summaryrefslogtreecommitdiff
path: root/runtime/fault_handler.cc
diff options
context:
space:
mode:
Diffstat (limited to 'runtime/fault_handler.cc')
-rw-r--r--runtime/fault_handler.cc303
1 files changed, 112 insertions, 191 deletions
diff --git a/runtime/fault_handler.cc b/runtime/fault_handler.cc
index 9f073a63a8..5594f4dfc7 100644
--- a/runtime/fault_handler.cc
+++ b/runtime/fault_handler.cc
@@ -21,54 +21,15 @@
#include <sys/ucontext.h>
#include "art_method-inl.h"
+#include "base/safe_copy.h"
#include "base/stl_util.h"
#include "mirror/class.h"
+#include "mirror/object_reference.h"
#include "oat_quick_method_header.h"
#include "sigchain.h"
#include "thread-inl.h"
#include "verify_object-inl.h"
-// Note on nested signal support
-// -----------------------------
-//
-// Typically a signal handler should not need to deal with signals that occur within it.
-// However, when a SIGSEGV occurs that is in generated code and is not one of the
-// handled signals (implicit checks), we call a function to try to dump the stack
-// to the log. This enhances the debugging experience but may have the side effect
-// that it may not work. If the cause of the original SIGSEGV is a corrupted stack or other
-// memory region, the stack backtrace code may run into trouble and may either crash
-// or fail with an abort (SIGABRT). In either case we don't want that (new) signal to
-// mask the original signal and thus prevent useful debug output from being presented.
-//
-// In order to handle this situation, before we call the stack tracer we do the following:
-//
-// 1. shutdown the fault manager so that we are talking to the real signal management
-// functions rather than those in sigchain.
-// 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the
-// thread running the signal handler.
-// 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler.
-// 4. save the thread's state to the TLS of the current thread using 'setjmp'
-//
-// We then call the stack tracer and one of two things may happen:
-// a. it completes successfully
-// b. it crashes and a signal is raised.
-//
-// In the former case, we fall through and everything is fine. In the latter case
-// our secondary signal handler gets called in a signal context. This results in
-// a call to FaultManager::HandledNestedSignal(), an archirecture specific function
-// whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current
-// thread. This results in a return with a non-zero value from 'setjmp'. We detect this
-// and write something to the log to tell the user that it happened.
-//
-// Regardless of how we got there, we reach the code after the stack tracer and we
-// restore the signal states to their original values, reinstate the fault manager (thus
-// reestablishing the signal chain) and continue.
-
-// This is difficult to test with a runtime test. To invoke the nested signal code
-// on any signal, uncomment the following line and run something that throws a
-// NullPointerException.
-// #define TEST_NESTED_SIGNAL
-
namespace art {
// Static fault manger object accessed by signal handler.
FaultManager fault_manager;
@@ -79,59 +40,116 @@ extern "C" __attribute__((visibility("default"))) void art_sigsegv_fault() {
}
// Signal handler called on SIGSEGV.
-static void art_fault_handler(int sig, siginfo_t* info, void* context) {
- fault_manager.HandleFault(sig, info, context);
+static bool art_fault_handler(int sig, siginfo_t* info, void* context) {
+ return fault_manager.HandleFault(sig, info, context);
}
-// Signal handler for dealing with a nested signal.
-static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) {
- fault_manager.HandleNestedSignal(sig, info, context);
+#if defined(__linux__)
+
+// Change to verify the safe implementations against the original ones.
+constexpr bool kVerifySafeImpls = false;
+
+// Provide implementations of ArtMethod::GetDeclaringClass and VerifyClassClass that use SafeCopy
+// to safely dereference pointers which are potentially garbage.
+// Only available on Linux due to availability of SafeCopy.
+
+static mirror::Class* SafeGetDeclaringClass(ArtMethod* method)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ char* method_declaring_class =
+ reinterpret_cast<char*>(method) + ArtMethod::DeclaringClassOffset().SizeValue();
+
+ // ArtMethod::declaring_class_ is a GcRoot<mirror::Class>.
+ // Read it out into as a CompressedReference directly for simplicity's sake.
+ mirror::CompressedReference<mirror::Class> cls;
+ ssize_t rc = SafeCopy(&cls, method_declaring_class, sizeof(cls));
+ CHECK_NE(-1, rc);
+
+ if (kVerifySafeImpls) {
+ mirror::Class* actual_class = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
+ CHECK_EQ(actual_class, cls.AsMirrorPtr());
+ }
+
+ if (rc != sizeof(cls)) {
+ return nullptr;
+ }
+
+ return cls.AsMirrorPtr();
}
-FaultManager::FaultManager() : initialized_(false) {
- sigaction(SIGSEGV, nullptr, &oldaction_);
+static mirror::Class* SafeGetClass(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
+ char* obj_cls = reinterpret_cast<char*>(obj) + mirror::Object::ClassOffset().SizeValue();
+
+ mirror::HeapReference<mirror::Class> cls =
+ mirror::HeapReference<mirror::Class>::FromMirrorPtr(nullptr);
+ ssize_t rc = SafeCopy(&cls, obj_cls, sizeof(cls));
+ CHECK_NE(-1, rc);
+
+ if (kVerifySafeImpls) {
+ mirror::Class* actual_class = obj->GetClass<kVerifyNone>();
+ CHECK_EQ(actual_class, cls.AsMirrorPtr());
+ }
+
+ if (rc != sizeof(cls)) {
+ return nullptr;
+ }
+
+ return cls.AsMirrorPtr();
}
-FaultManager::~FaultManager() {
+static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
+ mirror::Class* c_c = SafeGetClass(cls);
+ bool result = c_c != nullptr && c_c == SafeGetClass(c_c);
+
+ if (kVerifySafeImpls) {
+ CHECK_EQ(VerifyClassClass(cls), result);
+ }
+
+ return result;
}
-static void SetUpArtAction(struct sigaction* action) {
- action->sa_sigaction = art_fault_handler;
- sigemptyset(&action->sa_mask);
- action->sa_flags = SA_SIGINFO | SA_ONSTACK;
-#if !defined(__APPLE__) && !defined(__mips__)
- action->sa_restorer = nullptr;
+#else
+
+static mirror::Class* SafeGetDeclaringClass(ArtMethod* method_obj)
+ REQUIRES_SHARED(Locks::mutator_lock_) {
+ return method_obj->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
+}
+
+static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
+ return VerifyClassClass(cls);
+}
#endif
+
+
+FaultManager::FaultManager() : initialized_(false) {
+ sigaction(SIGSEGV, nullptr, &oldaction_);
}
-void FaultManager::EnsureArtActionInFrontOfSignalChain() {
- if (initialized_) {
- struct sigaction action;
- SetUpArtAction(&action);
- EnsureFrontOfChain(SIGSEGV, &action);
- } else {
- LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager";
- }
+FaultManager::~FaultManager() {
}
void FaultManager::Init() {
CHECK(!initialized_);
- struct sigaction action;
- SetUpArtAction(&action);
-
- // Set our signal handler now.
- int e = sigaction(SIGSEGV, &action, &oldaction_);
- if (e != 0) {
- VLOG(signals) << "Failed to claim SEGV: " << strerror(errno);
- }
- // Make sure our signal handler is called before any user handlers.
- ClaimSignalChain(SIGSEGV, &oldaction_);
+ sigset_t mask;
+ sigfillset(&mask);
+ sigdelset(&mask, SIGABRT);
+ sigdelset(&mask, SIGBUS);
+ sigdelset(&mask, SIGFPE);
+ sigdelset(&mask, SIGILL);
+ sigdelset(&mask, SIGSEGV);
+
+ SigchainAction sa = {
+ .sc_sigaction = art_fault_handler,
+ .sc_mask = mask,
+ .sc_flags = 0UL,
+ };
+
+ AddSpecialSignalHandlerFn(SIGSEGV, &sa);
initialized_ = true;
}
void FaultManager::Release() {
if (initialized_) {
- UnclaimSignalChain(SIGSEGV);
+ RemoveSpecialSignalHandlerFn(SIGSEGV, art_fault_handler);
initialized_ = false;
}
}
@@ -156,130 +174,44 @@ bool FaultManager::HandleFaultByOtherHandlers(int sig, siginfo_t* info, void* co
DCHECK(self != nullptr);
DCHECK(Runtime::Current() != nullptr);
DCHECK(Runtime::Current()->IsStarted());
-
- // Now set up the nested signal handler.
-
- // TODO: add SIGSEGV back to the nested signals when we can handle running out stack gracefully.
- static const int handled_nested_signals[] = {SIGABRT};
- constexpr size_t num_handled_nested_signals = arraysize(handled_nested_signals);
-
- // Release the fault manager so that it will remove the signal chain for
- // SIGSEGV and we call the real sigaction.
- fault_manager.Release();
-
- // The action for SIGSEGV should be the default handler now.
-
- // Unblock the signals we allow so that they can be delivered in the signal handler.
- sigset_t sigset;
- sigemptyset(&sigset);
- for (int signal : handled_nested_signals) {
- sigaddset(&sigset, signal);
- }
- pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr);
-
- // If we get a signal in this code we want to invoke our nested signal
- // handler.
- struct sigaction action;
- struct sigaction oldactions[num_handled_nested_signals];
- action.sa_sigaction = art_nested_signal_handler;
-
- // Explicitly mask out SIGSEGV and SIGABRT from the nested signal handler. This
- // should be the default but we definitely don't want these happening in our
- // nested signal handler.
- sigemptyset(&action.sa_mask);
- for (int signal : handled_nested_signals) {
- sigaddset(&action.sa_mask, signal);
- }
-
- action.sa_flags = SA_SIGINFO | SA_ONSTACK;
-#if !defined(__APPLE__) && !defined(__mips__)
- action.sa_restorer = nullptr;
-#endif
-
- // Catch handled signals to invoke our nested handler.
- bool success = true;
- for (size_t i = 0; i < num_handled_nested_signals; ++i) {
- success = sigaction(handled_nested_signals[i], &action, &oldactions[i]) == 0;
- if (!success) {
- PLOG(ERROR) << "Unable to set up nested signal handler";
- break;
+ for (const auto& handler : other_handlers_) {
+ if (handler->Action(sig, info, context)) {
+ return true;
}
}
-
- if (success) {
- // Save the current state and call the handlers. If anything causes a signal
- // our nested signal handler will be invoked and this will longjmp to the saved
- // state.
- if (setjmp(*self->GetNestedSignalState()) == 0) {
- for (const auto& handler : other_handlers_) {
- if (handler->Action(sig, info, context)) {
- // Restore the signal handlers, reinit the fault manager and return. Signal was
- // handled.
- for (size_t i = 0; i < num_handled_nested_signals; ++i) {
- success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0;
- if (!success) {
- PLOG(ERROR) << "Unable to restore signal handler";
- }
- }
- fault_manager.Init();
- return true;
- }
- }
- } else {
- LOG(ERROR) << "Nested signal detected - original signal being reported";
- }
-
- // Restore the signal handlers.
- for (size_t i = 0; i < num_handled_nested_signals; ++i) {
- success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0;
- if (!success) {
- PLOG(ERROR) << "Unable to restore signal handler";
- }
- }
- }
-
- // Now put the fault manager back in place.
- fault_manager.Init();
return false;
}
-void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
- // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...)
- //
- // If malloc calls abort, it will be holding its lock.
- // If the handler tries to call malloc, it will deadlock.
+bool FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
VLOG(signals) << "Handling fault";
+
+#ifdef TEST_NESTED_SIGNAL
+ // Simulate a crash in a handler.
+ raise(SIGSEGV);
+#endif
+
if (IsInGeneratedCode(info, context, true)) {
VLOG(signals) << "in generated code, looking for handler";
for (const auto& handler : generated_code_handlers_) {
VLOG(signals) << "invoking Action on handler " << handler;
if (handler->Action(sig, info, context)) {
-#ifdef TEST_NESTED_SIGNAL
- // In test mode we want to fall through to stack trace handler
- // on every signal (in reality this will cause a crash on the first
- // signal).
- break;
-#else
// We have handled a signal so it's time to return from the
// signal handler to the appropriate place.
- return;
-#endif
+ return true;
}
}
// We hit a signal we didn't handle. This might be something for which
- // we can give more information about so call all registered handlers to see
- // if it is.
+ // we can give more information about so call all registered handlers to
+ // see if it is.
if (HandleFaultByOtherHandlers(sig, info, context)) {
- return;
+ return true;
}
}
// Set a breakpoint in this function to catch unhandled signals.
art_sigsegv_fault();
-
- // Pass this on to the next handler in the chain, or the default if none.
- InvokeUserSignalHandler(sig, info, context);
+ return false;
}
void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
@@ -341,7 +273,7 @@ bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool che
// If we don't have a potential method, we're outta here.
VLOG(signals) << "potential method: " << method_obj;
// TODO: Check linear alloc and image.
- DCHECK_ALIGNED(ArtMethod::Size(sizeof(void*)), sizeof(void*))
+ DCHECK_ALIGNED(ArtMethod::Size(kRuntimePointerSize), sizeof(void*))
<< "ArtMethod is not pointer aligned";
if (method_obj == nullptr || !IsAligned<sizeof(void*)>(method_obj)) {
VLOG(signals) << "no method";
@@ -351,20 +283,19 @@ bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool che
// Verify that the potential method is indeed a method.
// TODO: check the GC maps to make sure it's an object.
// Check that the class pointer inside the object is not null and is aligned.
- // TODO: Method might be not a heap address, and GetClass could fault.
// No read barrier because method_obj may not be a real object.
- mirror::Class* cls = method_obj->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
+ mirror::Class* cls = SafeGetDeclaringClass(method_obj);
if (cls == nullptr) {
VLOG(signals) << "not a class";
return false;
}
+
if (!IsAligned<kObjectAlignment>(cls)) {
VLOG(signals) << "not aligned";
return false;
}
-
- if (!VerifyClassClass(cls)) {
+ if (!SafeVerifyClassClass(cls)) {
VLOG(signals) << "not a class class";
return false;
}
@@ -417,11 +348,7 @@ JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandl
bool JavaStackTraceHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* siginfo, void* context) {
// Make sure that we are in the generated code, but we may not have a dex pc.
-#ifdef TEST_NESTED_SIGNAL
- bool in_generated_code = true;
-#else
bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
-#endif
if (in_generated_code) {
LOG(ERROR) << "Dumping java stack trace for crash in generated code";
ArtMethod* method = nullptr;
@@ -432,13 +359,7 @@ bool JavaStackTraceHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* siginfo,
manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
// Inside of generated code, sp[0] is the method, so sp is the frame.
self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
-#ifdef TEST_NESTED_SIGNAL
- // To test the nested signal handler we raise a signal here. This will cause the
- // nested signal handler to be called and perform a longjmp back to the setjmp
- // above.
- abort();
-#endif
- self->DumpJavaStack(LOG(ERROR));
+ self->DumpJavaStack(LOG_STREAM(ERROR));
}
return false; // Return false since we want to propagate the fault to the main signal handler.