summaryrefslogtreecommitdiff
path: root/runtime/gc/heap-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtime/gc/heap-inl.h')
-rw-r--r--runtime/gc/heap-inl.h188
1 files changed, 188 insertions, 0 deletions
diff --git a/runtime/gc/heap-inl.h b/runtime/gc/heap-inl.h
new file mode 100644
index 0000000000..873eadc46a
--- /dev/null
+++ b/runtime/gc/heap-inl.h
@@ -0,0 +1,188 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_RUNTIME_GC_HEAP_INL_H_
+#define ART_RUNTIME_GC_HEAP_INL_H_
+
+#include "heap.h"
+
+#include "debugger.h"
+#include "gc/space/dlmalloc_space-inl.h"
+#include "gc/space/large_object_space.h"
+#include "object_utils.h"
+#include "runtime.h"
+#include "thread.h"
+#include "thread-inl.h"
+
+namespace art {
+namespace gc {
+
+inline mirror::Object* Heap::AllocObjectUninstrumented(Thread* self, mirror::Class* c, size_t byte_count) {
+ DebugCheckPreconditionsForAllobObject(c, byte_count);
+ mirror::Object* obj;
+ size_t bytes_allocated;
+ AllocationTimer alloc_timer(this, &obj);
+ bool large_object_allocation = TryAllocLargeObjectUninstrumented(self, c, byte_count,
+ &obj, &bytes_allocated);
+ if (LIKELY(!large_object_allocation)) {
+ // Non-large object allocation.
+ obj = AllocateUninstrumented(self, alloc_space_, byte_count, &bytes_allocated);
+ // Ensure that we did not allocate into a zygote space.
+ DCHECK(obj == NULL || !have_zygote_space_ || !FindSpaceFromObject(obj, false)->IsZygoteSpace());
+ }
+ if (LIKELY(obj != NULL)) {
+ obj->SetClass(c);
+ // Record allocation after since we want to use the atomic add for the atomic fence to guard
+ // the SetClass since we do not want the class to appear NULL in another thread.
+ size_t new_num_bytes_allocated = RecordAllocationUninstrumented(bytes_allocated, obj);
+ DCHECK(!Dbg::IsAllocTrackingEnabled());
+ CheckConcurrentGC(self, new_num_bytes_allocated, obj);
+ if (kDesiredHeapVerification > kNoHeapVerification) {
+ VerifyObject(obj);
+ }
+ return obj;
+ }
+ ThrowOutOfMemoryError(self, byte_count, large_object_allocation);
+ return NULL;
+}
+
+inline size_t Heap::RecordAllocationUninstrumented(size_t size, mirror::Object* obj) {
+ DCHECK(obj != NULL);
+ DCHECK_GT(size, 0u);
+ size_t old_num_bytes_allocated = static_cast<size_t>(num_bytes_allocated_.fetch_add(size));
+
+ DCHECK(!Runtime::Current()->HasStatsEnabled());
+
+ // This is safe to do since the GC will never free objects which are neither in the allocation
+ // stack or the live bitmap.
+ while (!allocation_stack_->AtomicPushBack(obj)) {
+ CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
+ }
+
+ return old_num_bytes_allocated + size;
+}
+
+inline mirror::Object* Heap::TryToAllocateUninstrumented(Thread* self, space::AllocSpace* space, size_t alloc_size,
+ bool grow, size_t* bytes_allocated) {
+ if (UNLIKELY(IsOutOfMemoryOnAllocation(alloc_size, grow))) {
+ return NULL;
+ }
+ DCHECK(!running_on_valgrind_);
+ return space->Alloc(self, alloc_size, bytes_allocated);
+}
+
+// DlMallocSpace-specific version.
+inline mirror::Object* Heap::TryToAllocateUninstrumented(Thread* self, space::DlMallocSpace* space, size_t alloc_size,
+ bool grow, size_t* bytes_allocated) {
+ if (UNLIKELY(IsOutOfMemoryOnAllocation(alloc_size, grow))) {
+ return NULL;
+ }
+ DCHECK(!running_on_valgrind_);
+ return space->AllocNonvirtual(self, alloc_size, bytes_allocated);
+}
+
+template <class T>
+inline mirror::Object* Heap::AllocateUninstrumented(Thread* self, T* space, size_t alloc_size,
+ size_t* bytes_allocated) {
+ // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
+ // done in the runnable state where suspension is expected.
+ DCHECK_EQ(self->GetState(), kRunnable);
+ self->AssertThreadSuspensionIsAllowable();
+
+ mirror::Object* ptr = TryToAllocateUninstrumented(self, space, alloc_size, false, bytes_allocated);
+ if (LIKELY(ptr != NULL)) {
+ return ptr;
+ }
+ return AllocateInternalWithGc(self, space, alloc_size, bytes_allocated);
+}
+
+inline bool Heap::TryAllocLargeObjectUninstrumented(Thread* self, mirror::Class* c, size_t byte_count,
+ mirror::Object** obj_ptr, size_t* bytes_allocated) {
+ bool large_object_allocation = ShouldAllocLargeObject(c, byte_count);
+ if (UNLIKELY(large_object_allocation)) {
+ mirror::Object* obj = AllocateUninstrumented(self, large_object_space_, byte_count, bytes_allocated);
+ // Make sure that our large object didn't get placed anywhere within the space interval or else
+ // it breaks the immune range.
+ DCHECK(obj == NULL ||
+ reinterpret_cast<byte*>(obj) < continuous_spaces_.front()->Begin() ||
+ reinterpret_cast<byte*>(obj) >= continuous_spaces_.back()->End());
+ *obj_ptr = obj;
+ }
+ return large_object_allocation;
+}
+
+inline void Heap::DebugCheckPreconditionsForAllobObject(mirror::Class* c, size_t byte_count) {
+ DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
+ (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
+ strlen(ClassHelper(c).GetDescriptor()) == 0);
+ DCHECK_GE(byte_count, sizeof(mirror::Object));
+}
+
+inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
+ : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) {
+ if (kMeasureAllocationTime) {
+ allocation_start_time_ = NanoTime() / kTimeAdjust;
+ }
+}
+
+inline Heap::AllocationTimer::~AllocationTimer() {
+ if (kMeasureAllocationTime) {
+ mirror::Object* allocated_obj = *allocated_obj_ptr_;
+ // Only if the allocation succeeded, record the time.
+ if (allocated_obj != NULL) {
+ uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
+ heap_->total_allocation_time_.fetch_add(allocation_end_time - allocation_start_time_);
+ }
+ }
+};
+
+inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) {
+ // We need to have a zygote space or else our newly allocated large object can end up in the
+ // Zygote resulting in it being prematurely freed.
+ // We can only do this for primitive objects since large objects will not be within the card table
+ // range. This also means that we rely on SetClass not dirtying the object's card.
+ return byte_count >= kLargeObjectThreshold && have_zygote_space_ && c->IsPrimitiveArray();
+}
+
+inline bool Heap::IsOutOfMemoryOnAllocation(size_t alloc_size, bool grow) {
+ size_t new_footprint = num_bytes_allocated_ + alloc_size;
+ if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
+ if (UNLIKELY(new_footprint > growth_limit_)) {
+ return true;
+ }
+ if (!concurrent_gc_) {
+ if (!grow) {
+ return true;
+ } else {
+ max_allowed_footprint_ = new_footprint;
+ }
+ }
+ }
+ return false;
+}
+
+inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, mirror::Object* obj) {
+ if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
+ // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint.
+ SirtRef<mirror::Object> ref(self, obj);
+ RequestConcurrentGC(self);
+ }
+}
+
+} // namespace gc
+} // namespace art
+
+#endif // ART_RUNTIME_GC_HEAP_INL_H_