diff options
Diffstat (limited to 'libartbase/base/bit_utils.h')
-rw-r--r-- | libartbase/base/bit_utils.h | 504 |
1 files changed, 504 insertions, 0 deletions
diff --git a/libartbase/base/bit_utils.h b/libartbase/base/bit_utils.h new file mode 100644 index 0000000000..ff6c160680 --- /dev/null +++ b/libartbase/base/bit_utils.h @@ -0,0 +1,504 @@ +/* + * Copyright (C) 2015 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef ART_LIBARTBASE_BASE_BIT_UTILS_H_ +#define ART_LIBARTBASE_BASE_BIT_UTILS_H_ + +#include <limits> +#include <type_traits> + +#include <android-base/logging.h> + +#include "base/stl_util_identity.h" + +namespace art { + +// Like sizeof, but count how many bits a type takes. Pass type explicitly. +template <typename T> +constexpr size_t BitSizeOf() { + static_assert(std::is_integral<T>::value, "T must be integral"); + using unsigned_type = typename std::make_unsigned<T>::type; + static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!"); + static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!"); + return std::numeric_limits<unsigned_type>::digits; +} + +// Like sizeof, but count how many bits a type takes. Infers type from parameter. +template <typename T> +constexpr size_t BitSizeOf(T /*x*/) { + return BitSizeOf<T>(); +} + +template<typename T> +constexpr int CLZ(T x) { + static_assert(std::is_integral<T>::value, "T must be integral"); + static_assert(std::is_unsigned<T>::value, "T must be unsigned"); + static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!"); + static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t), + "Unsupported sizeof(T)"); + DCHECK_NE(x, 0u); + constexpr bool is_64_bit = (sizeof(T) == sizeof(uint64_t)); + constexpr size_t adjustment = + is_64_bit ? 0u : std::numeric_limits<uint32_t>::digits - std::numeric_limits<T>::digits; + return is_64_bit ? __builtin_clzll(x) : __builtin_clz(x) - adjustment; +} + +// Similar to CLZ except that on zero input it returns bitwidth and supports signed integers. +template<typename T> +constexpr int JAVASTYLE_CLZ(T x) { + static_assert(std::is_integral<T>::value, "T must be integral"); + using unsigned_type = typename std::make_unsigned<T>::type; + return (x == 0) ? BitSizeOf<T>() : CLZ(static_cast<unsigned_type>(x)); +} + +template<typename T> +constexpr int CTZ(T x) { + static_assert(std::is_integral<T>::value, "T must be integral"); + // It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check + // that T is an unsigned type. + static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t), + "Unsupported sizeof(T)"); + DCHECK_NE(x, static_cast<T>(0)); + return (sizeof(T) == sizeof(uint64_t)) ? __builtin_ctzll(x) : __builtin_ctz(x); +} + +// Similar to CTZ except that on zero input it returns bitwidth and supports signed integers. +template<typename T> +constexpr int JAVASTYLE_CTZ(T x) { + static_assert(std::is_integral<T>::value, "T must be integral"); + using unsigned_type = typename std::make_unsigned<T>::type; + return (x == 0) ? BitSizeOf<T>() : CTZ(static_cast<unsigned_type>(x)); +} + +// Return the number of 1-bits in `x`. +template<typename T> +constexpr int POPCOUNT(T x) { + return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x); +} + +// Swap bytes. +template<typename T> +constexpr T BSWAP(T x) { + if (sizeof(T) == sizeof(uint16_t)) { + return __builtin_bswap16(x); + } else if (sizeof(T) == sizeof(uint32_t)) { + return __builtin_bswap32(x); + } else { + return __builtin_bswap64(x); + } +} + +// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. +template <typename T> +constexpr ssize_t MostSignificantBit(T value) { + static_assert(std::is_integral<T>::value, "T must be integral"); + static_assert(std::is_unsigned<T>::value, "T must be unsigned"); + static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!"); + return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value); +} + +// Find the bit position of the least significant bit (0-based), or -1 if there were no bits set. +template <typename T> +constexpr ssize_t LeastSignificantBit(T value) { + static_assert(std::is_integral<T>::value, "T must be integral"); + static_assert(std::is_unsigned<T>::value, "T must be unsigned"); + return (value == 0) ? -1 : CTZ(value); +} + +// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. +template <typename T> +constexpr size_t MinimumBitsToStore(T value) { + return static_cast<size_t>(MostSignificantBit(value) + 1); +} + +template <typename T> +constexpr T RoundUpToPowerOfTwo(T x) { + static_assert(std::is_integral<T>::value, "T must be integral"); + static_assert(std::is_unsigned<T>::value, "T must be unsigned"); + // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)). + return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u)); +} + +// Return highest possible N - a power of two - such that val >= N. +template <typename T> +constexpr T TruncToPowerOfTwo(T val) { + static_assert(std::is_integral<T>::value, "T must be integral"); + static_assert(std::is_unsigned<T>::value, "T must be unsigned"); + return (val != 0) ? static_cast<T>(1u) << (BitSizeOf<T>() - CLZ(val) - 1u) : 0; +} + +template<typename T> +constexpr bool IsPowerOfTwo(T x) { + static_assert(std::is_integral<T>::value, "T must be integral"); + // TODO: assert unsigned. There is currently many uses with signed values. + return (x & (x - 1)) == 0; +} + +template<typename T> +constexpr int WhichPowerOf2(T x) { + static_assert(std::is_integral<T>::value, "T must be integral"); + // TODO: assert unsigned. There is currently many uses with signed values. + DCHECK((x != 0) && IsPowerOfTwo(x)); + return CTZ(x); +} + +// For rounding integers. +// Note: Omit the `n` from T type deduction, deduce only from the `x` argument. +template<typename T> +constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED; + +template<typename T> +constexpr T RoundDown(T x, typename Identity<T>::type n) { + DCHECK(IsPowerOfTwo(n)); + return (x & -n); +} + +template<typename T> +constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED; + +template<typename T> +constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) { + return RoundDown(x + n - 1, n); +} + +// For aligning pointers. +template<typename T> +inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; + +template<typename T> +inline T* AlignDown(T* x, uintptr_t n) { + return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n)); +} + +template<typename T> +inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; + +template<typename T> +inline T* AlignUp(T* x, uintptr_t n) { + return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n)); +} + +template<int n, typename T> +constexpr bool IsAligned(T x) { + static_assert((n & (n - 1)) == 0, "n is not a power of two"); + return (x & (n - 1)) == 0; +} + +template<int n, typename T> +inline bool IsAligned(T* x) { + return IsAligned<n>(reinterpret_cast<const uintptr_t>(x)); +} + +template<typename T> +inline bool IsAlignedParam(T x, int n) { + return (x & (n - 1)) == 0; +} + +template<typename T> +inline bool IsAlignedParam(T* x, int n) { + return IsAlignedParam(reinterpret_cast<const uintptr_t>(x), n); +} + +#define CHECK_ALIGNED(value, alignment) \ + CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) + +#define DCHECK_ALIGNED(value, alignment) \ + DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) + +#define CHECK_ALIGNED_PARAM(value, alignment) \ + CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) + +#define DCHECK_ALIGNED_PARAM(value, alignment) \ + DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) + +inline uint16_t Low16Bits(uint32_t value) { + return static_cast<uint16_t>(value); +} + +inline uint16_t High16Bits(uint32_t value) { + return static_cast<uint16_t>(value >> 16); +} + +inline uint32_t Low32Bits(uint64_t value) { + return static_cast<uint32_t>(value); +} + +inline uint32_t High32Bits(uint64_t value) { + return static_cast<uint32_t>(value >> 32); +} + +// Check whether an N-bit two's-complement representation can hold value. +template <typename T> +inline bool IsInt(size_t N, T value) { + if (N == BitSizeOf<T>()) { + return true; + } else { + CHECK_LT(0u, N); + CHECK_LT(N, BitSizeOf<T>()); + T limit = static_cast<T>(1) << (N - 1u); + return (-limit <= value) && (value < limit); + } +} + +template <typename T> +constexpr T GetIntLimit(size_t bits) { + DCHECK_NE(bits, 0u); + DCHECK_LT(bits, BitSizeOf<T>()); + return static_cast<T>(1) << (bits - 1); +} + +template <size_t kBits, typename T> +constexpr bool IsInt(T value) { + static_assert(kBits > 0, "kBits cannot be zero."); + static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); + static_assert(std::is_signed<T>::value, "Needs a signed type."); + // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is + // trivially true. + return (kBits == BitSizeOf<T>()) ? + true : + (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits)); +} + +template <size_t kBits, typename T> +constexpr bool IsUint(T value) { + static_assert(kBits > 0, "kBits cannot be zero."); + static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); + static_assert(std::is_integral<T>::value, "Needs an integral type."); + // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is + // trivially true. + // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(), + // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows. + using unsigned_type = typename std::make_unsigned<T>::type; + return (0 <= value) && + (kBits == BitSizeOf<T>() || + (static_cast<unsigned_type>(value) <= GetIntLimit<unsigned_type>(kBits) * 2u - 1u)); +} + +template <size_t kBits, typename T> +constexpr bool IsAbsoluteUint(T value) { + static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); + static_assert(std::is_integral<T>::value, "Needs an integral type."); + using unsigned_type = typename std::make_unsigned<T>::type; + return (kBits == BitSizeOf<T>()) + ? true + : IsUint<kBits>(value < 0 + ? static_cast<unsigned_type>(-1 - value) + 1u // Avoid overflow. + : static_cast<unsigned_type>(value)); +} + +// Generate maximum/minimum values for signed/unsigned n-bit integers +template <typename T> +constexpr T MaxInt(size_t bits) { + DCHECK(std::is_unsigned<T>::value || bits > 0u) << "bits cannot be zero for signed."; + DCHECK_LE(bits, BitSizeOf<T>()); + using unsigned_type = typename std::make_unsigned<T>::type; + return bits == BitSizeOf<T>() + ? std::numeric_limits<T>::max() + : std::is_signed<T>::value + ? ((bits == 1u) ? 0 : static_cast<T>(MaxInt<unsigned_type>(bits - 1))) + : static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1); +} + +template <typename T> +constexpr T MinInt(size_t bits) { + DCHECK(std::is_unsigned<T>::value || bits > 0) << "bits cannot be zero for signed."; + DCHECK_LE(bits, BitSizeOf<T>()); + return bits == BitSizeOf<T>() + ? std::numeric_limits<T>::min() + : std::is_signed<T>::value + ? ((bits == 1u) ? -1 : static_cast<T>(-1) - MaxInt<T>(bits)) + : static_cast<T>(0); +} + +// Returns value with bit set in lowest one-bit position or 0 if 0. (java.lang.X.lowestOneBit). +template <typename kind> +inline static kind LowestOneBitValue(kind opnd) { + // Hacker's Delight, Section 2-1 + return opnd & -opnd; +} + +// Returns value with bit set in hightest one-bit position or 0 if 0. (java.lang.X.highestOneBit). +template <typename T> +inline static T HighestOneBitValue(T opnd) { + using unsigned_type = typename std::make_unsigned<T>::type; + T res; + if (opnd == 0) { + res = 0; + } else { + int bit_position = BitSizeOf<T>() - (CLZ(static_cast<unsigned_type>(opnd)) + 1); + res = static_cast<T>(UINT64_C(1) << bit_position); + } + return res; +} + +// Rotate bits. +template <typename T, bool left> +inline static T Rot(T opnd, int distance) { + int mask = BitSizeOf<T>() - 1; + int unsigned_right_shift = left ? (-distance & mask) : (distance & mask); + int signed_left_shift = left ? (distance & mask) : (-distance & mask); + using unsigned_type = typename std::make_unsigned<T>::type; + return (static_cast<unsigned_type>(opnd) >> unsigned_right_shift) | (opnd << signed_left_shift); +} + +// TUNING: use rbit for arm/arm64 +inline static uint32_t ReverseBits32(uint32_t opnd) { + // Hacker's Delight 7-1 + opnd = ((opnd >> 1) & 0x55555555) | ((opnd & 0x55555555) << 1); + opnd = ((opnd >> 2) & 0x33333333) | ((opnd & 0x33333333) << 2); + opnd = ((opnd >> 4) & 0x0F0F0F0F) | ((opnd & 0x0F0F0F0F) << 4); + opnd = ((opnd >> 8) & 0x00FF00FF) | ((opnd & 0x00FF00FF) << 8); + opnd = ((opnd >> 16)) | ((opnd) << 16); + return opnd; +} + +// TUNING: use rbit for arm/arm64 +inline static uint64_t ReverseBits64(uint64_t opnd) { + // Hacker's Delight 7-1 + opnd = (opnd & 0x5555555555555555L) << 1 | ((opnd >> 1) & 0x5555555555555555L); + opnd = (opnd & 0x3333333333333333L) << 2 | ((opnd >> 2) & 0x3333333333333333L); + opnd = (opnd & 0x0f0f0f0f0f0f0f0fL) << 4 | ((opnd >> 4) & 0x0f0f0f0f0f0f0f0fL); + opnd = (opnd & 0x00ff00ff00ff00ffL) << 8 | ((opnd >> 8) & 0x00ff00ff00ff00ffL); + opnd = (opnd << 48) | ((opnd & 0xffff0000L) << 16) | ((opnd >> 16) & 0xffff0000L) | (opnd >> 48); + return opnd; +} + +// Create a mask for the least significant "bits" +// The returned value is always unsigned to prevent undefined behavior for bitwise ops. +// +// Given 'bits', +// Returns: +// <--- bits ---> +// +-----------------+------------+ +// | 0 ............0 | 1.....1 | +// +-----------------+------------+ +// msb lsb +template <typename T = size_t> +inline static constexpr std::make_unsigned_t<T> MaskLeastSignificant(size_t bits) { + DCHECK_GE(BitSizeOf<T>(), bits) << "Bits out of range for type T"; + using unsigned_T = std::make_unsigned_t<T>; + if (bits >= BitSizeOf<T>()) { + return std::numeric_limits<unsigned_T>::max(); + } else { + auto kOne = static_cast<unsigned_T>(1); // Do not truncate for T>size_t. + return static_cast<unsigned_T>((kOne << bits) - kOne); + } +} + +// Clears the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'. +// (Equivalent of ARM BFC instruction). +// +// Given: +// <-- width --> +// +--------+------------+--------+ +// | ABC... | bitfield | XYZ... + +// +--------+------------+--------+ +// lsb 0 +// Returns: +// <-- width --> +// +--------+------------+--------+ +// | ABC... | 0........0 | XYZ... + +// +--------+------------+--------+ +// lsb 0 +template <typename T> +inline static constexpr T BitFieldClear(T value, size_t lsb, size_t width) { + DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; + const auto val = static_cast<std::make_unsigned_t<T>>(value); + const auto mask = MaskLeastSignificant<T>(width); + + return static_cast<T>(val & ~(mask << lsb)); +} + +// Inserts the contents of 'data' into bitfield of 'value' starting +// at the least significant bit "lsb" with a bitwidth of 'width'. +// Note: data must be within range of [MinInt(width), MaxInt(width)]. +// (Equivalent of ARM BFI instruction). +// +// Given (data): +// <-- width --> +// +--------+------------+--------+ +// | ABC... | bitfield | XYZ... + +// +--------+------------+--------+ +// lsb 0 +// Returns: +// <-- width --> +// +--------+------------+--------+ +// | ABC... | 0...data | XYZ... + +// +--------+------------+--------+ +// lsb 0 + +template <typename T, typename T2> +inline static constexpr T BitFieldInsert(T value, T2 data, size_t lsb, size_t width) { + DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; + if (width != 0u) { + DCHECK_GE(MaxInt<T2>(width), data) << "Data out of range [too large] for bitwidth"; + DCHECK_LE(MinInt<T2>(width), data) << "Data out of range [too small] for bitwidth"; + } else { + DCHECK_EQ(static_cast<T2>(0), data) << "Data out of range [nonzero] for bitwidth 0"; + } + const auto data_mask = MaskLeastSignificant<T2>(width); + const auto value_cleared = BitFieldClear(value, lsb, width); + + return static_cast<T>(value_cleared | ((data & data_mask) << lsb)); +} + +// Extracts the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'. +// Signed types are sign-extended during extraction. (Equivalent of ARM UBFX/SBFX instruction). +// +// Given: +// <-- width --> +// +--------+-------------+-------+ +// | | bitfield | + +// +--------+-------------+-------+ +// lsb 0 +// (Unsigned) Returns: +// <-- width --> +// +----------------+-------------+ +// | 0... 0 | bitfield | +// +----------------+-------------+ +// 0 +// (Signed) Returns: +// <-- width --> +// +----------------+-------------+ +// | S... S | bitfield | +// +----------------+-------------+ +// 0 +// where S is the highest bit in 'bitfield'. +template <typename T> +inline static constexpr T BitFieldExtract(T value, size_t lsb, size_t width) { + DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; + const auto val = static_cast<std::make_unsigned_t<T>>(value); + + const T bitfield_unsigned = + static_cast<T>((val >> lsb) & MaskLeastSignificant<T>(width)); + if (std::is_signed<T>::value) { + // Perform sign extension + if (width == 0) { // Avoid underflow. + return static_cast<T>(0); + } else if (bitfield_unsigned & (1 << (width - 1))) { // Detect if sign bit was set. + // MSB <width> LSB + // 0b11111...100...000000 + const auto ones_negmask = ~MaskLeastSignificant<T>(width); + return static_cast<T>(bitfield_unsigned | ones_negmask); + } + } + // Skip sign extension. + return bitfield_unsigned; +} + +} // namespace art + +#endif // ART_LIBARTBASE_BASE_BIT_UTILS_H_ |