptr) {
+ handles_.NewHandle(klass);
+ }
+ return true;
+ }
+
+ private:
+ Handle<mirror::ClassLoader> loader_;
+ VariableSizedHandleScope& handles_;
+ };
+
+ // Helper class visitor to filter out classes we cannot emit.
+ class PruneVisitor {
+ public:
+ PruneVisitor(Thread* self,
+ RuntimeImageHelper* helper,
+ const ArenaSet<const DexFile*>& dex_files,
+ ArenaVector<Handle<mirror::Class>>& classes,
+ ArenaAllocator& allocator)
+ : self_(self),
+ helper_(helper),
+ dex_files_(dex_files),
+ visited_(allocator.Adapter()),
+ classes_to_write_(classes) {}
+
+ bool CanEmitHelper(Handle<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
+ // If the class comes from a dex file which is not part of the primary
+ // APK, don't encode it.
+ if (!ContainsElement(dex_files_, &cls->GetDexFile())) {
+ return false;
+ }
+
+ // Ensure pointers to classes in `cls` can also be emitted.
+ StackHandleScope<1> hs(self_);
+ MutableHandle<mirror::Class> other_class = hs.NewHandle(cls->GetSuperClass());
+ if (!CanEmit(other_class)) {
+ return false;
+ }
+
+ other_class.Assign(cls->GetComponentType());
+ if (!CanEmit(other_class)) {
+ return false;
+ }
+
+ for (size_t i = 0, num_interfaces = cls->NumDirectInterfaces(); i < num_interfaces; ++i) {
+ other_class.Assign(cls->GetDirectInterface(i));
+ if (!CanEmit(other_class)) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ bool CanEmit(Handle<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
+ if (cls == nullptr) {
+ return true;
+ }
+ // Only emit classes that are resolved and not erroneous.
+ if (!cls->IsResolved() || cls->IsErroneous()) {
+ return false;
+ }
+
+ // Proxy classes are generated at runtime, so don't emit them.
+ if (cls->IsProxyClass()) {
+ return false;
+ }
+
+ // Classes in the boot image can be trivially encoded directly.
+ if (helper_->IsInBootImage(cls.Get())) {
+ return true;
+ }
+
+ if (cls->IsBootStrapClassLoaded()) {
+ // We cannot encode classes that are part of the boot classpath.
+ return false;
+ }
+
+ DCHECK(!cls->IsPrimitive());
+
+ if (cls->IsArrayClass()) {
+ if (cls->IsBootStrapClassLoaded()) {
+ // For boot classpath arrays, we can only emit them if they are
+ // in the boot image already.
+ return helper_->IsInBootImage(cls.Get());
+ }
+ ObjPtr<mirror::Class> temp = cls.Get();
+ while ((temp = temp->GetComponentType())->IsArrayClass()) {}
+ StackHandleScope<1> hs(self_);
+ Handle<mirror::Class> other_class = hs.NewHandle(temp);
+ return CanEmit(other_class);
+ }
+ const dex::ClassDef* class_def = cls->GetClassDef();
+ DCHECK_NE(class_def, nullptr);
+ auto existing = visited_.find(class_def);
+ if (existing != visited_.end()) {
+ // Already processed;
+ return existing->second == VisitState::kCanEmit;
+ }
+
+ visited_.Put(class_def, VisitState::kVisiting);
+ if (CanEmitHelper(cls)) {
+ visited_.Overwrite(class_def, VisitState::kCanEmit);
+ return true;
+ } else {
+ visited_.Overwrite(class_def, VisitState::kCannotEmit);
+ return false;
+ }
+ }
+
+ void Visit(Handle<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_) {
+ MutableHandle<mirror::Class> cls(obj.GetReference());
+ if (CanEmit(cls)) {
+ if (cls->IsBootStrapClassLoaded()) {
+ DCHECK(helper_->IsInBootImage(cls.Get()));
+ // Insert the bootclasspath class in the class table.
+ uint32_t hash = cls->DescriptorHash();
+ helper_->class_table_.InsertWithHash(ClassTable::TableSlot(cls.Get(), hash), hash);
+ } else {
+ classes_to_write_.push_back(cls);
+ }
+ }
+ }
+
+ private:
+ enum class VisitState {
+ kVisiting,
+ kCanEmit,
+ kCannotEmit,
+ };
+
+ Thread* const self_;
+ RuntimeImageHelper* const helper_;
+ const ArenaSet<const DexFile*>& dex_files_;
+ ArenaSafeMap<const dex::ClassDef*, VisitState> visited_;
+ ArenaVector<Handle<mirror::Class>>& classes_to_write_;
+ };
+
+ void EmitClasses(Thread* self, Handle<mirror::ObjectArray<mirror::Object>> dex_cache_array)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ ScopedTrace trace("Emit strings and classes");
+ ArenaSet<const DexFile*> dex_files(allocator_.Adapter());
+ for (int32_t i = 0; i < dex_cache_array->GetLength(); ++i) {
+ dex_files.insert(dex_cache_array->Get(i)->AsDexCache()->GetDexFile());
+ }
+
+ StackHandleScope<1> hs(self);
+ Handle<mirror::ClassLoader> loader = hs.NewHandle(
+ dex_cache_array->Get(0)->AsDexCache()->GetClassLoader());
+ ClassTable* const class_table = loader->GetClassTable();
+ if (class_table == nullptr) {
+ return;
+ }
+
+ VariableSizedHandleScope handles(self);
+ {
+ ClassTableVisitor class_table_visitor(loader, handles);
+ class_table->Visit(class_table_visitor);
+ }
+
+ ArenaVector<Handle<mirror::Class>> classes_to_write(allocator_.Adapter());
+ classes_to_write.reserve(class_table->Size());
+ {
+ PruneVisitor prune_visitor(self, this, dex_files, classes_to_write, allocator_);
+ handles.VisitHandles(prune_visitor);
+ }
+
+ for (Handle<mirror::Class> cls : classes_to_write) {
+ ScopedAssertNoThreadSuspension sants("Writing class");
+ CopyClass(cls.Get());
+ }
+
+ // Relocate the type array entries. We do this now before creating image
+ // sections because we may add new boot image classes into our
+ // `class_table`_.
+ for (auto entry : dex_caches_) {
+ const DexFile& dex_file = *entry.first;
+ mirror::DexCache* cache = reinterpret_cast<mirror::DexCache*>(&objects_[entry.second]);
+ mirror::GcRootArray<mirror::Class>* old_types_array = cache->GetResolvedTypesArray();
+ if (HasNativeRelocation(old_types_array)) {
+ auto reloc_it = native_relocations_.find(old_types_array);
+ DCHECK(reloc_it != native_relocations_.end());
+ ArenaVector<uint8_t>& data =
+ (reloc_it->second.first == NativeRelocationKind::kFullNativeDexCacheArray)
+ ? dex_cache_arrays_ : metadata_;
+ mirror::GcRootArray<mirror::Class>* content_array =
+ reinterpret_cast<mirror::GcRootArray<mirror::Class>*>(
+ data.data() + reloc_it->second.second);
+ for (uint32_t i = 0; i < dex_file.NumTypeIds(); ++i) {
+ ObjPtr<mirror::Class> cls = old_types_array->Get(i);
+ if (cls == nullptr) {
+ content_array->Set(i, nullptr);
+ } else if (IsInBootImage(cls.Ptr())) {
+ if (!cls->IsPrimitive()) {
+ // The dex cache is concurrently updated by the app. If the class
+ // collection logic in `PruneVisitor` did not see this class, insert it now.
+ // Note that application class tables do not contain primitive
+ // classes.
+ uint32_t hash = cls->DescriptorHash();
+ class_table_.InsertWithHash(ClassTable::TableSlot(cls.Ptr(), hash), hash);
+ }
+ content_array->Set(i, cls.Ptr());
+ } else if (cls->IsArrayClass()) {
+ std::string class_name;
+ cls->GetDescriptor(&class_name);
+ auto class_it = array_classes_.find(class_name);
+ if (class_it == array_classes_.end()) {
+ content_array->Set(i, nullptr);
+ } else {
+ mirror::Class* ptr = reinterpret_cast<mirror::Class*>(
+ image_begin_ + sizeof(ImageHeader) + class_it->second);
+ content_array->Set(i, ptr);
+ }
+ } else {
+ DCHECK(!cls->IsPrimitive());
+ DCHECK(!cls->IsProxyClass());
+ const dex::ClassDef* class_def = cls->GetClassDef();
+ DCHECK_NE(class_def, nullptr);
+ auto class_it = classes_.find(class_def);
+ if (class_it == classes_.end()) {
+ content_array->Set(i, nullptr);
+ } else {
+ mirror::Class* ptr = reinterpret_cast<mirror::Class*>(
+ image_begin_ + sizeof(ImageHeader) + class_it->second);
+ content_array->Set(i, ptr);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Helper visitor returning the location of a native pointer in the image.
+ class NativePointerVisitor {
+ public:
+ explicit NativePointerVisitor(RuntimeImageHelper* helper) : helper_(helper) {}
+
+ template <typename T>
+ T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
+ return helper_->NativeLocationInImage(ptr, /* must_have_relocation= */ true);
+ }
+
+ template <typename T> T* operator()(T* ptr, bool must_have_relocation = true) const {
+ return helper_->NativeLocationInImage(ptr, must_have_relocation);
+ }
+
+ private:
+ RuntimeImageHelper* helper_;
+ };
+
+ template <typename T> T* NativeLocationInImage(T* ptr, bool must_have_relocation) const {
+ if (ptr == nullptr || IsInBootImage(ptr)) {
+ return ptr;
+ }
+
+ auto it = native_relocations_.find(ptr);
+ if (it == native_relocations_.end()) {
+ DCHECK(!must_have_relocation);
+ return nullptr;
+ }
+ switch (it->second.first) {
+ case NativeRelocationKind::kArtMethod:
+ case NativeRelocationKind::kArtMethodArray: {
+ uint32_t offset = sections_[ImageHeader::kSectionArtMethods].Offset();
+ return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
+ }
+ case NativeRelocationKind::kArtFieldArray: {
+ uint32_t offset = sections_[ImageHeader::kSectionArtFields].Offset();
+ return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
+ }
+ case NativeRelocationKind::kImTable: {
+ uint32_t offset = sections_[ImageHeader::kSectionImTables].Offset();
+ return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
+ }
+ case NativeRelocationKind::kStartupNativeDexCacheArray: {
+ uint32_t offset = sections_[ImageHeader::kSectionMetadata].Offset();
+ return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
+ }
+ case NativeRelocationKind::kFullNativeDexCacheArray: {
+ uint32_t offset = sections_[ImageHeader::kSectionDexCacheArrays].Offset();
+ return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
+ }
+ }
+ }
+
+ template <typename Visitor>
+ void RelocateMethodPointerArrays(mirror::Class* klass, const Visitor& visitor)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ // A bit of magic here: we cast contents from our buffer to mirror::Class,
+ // and do pointer comparison between 1) these classes, and 2) boot image objects.
+ // Both kinds do not move.
+
+ // See if we need to fixup the vtable field.
+ mirror::Class* super = FromImageOffsetToRuntimeContent<mirror::Class>(
+ reinterpret_cast32<uint32_t>(
+ klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>().Ptr()));
+ DCHECK(super != nullptr) << "j.l.Object should never be in an app runtime image";
+ mirror::PointerArray* vtable = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
+ reinterpret_cast32<uint32_t>(klass->GetVTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
+ mirror::PointerArray* super_vtable = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
+ reinterpret_cast32<uint32_t>(super->GetVTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
+ if (vtable != nullptr && vtable != super_vtable) {
+ DCHECK(!IsInBootImage(vtable));
+ vtable->Fixup(vtable, kRuntimePointerSize, visitor);
+ }
+
+ // See if we need to fixup entries in the IfTable.
+ mirror::IfTable* iftable = FromImageOffsetToRuntimeContent<mirror::IfTable>(
+ reinterpret_cast32<uint32_t>(
+ klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
+ mirror::IfTable* super_iftable = FromImageOffsetToRuntimeContent<mirror::IfTable>(
+ reinterpret_cast32<uint32_t>(
+ super->GetIfTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
+ int32_t iftable_count = iftable->Count();
+ int32_t super_iftable_count = super_iftable->Count();
+ for (int32_t i = 0; i < iftable_count; ++i) {
+ mirror::PointerArray* methods = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
+ reinterpret_cast32<uint32_t>(
+ iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i).Ptr()));
+ mirror::PointerArray* super_methods = (i < super_iftable_count)
+ ? FromImageOffsetToRuntimeContent<mirror::PointerArray>(
+ reinterpret_cast32<uint32_t>(
+ super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i).Ptr()))
+ : nullptr;
+ if (methods != super_methods) {
+ DCHECK(!IsInBootImage(methods));
+ methods->Fixup(methods, kRuntimePointerSize, visitor);
+ }
+ }
+ }
+
+ template <typename Visitor, typename T>
+ void RelocateNativeDexCacheArray(mirror::NativeArray<T>* old_method_array,
+ uint32_t num_ids,
+ const Visitor& visitor)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ if (old_method_array == nullptr) {
+ return;
+ }
+
+ auto it = native_relocations_.find(old_method_array);
+ DCHECK(it != native_relocations_.end());
+ ArenaVector<uint8_t>& data =
+ (it->second.first == NativeRelocationKind::kFullNativeDexCacheArray)
+ ? dex_cache_arrays_ : metadata_;
+
+ mirror::NativeArray<T>* content_array =
+ reinterpret_cast<mirror::NativeArray<T>*>(data.data() + it->second.second);
+ for (uint32_t i = 0; i < num_ids; ++i) {
+ // We may not have relocations for some entries, in which case we'll
+ // just store null.
+ content_array->Set(i, visitor(content_array->Get(i), /* must_have_relocation= */ false));
+ }
+ }
+
+ template <typename Visitor>
+ void RelocateDexCacheArrays(mirror::DexCache* cache,
+ const DexFile& dex_file,
+ const Visitor& visitor)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ mirror::NativeArray<ArtMethod>* old_method_array = cache->GetResolvedMethodsArray();
+ cache->SetResolvedMethodsArray(visitor(old_method_array));
+ RelocateNativeDexCacheArray(old_method_array, dex_file.NumMethodIds(), visitor);
+
+ mirror::NativeArray<ArtField>* old_field_array = cache->GetResolvedFieldsArray();
+ cache->SetResolvedFieldsArray(visitor(old_field_array));
+ RelocateNativeDexCacheArray(old_field_array, dex_file.NumFieldIds(), visitor);
+
+ mirror::GcRootArray<mirror::String>* old_strings_array = cache->GetStringsArray();
+ cache->SetStringsArray(visitor(old_strings_array));
+
+ mirror::GcRootArray<mirror::Class>* old_types_array = cache->GetResolvedTypesArray();
+ cache->SetResolvedTypesArray(visitor(old_types_array));
+ }
+
+ void RelocateNativePointers() {
+ ScopedTrace relocate_native_pointers("Relocate native pointers");
+ ScopedObjectAccess soa(Thread::Current());
+ NativePointerVisitor visitor(this);
+ for (auto entry : classes_) {
+ mirror::Class* cls = reinterpret_cast<mirror::Class*>(&objects_[entry.second]);
+ cls->FixupNativePointers(cls, kRuntimePointerSize, visitor);
+ RelocateMethodPointerArrays(cls, visitor);
+ }
+ for (auto it : array_classes_) {
+ mirror::Class* cls = reinterpret_cast<mirror::Class*>(&objects_[it.second]);
+ cls->FixupNativePointers(cls, kRuntimePointerSize, visitor);
+ RelocateMethodPointerArrays(cls, visitor);
+ }
+ for (auto it : native_relocations_) {
+ if (it.second.first == NativeRelocationKind::kImTable) {
+ ImTable* im_table = reinterpret_cast<ImTable*>(im_tables_.data() + it.second.second);
+ RelocateImTable(im_table, visitor);
+ }
+ }
+ for (auto it : dex_caches_) {
+ mirror::DexCache* cache = reinterpret_cast<mirror::DexCache*>(&objects_[it.second]);
+ RelocateDexCacheArrays(cache, *it.first, visitor);
+ }
+ }
+
+ void RelocateImTable(ImTable* im_table, const NativePointerVisitor& visitor) {
+ for (size_t i = 0; i < ImTable::kSize; ++i) {
+ ArtMethod* method = im_table->Get(i, kRuntimePointerSize);
+ ArtMethod* new_method = nullptr;
+ if (method->IsRuntimeMethod() && !IsInBootImage(method)) {
+ // New IMT conflict method: just use the boot image version.
+ // TODO: Consider copying the new IMT conflict method.
+ new_method = Runtime::Current()->GetImtConflictMethod();
+ DCHECK(IsInBootImage(new_method));
+ } else {
+ new_method = visitor(method);
+ }
+ if (method != new_method) {
+ im_table->Set(i, new_method, kRuntimePointerSize);
+ }
+ }
+ }
+
+ void CopyFieldArrays(ObjPtr<mirror::Class> cls, uint32_t class_image_address)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ LengthPrefixedArray<ArtField>* fields[] = {
+ cls->GetSFieldsPtr(), cls->GetIFieldsPtr(),
+ };
+ for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
+ if (cur_fields != nullptr) {
+ // Copy the array.
+ size_t number_of_fields = cur_fields->size();
+ size_t size = LengthPrefixedArray<ArtField>::ComputeSize(number_of_fields);
+ size_t offset = art_fields_.size();
+ art_fields_.resize(offset + size);
+ auto* dest_array =
+ reinterpret_cast<LengthPrefixedArray<ArtField>*>(art_fields_.data() + offset);
+ memcpy(dest_array, cur_fields, size);
+ native_relocations_.Put(cur_fields,
+ std::make_pair(NativeRelocationKind::kArtFieldArray, offset));
+
+ // Update the class pointer of individual fields.
+ for (size_t i = 0; i != number_of_fields; ++i) {
+ dest_array->At(i).GetDeclaringClassAddressWithoutBarrier()->Assign(
+ reinterpret_cast<mirror::Class*>(class_image_address));
+ }
+ }
+ }
+ }
+
+ void CopyMethodArrays(ObjPtr<mirror::Class> cls,
+ uint32_t class_image_address,
+ bool is_class_initialized)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ size_t number_of_methods = cls->NumMethods();
+ if (number_of_methods == 0) {
+ return;
+ }
+
+ size_t size = LengthPrefixedArray<ArtMethod>::ComputeSize(number_of_methods);
+ size_t offset = art_methods_.size();
+ art_methods_.resize(offset + size);
+ auto* dest_array =
+ reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(art_methods_.data() + offset);
+ memcpy(dest_array, cls->GetMethodsPtr(), size);
+ native_relocations_.Put(cls->GetMethodsPtr(),
+ std::make_pair(NativeRelocationKind::kArtMethodArray, offset));
+
+ for (size_t i = 0; i != number_of_methods; ++i) {
+ ArtMethod* method = &cls->GetMethodsPtr()->At(i);
+ ArtMethod* copy = &dest_array->At(i);
+
+ // Update the class pointer.
+ ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
+ if (declaring_class == cls) {
+ copy->GetDeclaringClassAddressWithoutBarrier()->Assign(
+ reinterpret_cast<mirror::Class*>(class_image_address));
+ } else {
+ DCHECK(method->IsCopied());
+ if (!IsInBootImage(declaring_class.Ptr())) {
+ DCHECK(classes_.find(declaring_class->GetClassDef()) != classes_.end());
+ copy->GetDeclaringClassAddressWithoutBarrier()->Assign(
+ reinterpret_cast<mirror::Class*>(
+ image_begin_ +
+ sizeof(ImageHeader) +
+ classes_.Get(declaring_class->GetClassDef())));
+ }
+ }
+
+ // Record the native relocation of the method.
+ uintptr_t copy_offset =
+ reinterpret_cast<uintptr_t>(copy) - reinterpret_cast<uintptr_t>(art_methods_.data());
+ native_relocations_.Put(method,
+ std::make_pair(NativeRelocationKind::kArtMethod, copy_offset));
+
+ // Ignore the single-implementation info for abstract method.
+ if (method->IsAbstract()) {
+ copy->SetHasSingleImplementation(false);
+ copy->SetSingleImplementation(nullptr, kRuntimePointerSize);
+ }
+
+ // Set the entrypoint and data pointer of the method.
+ StubType stub;
+ if (method->IsNative()) {
+ stub = StubType::kQuickGenericJNITrampoline;
+ } else if (!cls->IsVerified()) {
+ stub = StubType::kQuickToInterpreterBridge;
+ } else if (!is_class_initialized && method->NeedsClinitCheckBeforeCall()) {
+ stub = StubType::kQuickResolutionTrampoline;
+ } else if (interpreter::IsNterpSupported() && CanMethodUseNterp(method)) {
+ stub = StubType::kNterpTrampoline;
+ } else {
+ stub = StubType::kQuickToInterpreterBridge;
+ }
+ const std::vector<gc::space::ImageSpace*>& image_spaces =
+ Runtime::Current()->GetHeap()->GetBootImageSpaces();
+ DCHECK(!image_spaces.empty());
+ const OatFile* oat_file = image_spaces[0]->GetOatFile();
+ DCHECK(oat_file != nullptr);
+ const OatHeader& header = oat_file->GetOatHeader();
+ copy->SetEntryPointFromQuickCompiledCode(header.GetOatAddress(stub));
+
+ if (method->IsNative()) {
+ StubType stub_type = method->IsCriticalNative()
+ ? StubType::kJNIDlsymLookupCriticalTrampoline
+ : StubType::kJNIDlsymLookupTrampoline;
+ copy->SetEntryPointFromJni(header.GetOatAddress(stub_type));
+ } else if (method->IsInvokable()) {
+ DCHECK(method->HasCodeItem()) << method->PrettyMethod();
+ ptrdiff_t code_item_offset = reinterpret_cast<const uint8_t*>(method->GetCodeItem()) -
+ method->GetDexFile()->DataBegin();
+ copy->SetDataPtrSize(
+ reinterpret_cast<const void*>(code_item_offset), kRuntimePointerSize);
+ }
+ }
+ }
+
+ void CopyImTable(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
+ ImTable* table = cls->GetImt(kRuntimePointerSize);
+
+ // If the table is null or shared and/or already emitted, we can skip.
+ if (table == nullptr || IsInBootImage(table) || HasNativeRelocation(table)) {
+ return;
+ }
+ const size_t size = ImTable::SizeInBytes(kRuntimePointerSize);
+ size_t offset = im_tables_.size();
+ im_tables_.resize(offset + size);
+ uint8_t* dest = im_tables_.data() + offset;
+ memcpy(dest, table, size);
+ native_relocations_.Put(table, std::make_pair(NativeRelocationKind::kImTable, offset));
+ }
+
+ bool HasNativeRelocation(void* ptr) const {
+ return native_relocations_.find(ptr) != native_relocations_.end();
+ }
+
+
+ static void LoadClassesFromReferenceProfile(
+ Thread* self,
+ const dchecked_vector<Handle<mirror::DexCache>>& dex_caches)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ AppInfo* app_info = Runtime::Current()->GetAppInfo();
+ std::string profile_file = app_info->GetPrimaryApkReferenceProfile();
+
+ if (profile_file.empty()) {
+ return;
+ }
+
+ // Lock the file, it could be concurrently updated by the system. Don't block
+ // as this is app startup sensitive.
+ std::string error;
+ ScopedFlock profile =
+ LockedFile::Open(profile_file.c_str(), O_RDONLY, /*block=*/false, &error);
+
+ if (profile == nullptr) {
+ LOG(DEBUG) << "Couldn't lock the profile file " << profile_file << ": " << error;
+ return;
+ }
+
+ ProfileCompilationInfo profile_info(/* for_boot_image= */ false);
+
+ if (!profile_info.Load(profile->Fd())) {
+ LOG(DEBUG) << "Could not load profile file";
+ return;
+ }
+
+ StackHandleScope<1> hs(self);
+ Handle<mirror::ClassLoader> class_loader =
+ hs.NewHandle<mirror::ClassLoader>(dex_caches[0]->GetClassLoader());
+ ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
+ ScopedTrace loading_classes("Loading classes from profile");
+ for (auto dex_cache : dex_caches) {
+ const DexFile* dex_file = dex_cache->GetDexFile();
+ const ArenaSet<dex::TypeIndex>* class_types = profile_info.GetClasses(*dex_file);
+ if (class_types == nullptr) {
+ // This means the profile file did not reference the dex file, which is the case
+ // if there's no classes and methods of that dex file in the profile.
+ continue;
+ }
+
+ for (dex::TypeIndex idx : *class_types) {
+ // The index is greater or equal to NumTypeIds if the type is an extra
+ // descriptor, not referenced by the dex file.
+ if (idx.index_ < dex_file->NumTypeIds()) {
+ ObjPtr<mirror::Class> klass = class_linker->ResolveType(idx, dex_cache, class_loader);
+ if (klass == nullptr) {
+ self->ClearException();
+ LOG(DEBUG) << "Failed to preload " << dex_file->PrettyType(idx);
+ continue;
+ }
+ }
+ }
+ }
+ }
+
+ bool WriteObjects(std::string* error_msg) {
+ ScopedTrace write_objects("Writing objects");
+ ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
+ ScopedObjectAccess soa(Thread::Current());
+ VariableSizedHandleScope handles(soa.Self());
+
+ Handle<mirror::Class> object_array_class = handles.NewHandle(
+ GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
+
+ Handle<mirror::ObjectArray<mirror::Object>> image_roots = handles.NewHandle(
+ mirror::ObjectArray<mirror::Object>::Alloc(
+ soa.Self(), object_array_class.Get(), ImageHeader::kImageRootsMax));
+
+ if (image_roots == nullptr) {
+ DCHECK(soa.Self()->IsExceptionPending());
+ soa.Self()->ClearException();
+ *error_msg = "Out of memory when trying to generate a runtime app image";
+ return false;
+ }
+
+ // Find the dex files that will be used for generating the app image.
+ dchecked_vector<Handle<mirror::DexCache>> dex_caches;
+ FindDexCaches(soa.Self(), dex_caches, handles);
+
+ if (dex_caches.size() == 0) {
+ *error_msg = "Did not find dex caches to generate an app image";
+ return false;
+ }
+ const OatDexFile* oat_dex_file = dex_caches[0]->GetDexFile()->GetOatDexFile();
+ VdexFile* vdex_file = oat_dex_file->GetOatFile()->GetVdexFile();
+ // The first entry in `dex_caches` contains the location of the primary APK.
+ dex_location_ = oat_dex_file->GetDexFileLocation();
+
+ size_t number_of_dex_files = vdex_file->GetNumberOfDexFiles();
+ if (number_of_dex_files != dex_caches.size()) {
+ // This means some dex files haven't been executed. For simplicity, just
+ // register them and recollect dex caches.
+ Handle<mirror::ClassLoader> loader = handles.NewHandle(dex_caches[0]->GetClassLoader());
+ VisitClassLoaderDexFiles(soa.Self(), loader, [&](const art::DexFile* dex_file)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ class_linker->RegisterDexFile(*dex_file, dex_caches[0]->GetClassLoader());
+ return true; // Continue with other dex files.
+ });
+ dex_caches.clear();
+ FindDexCaches(soa.Self(), dex_caches, handles);
+ if (number_of_dex_files != dex_caches.size()) {
+ *error_msg = "Number of dex caches does not match number of dex files in the primary APK";
+ return false;
+ }
+ }
+
+ // If classes referenced in the reference profile are not loaded, preload
+ // them. This makes sure we generate a good runtime app image, even if this
+ // current app run did not load all startup classes.
+ LoadClassesFromReferenceProfile(soa.Self(), dex_caches);
+
+ // We store the checksums of the dex files used at runtime. These can be
+ // different compared to the vdex checksums due to compact dex.
+ std::vector<uint32_t> checksums(number_of_dex_files);
+ uint32_t checksum_index = 0;
+ for (const OatDexFile* current_oat_dex_file : oat_dex_file->GetOatFile()->GetOatDexFiles()) {
+ const DexFile::Header* header =
+ reinterpret_cast<const DexFile::Header*>(current_oat_dex_file->GetDexFilePointer());
+ checksums[checksum_index++] = header->checksum_;
+ }
+ DCHECK_EQ(checksum_index, number_of_dex_files);
+
+ // Create the fake OatHeader to store the dependencies of the image.
+ SafeMap<std::string, std::string> key_value_store;
+ Runtime* runtime = Runtime::Current();
+ key_value_store.Put(OatHeader::kApexVersionsKey, runtime->GetApexVersions());
+ key_value_store.Put(OatHeader::kBootClassPathKey,
+ android::base::Join(runtime->GetBootClassPathLocations(), ':'));
+ key_value_store.Put(OatHeader::kBootClassPathChecksumsKey,
+ runtime->GetBootClassPathChecksums());
+ key_value_store.Put(OatHeader::kClassPathKey,
+ oat_dex_file->GetOatFile()->GetClassLoaderContext());
+ key_value_store.Put(OatHeader::kConcurrentCopying,
+ gUseReadBarrier ? OatHeader::kTrueValue : OatHeader::kFalseValue);
+
+ std::unique_ptr<const InstructionSetFeatures> isa_features =
+ InstructionSetFeatures::FromCppDefines();
+ std::unique_ptr<OatHeader> oat_header(
+ OatHeader::Create(kRuntimeISA,
+ isa_features.get(),
+ number_of_dex_files,
+ &key_value_store));
+
+ // Create the byte array containing the oat header and dex checksums.
+ uint32_t checksums_size = checksums.size() * sizeof(uint32_t);
+ Handle<mirror::ByteArray> header_data = handles.NewHandle(
+ mirror::ByteArray::Alloc(soa.Self(), oat_header->GetHeaderSize() + checksums_size));
+
+ if (header_data == nullptr) {
+ DCHECK(soa.Self()->IsExceptionPending());
+ soa.Self()->ClearException();
+ *error_msg = "Out of memory when trying to generate a runtime app image";
+ return false;
+ }
+
+ memcpy(header_data->GetData(), oat_header.get(), oat_header->GetHeaderSize());
+ memcpy(header_data->GetData() + oat_header->GetHeaderSize(), checksums.data(), checksums_size);
+
+ // Create and populate the dex caches aray.
+ Handle<mirror::ObjectArray<mirror::Object>> dex_cache_array = handles.NewHandle(
+ mirror::ObjectArray<mirror::Object>::Alloc(
+ soa.Self(), object_array_class.Get(), dex_caches.size()));
+
+ if (dex_cache_array == nullptr) {
+ DCHECK(soa.Self()->IsExceptionPending());
+ soa.Self()->ClearException();
+ *error_msg = "Out of memory when trying to generate a runtime app image";
+ return false;
+ }
+
+ for (uint32_t i = 0; i < dex_caches.size(); ++i) {
+ dex_cache_array->Set(i, dex_caches[i].Get());
+ }
+
+ image_roots->Set(ImageHeader::kDexCaches, dex_cache_array.Get());
+ image_roots->Set(ImageHeader::kClassRoots, class_linker->GetClassRoots());
+ image_roots->Set(ImageHeader::kAppImageOatHeader, header_data.Get());
+
+ {
+ // Now that we have created all objects needed for the `image_roots`, copy
+ // it into the buffer. Note that this will recursively copy all objects
+ // contained in `image_roots`. That's acceptable as we don't have cycles,
+ // nor a deep graph.
+ ScopedAssertNoThreadSuspension sants("Writing runtime app image");
+ CopyObject(image_roots.Get());
+ }
+
+ // Emit classes defined in the app class loader (which will also indirectly
+ // emit dex caches and their arrays).
+ EmitClasses(soa.Self(), dex_cache_array);
+
+ return true;
+ }
+
+ class FixupVisitor {
+ public:
+ FixupVisitor(RuntimeImageHelper* image, size_t copy_offset)
+ : image_(image), copy_offset_(copy_offset) {}
+
+ // We do not visit native roots. These are handled with other logic.
+ void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
+ const {
+ LOG(FATAL) << "UNREACHABLE";
+ }
+ void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {
+ LOG(FATAL) << "UNREACHABLE";
+ }
+
+ void operator()(ObjPtr<mirror::Object> obj,
+ MemberOffset offset,
+ bool is_static) const
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ // We don't copy static fields, they are being handled when we try to
+ // initialize the class.
+ ObjPtr<mirror::Object> ref =
+ is_static ? nullptr : obj->GetFieldObject<mirror::Object>(offset);
+ mirror::Object* address = image_->GetOrComputeImageAddress(ref);
+ mirror::Object* copy =
+ reinterpret_cast<mirror::Object*>(image_->objects_.data() + copy_offset_);
+ copy->GetFieldObjectReferenceAddr<kVerifyNone>(offset)->Assign(address);
+ }
+
+ // java.lang.ref.Reference visitor.
+ void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
+ ObjPtr<mirror::Reference> ref) const
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
+ }
+
+ private:
+ RuntimeImageHelper* image_;
+ size_t copy_offset_;
+ };
+
+ template <typename T>
+ void CopyNativeDexCacheArray(uint32_t num_entries,
+ uint32_t max_entries,
+ mirror::NativeArray<T>* array) {
+ if (array == nullptr) {
+ return;
+ }
+
+ bool only_startup = !mirror::DexCache::ShouldAllocateFullArray(num_entries, max_entries);
+ ArenaVector<uint8_t>& data = only_startup ? metadata_ : dex_cache_arrays_;
+ NativeRelocationKind relocation_kind = only_startup
+ ? NativeRelocationKind::kStartupNativeDexCacheArray
+ : NativeRelocationKind::kFullNativeDexCacheArray;
+
+ size_t size = num_entries * sizeof(void*);
+ // We need to reserve space to store `num_entries` because ImageSpace doesn't have
+ // access to the dex files when relocating dex caches.
+ size_t offset = RoundUp(data.size(), sizeof(void*)) + sizeof(uintptr_t);
+ data.resize(RoundUp(data.size(), sizeof(void*)) + sizeof(uintptr_t) + size);
+ reinterpret_cast<uintptr_t*>(data.data() + offset)[-1] = num_entries;
+
+ // Copy each entry individually. We cannot use memcpy, as the entries may be
+ // updated concurrently by other mutator threads.
+ mirror::NativeArray<T>* copy = reinterpret_cast<mirror::NativeArray<T>*>(data.data() + offset);
+ for (uint32_t i = 0; i < num_entries; ++i) {
+ copy->Set(i, array->Get(i));
+ }
+ native_relocations_.Put(array, std::make_pair(relocation_kind, offset));
+ }
+
+ template <typename T>
+ mirror::GcRootArray<T>* CreateGcRootDexCacheArray(uint32_t num_entries,
+ uint32_t max_entries,
+ mirror::GcRootArray<T>* array) {
+ if (array == nullptr) {
+ return nullptr;
+ }
+ bool only_startup = !mirror::DexCache::ShouldAllocateFullArray(num_entries, max_entries);
+ ArenaVector<uint8_t>& data = only_startup ? metadata_ : dex_cache_arrays_;
+ NativeRelocationKind relocation_kind = only_startup
+ ? NativeRelocationKind::kStartupNativeDexCacheArray
+ : NativeRelocationKind::kFullNativeDexCacheArray;
+ size_t size = num_entries * sizeof(GcRoot<T>);
+ // We need to reserve space to store `num_entries` because ImageSpace doesn't have
+ // access to the dex files when relocating dex caches.
+ static_assert(sizeof(GcRoot<T>) == sizeof(uint32_t));
+ size_t offset = data.size() + sizeof(uint32_t);
+ data.resize(data.size() + sizeof(uint32_t) + size);
+ reinterpret_cast<uint32_t*>(data.data() + offset)[-1] = num_entries;
+ native_relocations_.Put(array, std::make_pair(relocation_kind, offset));
+
+ return reinterpret_cast<mirror::GcRootArray<T>*>(data.data() + offset);
+ }
+ static bool EmitDexCacheArrays() {
+ // We need to treat dex cache arrays specially in an image for userfaultfd.
+ // Disable for now. See b/270936884.
+ return !gUseUserfaultfd;
+ }
+
+ uint32_t CopyDexCache(ObjPtr<mirror::DexCache> cache) REQUIRES_SHARED(Locks::mutator_lock_) {
+ auto it = dex_caches_.find(cache->GetDexFile());
+ if (it != dex_caches_.end()) {
+ return it->second;
+ }
+ uint32_t offset = CopyObject(cache);
+ dex_caches_.Put(cache->GetDexFile(), offset);
+ // For dex caches, clear pointers to data that will be set at runtime.
+ mirror::Object* copy = reinterpret_cast<mirror::Object*>(objects_.data() + offset);
+ reinterpret_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
+ reinterpret_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
+
+ if (!EmitDexCacheArrays()) {
+ return offset;
+ }
+
+ // Copy the ArtMethod array.
+ mirror::NativeArray<ArtMethod>* resolved_methods = cache->GetResolvedMethodsArray();
+ CopyNativeDexCacheArray(cache->GetDexFile()->NumMethodIds(),
+ mirror::DexCache::kDexCacheMethodCacheSize,
+ resolved_methods);
+ // Store the array pointer in the dex cache, which will be relocated at the end.
+ reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedMethodsArray(resolved_methods);
+
+ // Copy the ArtField array.
+ mirror::NativeArray<ArtField>* resolved_fields = cache->GetResolvedFieldsArray();
+ CopyNativeDexCacheArray(cache->GetDexFile()->NumFieldIds(),
+ mirror::DexCache::kDexCacheFieldCacheSize,
+ resolved_fields);
+ // Store the array pointer in the dex cache, which will be relocated at the end.
+ reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedFieldsArray(resolved_fields);
+
+ // Copy the type array.
+ mirror::GcRootArray<mirror::Class>* resolved_types = cache->GetResolvedTypesArray();
+ CreateGcRootDexCacheArray(cache->GetDexFile()->NumTypeIds(),
+ mirror::DexCache::kDexCacheTypeCacheSize,
+ resolved_types);
+ // Store the array pointer in the dex cache, which will be relocated at the end.
+ reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedTypesArray(resolved_types);
+
+ // Copy the string array.
+ mirror::GcRootArray<mirror::String>* strings = cache->GetStringsArray();
+ // Note: `new_strings` points to temporary data, and is only valid here.
+ mirror::GcRootArray<mirror::String>* new_strings =
+ CreateGcRootDexCacheArray(cache->GetDexFile()->NumStringIds(),
+ mirror::DexCache::kDexCacheStringCacheSize,
+ strings);
+ // Store the array pointer in the dex cache, which will be relocated at the end.
+ reinterpret_cast<mirror::DexCache*>(copy)->SetStringsArray(strings);
+
+ // The code below copies new objects, so invalidate the address we have for
+ // `copy`.
+ copy = nullptr;
+ if (strings != nullptr) {
+ for (uint32_t i = 0; i < cache->GetDexFile()->NumStringIds(); ++i) {
+ ObjPtr<mirror::String> str = strings->Get(i);
+ if (str == nullptr || IsInBootImage(str.Ptr())) {
+ new_strings->Set(i, str.Ptr());
+ } else {
+ uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
+ DCHECK_EQ(hash, static_cast<uint32_t>(str->ComputeHashCode()))
+ << "Dex cache strings should be interned";
+ auto it2 = intern_table_.FindWithHash(str.Ptr(), hash);
+ if (it2 == intern_table_.end()) {
+ uint32_t string_offset = CopyObject(str);
+ uint32_t address = image_begin_ + string_offset + sizeof(ImageHeader);
+ intern_table_.InsertWithHash(address, hash);
+ new_strings->Set(i, reinterpret_cast<mirror::String*>(address));
+ } else {
+ new_strings->Set(i, reinterpret_cast<mirror::String*>(*it2));
+ }
+ // To not confuse string references from the dex cache object and
+ // string references from the array, we put an offset bigger than the
+ // size of a DexCache object. ClassLinker::VisitInternedStringReferences
+ // knows how to decode this offset.
+ string_reference_offsets_.emplace_back(
+ sizeof(ImageHeader) + offset, sizeof(mirror::DexCache) + i);
+ }
+ }
+ }
+
+ return offset;
+ }
+
+ bool IsInitialized(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
+ if (IsInBootImage(cls)) {
+ const OatDexFile* oat_dex_file = cls->GetDexFile().GetOatDexFile();
+ DCHECK(oat_dex_file != nullptr) << "We should always have an .oat file for a boot image";
+ uint16_t class_def_index = cls->GetDexClassDefIndex();
+ ClassStatus oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
+ return oat_file_class_status == ClassStatus::kVisiblyInitialized;
+ } else {
+ return cls->IsVisiblyInitialized<kVerifyNone>();
+ }
+ }
+ // Try to initialize `copy`. Note that `cls` may not be initialized.
+ // This is called after the image generation logic has visited super classes
+ // and super interfaces, so we can just check those directly.
+ bool TryInitializeClass(mirror::Class* copy, ObjPtr<mirror::Class> cls, uint32_t class_offset)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ if (!cls->IsVerified()) {
+ return false;
+ }
+ if (cls->IsArrayClass()) {
+ return true;
+ }
+
+ // Check if we have been able to initialize the super class.
+ mirror::Class* super = GetClassContent(cls->GetSuperClass());
+ DCHECK(super != nullptr)
+ << "App image classes should always have a super class: " << cls->PrettyClass();
+ if (!IsInitialized(super)) {
+ return false;
+ }
+
+ // We won't initialize class with class initializers.
+ if (cls->FindClassInitializer(kRuntimePointerSize) != nullptr) {
+ return false;
+ }
+
+ // For non-interface classes, we require all implemented interfaces to be
+ // initialized.
+ if (!cls->IsInterface()) {
+ for (size_t i = 0; i < cls->NumDirectInterfaces(); i++) {
+ mirror::Class* itf = GetClassContent(cls->GetDirectInterface(i));
+ if (!IsInitialized(itf)) {
+ return false;
+ }
+ }
+ }
+
+ // Trivial case: no static fields.
+ if (cls->NumStaticFields() == 0u) {
+ return true;
+ }
+
+ // Go over all static fields and try to initialize them.
+ EncodedStaticFieldValueIterator it(cls->GetDexFile(), *cls->GetClassDef());
+ if (!it.HasNext()) {
+ return true;
+ }
+
+ // Temporary string offsets in case we failed to initialize the class. We
+ // will add the offsets at the end of this method if we are successful.
+ ArenaVector<AppImageReferenceOffsetInfo> string_offsets(allocator_.Adapter());
+ ClassLinker* linker = Runtime::Current()->GetClassLinker();
+ ClassAccessor accessor(cls->GetDexFile(), *cls->GetClassDef());
+ for (const ClassAccessor::Field& field : accessor.GetStaticFields()) {
+ if (!it.HasNext()) {
+ break;
+ }
+ ArtField* art_field = linker->LookupResolvedField(field.GetIndex(),
+ cls->GetDexCache(),
+ cls->GetClassLoader(),
+ /* is_static= */ true);
+ DCHECK_NE(art_field, nullptr);
+ MemberOffset offset(art_field->GetOffset());
+ switch (it.GetValueType()) {
+ case EncodedArrayValueIterator::ValueType::kBoolean:
+ copy->SetFieldBoolean<false>(offset, it.GetJavaValue().z);
+ break;
+ case EncodedArrayValueIterator::ValueType::kByte:
+ copy->SetFieldByte<false>(offset, it.GetJavaValue().b);
+ break;
+ case EncodedArrayValueIterator::ValueType::kShort:
+ copy->SetFieldShort<false>(offset, it.GetJavaValue().s);
+ break;
+ case EncodedArrayValueIterator::ValueType::kChar:
+ copy->SetFieldChar<false>(offset, it.GetJavaValue().c);
+ break;
+ case EncodedArrayValueIterator::ValueType::kInt:
+ copy->SetField32<false>(offset, it.GetJavaValue().i);
+ break;
+ case EncodedArrayValueIterator::ValueType::kLong:
+ copy->SetField64<false>(offset, it.GetJavaValue().j);
+ break;
+ case EncodedArrayValueIterator::ValueType::kFloat:
+ copy->SetField32<false>(offset, it.GetJavaValue().i);
+ break;
+ case EncodedArrayValueIterator::ValueType::kDouble:
+ copy->SetField64<false>(offset, it.GetJavaValue().j);
+ break;
+ case EncodedArrayValueIterator::ValueType::kNull:
+ copy->SetFieldObject<false>(offset, nullptr);
+ break;
+ case EncodedArrayValueIterator::ValueType::kString: {
+ ObjPtr<mirror::String> str =
+ linker->LookupString(dex::StringIndex(it.GetJavaValue().i), cls->GetDexCache());
+ mirror::String* str_copy = nullptr;
+ if (str == nullptr) {
+ // String wasn't created yet.
+ return false;
+ } else if (IsInBootImage(str.Ptr())) {
+ str_copy = str.Ptr();
+ } else {
+ uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
+ DCHECK_EQ(hash, static_cast<uint32_t>(str->ComputeHashCode()))
+ << "Dex cache strings should be interned";
+ auto string_it = intern_table_.FindWithHash(str.Ptr(), hash);
+ if (string_it == intern_table_.end()) {
+ // The string must be interned.
+ uint32_t string_offset = CopyObject(str);
+ // Reload the class copy after having copied the string.
+ copy = reinterpret_cast<mirror::Class*>(objects_.data() + class_offset);
+ uint32_t address = image_begin_ + string_offset + sizeof(ImageHeader);
+ intern_table_.InsertWithHash(address, hash);
+ str_copy = reinterpret_cast<mirror::String*>(address);
+ } else {
+ str_copy = reinterpret_cast<mirror::String*>(*string_it);
+ }
+ string_offsets.emplace_back(sizeof(ImageHeader) + class_offset, offset.Int32Value());
+ }
+ uint8_t* raw_addr = reinterpret_cast<uint8_t*>(copy) + offset.Int32Value();
+ mirror::HeapReference<mirror::Object>* objref_addr =
+ reinterpret_cast<mirror::HeapReference<mirror::Object>*>(raw_addr);
+ objref_addr->Assign</* kIsVolatile= */ false>(str_copy);
+ break;
+ }
+ case EncodedArrayValueIterator::ValueType::kType: {
+ // Note that it may be that the referenced type hasn't been processed
+ // yet by the image generation logic. In this case we bail out for
+ // simplicity.
+ ObjPtr<mirror::Class> type =
+ linker->LookupResolvedType(dex::TypeIndex(it.GetJavaValue().i), cls);
+ mirror::Class* type_copy = nullptr;
+ if (type == nullptr) {
+ // Class wasn't resolved yet.
+ return false;
+ } else if (IsInBootImage(type.Ptr())) {
+ // Make sure the type is in our class table.
+ uint32_t hash = type->DescriptorHash();
+ class_table_.InsertWithHash(ClassTable::TableSlot(type.Ptr(), hash), hash);
+ type_copy = type.Ptr();
+ } else if (type->IsArrayClass()) {
+ std::string class_name;
+ type->GetDescriptor(&class_name);
+ auto class_it = array_classes_.find(class_name);
+ if (class_it == array_classes_.end()) {
+ return false;
+ }
+ type_copy = reinterpret_cast<mirror::Class*>(
+ image_begin_ + sizeof(ImageHeader) + class_it->second);
+ } else {
+ const dex::ClassDef* class_def = type->GetClassDef();
+ DCHECK_NE(class_def, nullptr);
+ auto class_it = classes_.find(class_def);
+ if (class_it == classes_.end()) {
+ return false;
+ }
+ type_copy = reinterpret_cast<mirror::Class*>(
+ image_begin_ + sizeof(ImageHeader) + class_it->second);
+ }
+ uint8_t* raw_addr = reinterpret_cast<uint8_t*>(copy) + offset.Int32Value();
+ mirror::HeapReference<mirror::Object>* objref_addr =
+ reinterpret_cast<mirror::HeapReference<mirror::Object>*>(raw_addr);
+ objref_addr->Assign</* kIsVolatile= */ false>(type_copy);
+ break;
+ }
+ default:
+ LOG(FATAL) << "Unreachable";
+ }
+ it.Next();
+ }
+ // We have successfully initialized the class, we can now record the string
+ // offsets.
+ string_reference_offsets_.insert(
+ string_reference_offsets_.end(), string_offsets.begin(), string_offsets.end());
+ return true;
+ }
+
+ uint32_t CopyClass(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
+ DCHECK(!cls->IsBootStrapClassLoaded());
+ uint32_t offset = 0u;
+ if (cls->IsArrayClass()) {
+ std::string class_name;
+ cls->GetDescriptor(&class_name);
+ auto it = array_classes_.find(class_name);
+ if (it != array_classes_.end()) {
+ return it->second;
+ }
+ offset = CopyObject(cls);
+ array_classes_.Put(class_name, offset);
+ } else {
+ const dex::ClassDef* class_def = cls->GetClassDef();
+ auto it = classes_.find(class_def);
+ if (it != classes_.end()) {
+ return it->second;
+ }
+ offset = CopyObject(cls);
+ classes_.Put(class_def, offset);
+ }
+
+ uint32_t hash = cls->DescriptorHash();
+ // Save the hash, the `HashSet` implementation requires to find it.
+ class_hashes_.Put(offset, hash);
+ uint32_t class_image_address = image_begin_ + sizeof(ImageHeader) + offset;
+ bool inserted =
+ class_table_.InsertWithHash(ClassTable::TableSlot(class_image_address, hash), hash).second;
+ DCHECK(inserted) << "Class " << cls->PrettyDescriptor()
+ << " (" << cls.Ptr() << ") already inserted";
+
+ // Clear internal state.
+ mirror::Class* copy = reinterpret_cast<mirror::Class*>(objects_.data() + offset);
+ copy->SetClinitThreadId(static_cast<pid_t>(0u));
+ if (cls->IsArrayClass()) {
+ DCHECK(copy->IsVisiblyInitialized());
+ } else {
+ copy->SetStatusInternal(cls->IsVerified() ? ClassStatus::kVerified : ClassStatus::kResolved);
+ }
+
+ // Clear static field values.
+ auto clear_class = [&] () REQUIRES_SHARED(Locks::mutator_lock_) {
+ MemberOffset static_offset = cls->GetFirstReferenceStaticFieldOffset(kRuntimePointerSize);
+ memset(objects_.data() + offset + static_offset.Uint32Value(),
+ 0,
+ cls->GetClassSize() - static_offset.Uint32Value());
+ };
+ clear_class();
+
+ bool is_class_initialized = TryInitializeClass(copy, cls, offset);
+ // Reload the copy, it may have moved after `TryInitializeClass`.
+ copy = reinterpret_cast<mirror::Class*>(objects_.data() + offset);
+ if (is_class_initialized) {
+ copy->SetStatusInternal(ClassStatus::kVisiblyInitialized);
+ if (!cls->IsArrayClass() && !cls->IsFinalizable()) {
+ copy->SetObjectSizeAllocFastPath(RoundUp(cls->GetObjectSize(), kObjectAlignment));
+ }
+ if (cls->IsInterface()) {
+ copy->SetAccessFlags(copy->GetAccessFlags() | kAccRecursivelyInitialized);
+ }
+ } else {
+ // If we fail to initialize, remove initialization related flags and
+ // clear again.
+ copy->SetObjectSizeAllocFastPath(std::numeric_limits<uint32_t>::max());
+ copy->SetAccessFlags(copy->GetAccessFlags() & ~kAccRecursivelyInitialized);
+ clear_class();
+ }
+
+ CopyFieldArrays(cls, class_image_address);
+ CopyMethodArrays(cls, class_image_address, is_class_initialized);
+ if (cls->ShouldHaveImt()) {
+ CopyImTable(cls);
+ }
+
+ return offset;
+ }
+
+ // Copy `obj` in `objects_` and relocate references. Returns the offset
+ // within our buffer.
+ uint32_t CopyObject(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_) {
+ // Copy the object in `objects_`.
+ size_t object_size = obj->SizeOf();
+ size_t offset = objects_.size();
+ DCHECK(IsAligned<kObjectAlignment>(offset));
+ object_offsets_.push_back(offset);
+ objects_.resize(RoundUp(offset + object_size, kObjectAlignment));
+
+ mirror::Object* copy = reinterpret_cast<mirror::Object*>(objects_.data() + offset);
+ mirror::Object::CopyRawObjectData(
+ reinterpret_cast<uint8_t*>(copy), obj, object_size - sizeof(mirror::Object));
+ // Clear any lockword data.
+ copy->SetLockWord(LockWord::Default(), /* as_volatile= */ false);
+ copy->SetClass(obj->GetClass());
+
+ // Fixup reference pointers.
+ FixupVisitor visitor(this, offset);
+ obj->VisitReferences</*kVisitNativeRoots=*/ false>(visitor, visitor);
+
+ if (obj->IsString()) {
+ // Ensure a string always has a hashcode stored. This is checked at
+ // runtime because boot images don't want strings dirtied due to hashcode.
+ reinterpret_cast<mirror::String*>(copy)->GetHashCode();
+ }
+
+ object_section_size_ += RoundUp(object_size, kObjectAlignment);
+ return offset;
+ }
+
+ class CollectDexCacheVisitor : public DexCacheVisitor {
+ public:
+ explicit CollectDexCacheVisitor(VariableSizedHandleScope& handles) : handles_(handles) {}
+
+ void Visit(ObjPtr<mirror::DexCache> dex_cache)
+ REQUIRES_SHARED(Locks::dex_lock_, Locks::mutator_lock_) override {
+ dex_caches_.push_back(handles_.NewHandle(dex_cache));
+ }
+ const std::vector<Handle<mirror::DexCache>>& GetDexCaches() const {
+ return dex_caches_;
+ }
+ private:
+ VariableSizedHandleScope& handles_;
+ std::vector<Handle<mirror::DexCache>> dex_caches_;
+ };
+
+ // Find dex caches corresponding to the primary APK.
+ void FindDexCaches(Thread* self,
+ dchecked_vector<Handle<mirror::DexCache>>& dex_caches,
+ VariableSizedHandleScope& handles)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ ScopedTrace trace("Find dex caches");
+ DCHECK(dex_caches.empty());
+ // Collect all dex caches.
+ ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
+ CollectDexCacheVisitor visitor(handles);
+ {
+ ReaderMutexLock mu(self, *Locks::dex_lock_);
+ class_linker->VisitDexCaches(&visitor);
+ }
+
+ // Find the primary APK.
+ AppInfo* app_info = Runtime::Current()->GetAppInfo();
+ for (Handle<mirror::DexCache> cache : visitor.GetDexCaches()) {
+ if (app_info->GetRegisteredCodeType(cache->GetDexFile()->GetLocation()) ==
+ AppInfo::CodeType::kPrimaryApk) {
+ dex_caches.push_back(handles.NewHandle(cache.Get()));
+ break;
+ }
+ }
+
+ if (dex_caches.empty()) {
+ return;
+ }
+
+ const OatDexFile* oat_dex_file = dex_caches[0]->GetDexFile()->GetOatDexFile();
+ if (oat_dex_file == nullptr) {
+ // We need a .oat file for loading an app image;
+ dex_caches.clear();
+ return;
+ }
+
+ // Store the dex caches in the order in which their corresponding dex files
+ // are stored in the oat file. When we check for checksums at the point of
+ // loading the image, we rely on this order.
+ for (const OatDexFile* current : oat_dex_file->GetOatFile()->GetOatDexFiles()) {
+ if (current != oat_dex_file) {
+ for (Handle<mirror::DexCache> cache : visitor.GetDexCaches()) {
+ if (cache->GetDexFile()->GetOatDexFile() == current) {
+ dex_caches.push_back(handles.NewHandle(cache.Get()));
+ }
+ }
+ }
+ }
+ }
+
+ static uint64_t PointerToUint64(void* ptr) {
+ return reinterpret_cast64<uint64_t>(ptr);
+ }
+
+ void WriteImageMethods() {
+ ScopedObjectAccess soa(Thread::Current());
+ // We can just use plain runtime pointers.
+ Runtime* runtime = Runtime::Current();
+ header_.image_methods_[ImageHeader::kResolutionMethod] =
+ PointerToUint64(runtime->GetResolutionMethod());
+ header_.image_methods_[ImageHeader::kImtConflictMethod] =
+ PointerToUint64(runtime->GetImtConflictMethod());
+ header_.image_methods_[ImageHeader::kImtUnimplementedMethod] =
+ PointerToUint64(runtime->GetImtUnimplementedMethod());
+ header_.image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
+ PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves));
+ header_.image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
+ PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly));
+ header_.image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
+ PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
+ header_.image_methods_[ImageHeader::kSaveEverythingMethod] =
+ PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything));
+ header_.image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
+ PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit));
+ header_.image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
+ PointerToUint64(
+ runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck));
+ }
+
+ // Header for the image, created at the end once we know the size of all
+ // sections.
+ ImageHeader header_;
+
+ // Allocator for the various data structures to allocate while generating the
+ // image.
+ ArenaAllocator allocator_;
+
+ // Contents of the various sections.
+ ArenaVector<uint8_t> objects_;
+ ArenaVector<uint8_t> art_fields_;
+ ArenaVector<uint8_t> art_methods_;
+ ArenaVector<uint8_t> im_tables_;
+ ArenaVector<uint8_t> metadata_;
+ ArenaVector<uint8_t> dex_cache_arrays_;
+
+ ArenaVector<AppImageReferenceOffsetInfo> string_reference_offsets_;
+
+ // Bitmap of live objects in `objects_`. Populated from `object_offsets_`
+ // once we know `object_section_size`.
+ gc::accounting::ContinuousSpaceBitmap image_bitmap_;
+
+ // Sections stored in the header.
+ ArenaVector<ImageSection> sections_;
+
+ // A list of offsets in `objects_` where objects begin.
+ ArenaVector<uint32_t> object_offsets_;
+
+ ArenaSafeMap<const dex::ClassDef*, uint32_t> classes_;
+ ArenaSafeMap<std::string, uint32_t> array_classes_;
+ ArenaSafeMap<const DexFile*, uint32_t> dex_caches_;
+ ArenaSafeMap<uint32_t, uint32_t> class_hashes_;
+
+ ArenaSafeMap<void*, std::pair<NativeRelocationKind, uint32_t>> native_relocations_;
+
+ // Cached values of boot image information.
+ const uint32_t boot_image_begin_;
+ const uint32_t boot_image_size_;
+
+ // Where the image begins: just after the boot image.
+ const uint32_t image_begin_;
+
+ // Size of the `kSectionObjects` section.
+ size_t object_section_size_;
+
+ // The location of the primary APK / dex file.
+ std::string dex_location_;
+
+ // The intern table for strings that we will write to disk.
+ InternTableSet intern_table_;
+
+ // The class table holding classes that we will write to disk.
+ ClassTableSet class_table_;
+
+ friend class ClassDescriptorHash;
+ friend class PruneVisitor;
+ friend class NativePointerVisitor;
+};
+
+static std::string GetOatPath() {
+ const std::string& data_dir = Runtime::Current()->GetProcessDataDirectory();
+ if (data_dir.empty()) {
+ // The data ditectory is empty for tests.
+ return "";
+ }
+ return data_dir + "/cache/oat_primary/";
+}
+
+// Note: this may return a relative path for tests.
+std::string RuntimeImage::GetRuntimeImagePath(const std::string& dex_location) {
+ std::string basename = android::base::Basename(dex_location);
+ std::string filename = ReplaceFileExtension(basename, "art");
+
+ return GetOatPath() + GetInstructionSetString(kRuntimeISA) + "/" + filename;
+}
+
+static bool EnsureDirectoryExists(const std::string& directory, std::string* error_msg) {
+ if (!OS::DirectoryExists(directory.c_str())) {
+ static constexpr mode_t kDirectoryMode = S_IRWXU | S_IRGRP | S_IXGRP| S_IROTH | S_IXOTH;
+ if (mkdir(directory.c_str(), kDirectoryMode) != 0) {
+ *error_msg =
+ StringPrintf("Could not create directory %s: %s", directory.c_str(), strerror(errno));
+ return false;
+ }
+ }
+ return true;
+}
+
+bool RuntimeImage::WriteImageToDisk(std::string* error_msg) {
+ gc::Heap* heap = Runtime::Current()->GetHeap();
+ if (!heap->HasBootImageSpace()) {
+ *error_msg = "Cannot generate an app image without a boot image";
+ return false;
+ }
+ std::string oat_path = GetOatPath();
+ if (!oat_path.empty() && !EnsureDirectoryExists(oat_path, error_msg)) {
+ return false;
+ }
+
+ ScopedTrace generate_image_trace("Generating runtime image");
+ std::unique_ptr<RuntimeImageHelper> image(new RuntimeImageHelper(heap));
+ if (!image->Generate(error_msg)) {
+ return false;
+ }
+
+ ScopedTrace write_image_trace("Writing runtime image to disk");
+
+ const std::string path = GetRuntimeImagePath(image->GetDexLocation());
+ if (!EnsureDirectoryExists(android::base::Dirname(path), error_msg)) {
+ return false;
+ }
+
+ // We first generate the app image in a temporary file, which we will then
+ // move to `path`.
+ const std::string temp_path = ReplaceFileExtension(path, std::to_string(getpid()) + ".tmp");
+ ImageFileGuard image_file;
+ image_file.reset(OS::CreateEmptyFileWriteOnly(temp_path.c_str()));
+
+ if (image_file == nullptr) {
+ *error_msg = "Could not open " + temp_path + " for writing";
+ return false;
+ }
+
+ std::vector<uint8_t> full_data(image->GetHeader()->GetImageSize());
+ image->FillData(full_data);
+
+ // Specify default block size of 512K to enable parallel image decompression.
+ static constexpr size_t kMaxImageBlockSize = 524288;
+ // Use LZ4 as good compromise between CPU time and compression. LZ4HC
+ // empirically takes 10x more time compressing.
+ static constexpr ImageHeader::StorageMode kImageStorageMode = ImageHeader::kStorageModeLZ4;
+ // Note: no need to update the checksum of the runtime app image: we have no
+ // use for it, and computing it takes CPU time.
+ if (!image->GetHeader()->WriteData(
+ image_file,
+ full_data.data(),
+ reinterpret_cast<const uint8_t*>(image->GetImageBitmap().Begin()),
+ kImageStorageMode,
+ kMaxImageBlockSize,
+ /* update_checksum= */ false,
+ error_msg)) {
+ return false;
+ }
+
+ if (!image_file.WriteHeaderAndClose(temp_path, image->GetHeader(), error_msg)) {
+ return false;
+ }
+
+ if (rename(temp_path.c_str(), path.c_str()) != 0) {
+ *error_msg =
+ "Failed to move runtime app image to " + path + ": " + std::string(strerror(errno));
+ // Unlink directly: we cannot use `out` as we have closed it.
+ unlink(temp_path.c_str());
+ return false;
+ }
+
+ return true;
+}
+
+} // namespace art