summaryrefslogtreecommitdiff
path: root/libartbase/base/bit_utils.h
diff options
context:
space:
mode:
Diffstat (limited to 'libartbase/base/bit_utils.h')
-rw-r--r--libartbase/base/bit_utils.h504
1 files changed, 504 insertions, 0 deletions
diff --git a/libartbase/base/bit_utils.h b/libartbase/base/bit_utils.h
new file mode 100644
index 0000000000..ff6c160680
--- /dev/null
+++ b/libartbase/base/bit_utils.h
@@ -0,0 +1,504 @@
+/*
+ * Copyright (C) 2015 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_LIBARTBASE_BASE_BIT_UTILS_H_
+#define ART_LIBARTBASE_BASE_BIT_UTILS_H_
+
+#include <limits>
+#include <type_traits>
+
+#include <android-base/logging.h>
+
+#include "base/stl_util_identity.h"
+
+namespace art {
+
+// Like sizeof, but count how many bits a type takes. Pass type explicitly.
+template <typename T>
+constexpr size_t BitSizeOf() {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ using unsigned_type = typename std::make_unsigned<T>::type;
+ static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!");
+ static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!");
+ return std::numeric_limits<unsigned_type>::digits;
+}
+
+// Like sizeof, but count how many bits a type takes. Infers type from parameter.
+template <typename T>
+constexpr size_t BitSizeOf(T /*x*/) {
+ return BitSizeOf<T>();
+}
+
+template<typename T>
+constexpr int CLZ(T x) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ static_assert(std::is_unsigned<T>::value, "T must be unsigned");
+ static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
+ static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t),
+ "Unsupported sizeof(T)");
+ DCHECK_NE(x, 0u);
+ constexpr bool is_64_bit = (sizeof(T) == sizeof(uint64_t));
+ constexpr size_t adjustment =
+ is_64_bit ? 0u : std::numeric_limits<uint32_t>::digits - std::numeric_limits<T>::digits;
+ return is_64_bit ? __builtin_clzll(x) : __builtin_clz(x) - adjustment;
+}
+
+// Similar to CLZ except that on zero input it returns bitwidth and supports signed integers.
+template<typename T>
+constexpr int JAVASTYLE_CLZ(T x) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ using unsigned_type = typename std::make_unsigned<T>::type;
+ return (x == 0) ? BitSizeOf<T>() : CLZ(static_cast<unsigned_type>(x));
+}
+
+template<typename T>
+constexpr int CTZ(T x) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ // It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check
+ // that T is an unsigned type.
+ static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t),
+ "Unsupported sizeof(T)");
+ DCHECK_NE(x, static_cast<T>(0));
+ return (sizeof(T) == sizeof(uint64_t)) ? __builtin_ctzll(x) : __builtin_ctz(x);
+}
+
+// Similar to CTZ except that on zero input it returns bitwidth and supports signed integers.
+template<typename T>
+constexpr int JAVASTYLE_CTZ(T x) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ using unsigned_type = typename std::make_unsigned<T>::type;
+ return (x == 0) ? BitSizeOf<T>() : CTZ(static_cast<unsigned_type>(x));
+}
+
+// Return the number of 1-bits in `x`.
+template<typename T>
+constexpr int POPCOUNT(T x) {
+ return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x);
+}
+
+// Swap bytes.
+template<typename T>
+constexpr T BSWAP(T x) {
+ if (sizeof(T) == sizeof(uint16_t)) {
+ return __builtin_bswap16(x);
+ } else if (sizeof(T) == sizeof(uint32_t)) {
+ return __builtin_bswap32(x);
+ } else {
+ return __builtin_bswap64(x);
+ }
+}
+
+// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
+template <typename T>
+constexpr ssize_t MostSignificantBit(T value) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ static_assert(std::is_unsigned<T>::value, "T must be unsigned");
+ static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
+ return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value);
+}
+
+// Find the bit position of the least significant bit (0-based), or -1 if there were no bits set.
+template <typename T>
+constexpr ssize_t LeastSignificantBit(T value) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ static_assert(std::is_unsigned<T>::value, "T must be unsigned");
+ return (value == 0) ? -1 : CTZ(value);
+}
+
+// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
+template <typename T>
+constexpr size_t MinimumBitsToStore(T value) {
+ return static_cast<size_t>(MostSignificantBit(value) + 1);
+}
+
+template <typename T>
+constexpr T RoundUpToPowerOfTwo(T x) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ static_assert(std::is_unsigned<T>::value, "T must be unsigned");
+ // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)).
+ return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u));
+}
+
+// Return highest possible N - a power of two - such that val >= N.
+template <typename T>
+constexpr T TruncToPowerOfTwo(T val) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ static_assert(std::is_unsigned<T>::value, "T must be unsigned");
+ return (val != 0) ? static_cast<T>(1u) << (BitSizeOf<T>() - CLZ(val) - 1u) : 0;
+}
+
+template<typename T>
+constexpr bool IsPowerOfTwo(T x) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ // TODO: assert unsigned. There is currently many uses with signed values.
+ return (x & (x - 1)) == 0;
+}
+
+template<typename T>
+constexpr int WhichPowerOf2(T x) {
+ static_assert(std::is_integral<T>::value, "T must be integral");
+ // TODO: assert unsigned. There is currently many uses with signed values.
+ DCHECK((x != 0) && IsPowerOfTwo(x));
+ return CTZ(x);
+}
+
+// For rounding integers.
+// Note: Omit the `n` from T type deduction, deduce only from the `x` argument.
+template<typename T>
+constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED;
+
+template<typename T>
+constexpr T RoundDown(T x, typename Identity<T>::type n) {
+ DCHECK(IsPowerOfTwo(n));
+ return (x & -n);
+}
+
+template<typename T>
+constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED;
+
+template<typename T>
+constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) {
+ return RoundDown(x + n - 1, n);
+}
+
+// For aligning pointers.
+template<typename T>
+inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
+
+template<typename T>
+inline T* AlignDown(T* x, uintptr_t n) {
+ return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
+}
+
+template<typename T>
+inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
+
+template<typename T>
+inline T* AlignUp(T* x, uintptr_t n) {
+ return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
+}
+
+template<int n, typename T>
+constexpr bool IsAligned(T x) {
+ static_assert((n & (n - 1)) == 0, "n is not a power of two");
+ return (x & (n - 1)) == 0;
+}
+
+template<int n, typename T>
+inline bool IsAligned(T* x) {
+ return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
+}
+
+template<typename T>
+inline bool IsAlignedParam(T x, int n) {
+ return (x & (n - 1)) == 0;
+}
+
+template<typename T>
+inline bool IsAlignedParam(T* x, int n) {
+ return IsAlignedParam(reinterpret_cast<const uintptr_t>(x), n);
+}
+
+#define CHECK_ALIGNED(value, alignment) \
+ CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
+
+#define DCHECK_ALIGNED(value, alignment) \
+ DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
+
+#define CHECK_ALIGNED_PARAM(value, alignment) \
+ CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
+
+#define DCHECK_ALIGNED_PARAM(value, alignment) \
+ DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
+
+inline uint16_t Low16Bits(uint32_t value) {
+ return static_cast<uint16_t>(value);
+}
+
+inline uint16_t High16Bits(uint32_t value) {
+ return static_cast<uint16_t>(value >> 16);
+}
+
+inline uint32_t Low32Bits(uint64_t value) {
+ return static_cast<uint32_t>(value);
+}
+
+inline uint32_t High32Bits(uint64_t value) {
+ return static_cast<uint32_t>(value >> 32);
+}
+
+// Check whether an N-bit two's-complement representation can hold value.
+template <typename T>
+inline bool IsInt(size_t N, T value) {
+ if (N == BitSizeOf<T>()) {
+ return true;
+ } else {
+ CHECK_LT(0u, N);
+ CHECK_LT(N, BitSizeOf<T>());
+ T limit = static_cast<T>(1) << (N - 1u);
+ return (-limit <= value) && (value < limit);
+ }
+}
+
+template <typename T>
+constexpr T GetIntLimit(size_t bits) {
+ DCHECK_NE(bits, 0u);
+ DCHECK_LT(bits, BitSizeOf<T>());
+ return static_cast<T>(1) << (bits - 1);
+}
+
+template <size_t kBits, typename T>
+constexpr bool IsInt(T value) {
+ static_assert(kBits > 0, "kBits cannot be zero.");
+ static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
+ static_assert(std::is_signed<T>::value, "Needs a signed type.");
+ // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
+ // trivially true.
+ return (kBits == BitSizeOf<T>()) ?
+ true :
+ (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
+}
+
+template <size_t kBits, typename T>
+constexpr bool IsUint(T value) {
+ static_assert(kBits > 0, "kBits cannot be zero.");
+ static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
+ static_assert(std::is_integral<T>::value, "Needs an integral type.");
+ // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
+ // trivially true.
+ // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(),
+ // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows.
+ using unsigned_type = typename std::make_unsigned<T>::type;
+ return (0 <= value) &&
+ (kBits == BitSizeOf<T>() ||
+ (static_cast<unsigned_type>(value) <= GetIntLimit<unsigned_type>(kBits) * 2u - 1u));
+}
+
+template <size_t kBits, typename T>
+constexpr bool IsAbsoluteUint(T value) {
+ static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
+ static_assert(std::is_integral<T>::value, "Needs an integral type.");
+ using unsigned_type = typename std::make_unsigned<T>::type;
+ return (kBits == BitSizeOf<T>())
+ ? true
+ : IsUint<kBits>(value < 0
+ ? static_cast<unsigned_type>(-1 - value) + 1u // Avoid overflow.
+ : static_cast<unsigned_type>(value));
+}
+
+// Generate maximum/minimum values for signed/unsigned n-bit integers
+template <typename T>
+constexpr T MaxInt(size_t bits) {
+ DCHECK(std::is_unsigned<T>::value || bits > 0u) << "bits cannot be zero for signed.";
+ DCHECK_LE(bits, BitSizeOf<T>());
+ using unsigned_type = typename std::make_unsigned<T>::type;
+ return bits == BitSizeOf<T>()
+ ? std::numeric_limits<T>::max()
+ : std::is_signed<T>::value
+ ? ((bits == 1u) ? 0 : static_cast<T>(MaxInt<unsigned_type>(bits - 1)))
+ : static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1);
+}
+
+template <typename T>
+constexpr T MinInt(size_t bits) {
+ DCHECK(std::is_unsigned<T>::value || bits > 0) << "bits cannot be zero for signed.";
+ DCHECK_LE(bits, BitSizeOf<T>());
+ return bits == BitSizeOf<T>()
+ ? std::numeric_limits<T>::min()
+ : std::is_signed<T>::value
+ ? ((bits == 1u) ? -1 : static_cast<T>(-1) - MaxInt<T>(bits))
+ : static_cast<T>(0);
+}
+
+// Returns value with bit set in lowest one-bit position or 0 if 0. (java.lang.X.lowestOneBit).
+template <typename kind>
+inline static kind LowestOneBitValue(kind opnd) {
+ // Hacker's Delight, Section 2-1
+ return opnd & -opnd;
+}
+
+// Returns value with bit set in hightest one-bit position or 0 if 0. (java.lang.X.highestOneBit).
+template <typename T>
+inline static T HighestOneBitValue(T opnd) {
+ using unsigned_type = typename std::make_unsigned<T>::type;
+ T res;
+ if (opnd == 0) {
+ res = 0;
+ } else {
+ int bit_position = BitSizeOf<T>() - (CLZ(static_cast<unsigned_type>(opnd)) + 1);
+ res = static_cast<T>(UINT64_C(1) << bit_position);
+ }
+ return res;
+}
+
+// Rotate bits.
+template <typename T, bool left>
+inline static T Rot(T opnd, int distance) {
+ int mask = BitSizeOf<T>() - 1;
+ int unsigned_right_shift = left ? (-distance & mask) : (distance & mask);
+ int signed_left_shift = left ? (distance & mask) : (-distance & mask);
+ using unsigned_type = typename std::make_unsigned<T>::type;
+ return (static_cast<unsigned_type>(opnd) >> unsigned_right_shift) | (opnd << signed_left_shift);
+}
+
+// TUNING: use rbit for arm/arm64
+inline static uint32_t ReverseBits32(uint32_t opnd) {
+ // Hacker's Delight 7-1
+ opnd = ((opnd >> 1) & 0x55555555) | ((opnd & 0x55555555) << 1);
+ opnd = ((opnd >> 2) & 0x33333333) | ((opnd & 0x33333333) << 2);
+ opnd = ((opnd >> 4) & 0x0F0F0F0F) | ((opnd & 0x0F0F0F0F) << 4);
+ opnd = ((opnd >> 8) & 0x00FF00FF) | ((opnd & 0x00FF00FF) << 8);
+ opnd = ((opnd >> 16)) | ((opnd) << 16);
+ return opnd;
+}
+
+// TUNING: use rbit for arm/arm64
+inline static uint64_t ReverseBits64(uint64_t opnd) {
+ // Hacker's Delight 7-1
+ opnd = (opnd & 0x5555555555555555L) << 1 | ((opnd >> 1) & 0x5555555555555555L);
+ opnd = (opnd & 0x3333333333333333L) << 2 | ((opnd >> 2) & 0x3333333333333333L);
+ opnd = (opnd & 0x0f0f0f0f0f0f0f0fL) << 4 | ((opnd >> 4) & 0x0f0f0f0f0f0f0f0fL);
+ opnd = (opnd & 0x00ff00ff00ff00ffL) << 8 | ((opnd >> 8) & 0x00ff00ff00ff00ffL);
+ opnd = (opnd << 48) | ((opnd & 0xffff0000L) << 16) | ((opnd >> 16) & 0xffff0000L) | (opnd >> 48);
+ return opnd;
+}
+
+// Create a mask for the least significant "bits"
+// The returned value is always unsigned to prevent undefined behavior for bitwise ops.
+//
+// Given 'bits',
+// Returns:
+// <--- bits --->
+// +-----------------+------------+
+// | 0 ............0 | 1.....1 |
+// +-----------------+------------+
+// msb lsb
+template <typename T = size_t>
+inline static constexpr std::make_unsigned_t<T> MaskLeastSignificant(size_t bits) {
+ DCHECK_GE(BitSizeOf<T>(), bits) << "Bits out of range for type T";
+ using unsigned_T = std::make_unsigned_t<T>;
+ if (bits >= BitSizeOf<T>()) {
+ return std::numeric_limits<unsigned_T>::max();
+ } else {
+ auto kOne = static_cast<unsigned_T>(1); // Do not truncate for T>size_t.
+ return static_cast<unsigned_T>((kOne << bits) - kOne);
+ }
+}
+
+// Clears the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'.
+// (Equivalent of ARM BFC instruction).
+//
+// Given:
+// <-- width -->
+// +--------+------------+--------+
+// | ABC... | bitfield | XYZ... +
+// +--------+------------+--------+
+// lsb 0
+// Returns:
+// <-- width -->
+// +--------+------------+--------+
+// | ABC... | 0........0 | XYZ... +
+// +--------+------------+--------+
+// lsb 0
+template <typename T>
+inline static constexpr T BitFieldClear(T value, size_t lsb, size_t width) {
+ DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
+ const auto val = static_cast<std::make_unsigned_t<T>>(value);
+ const auto mask = MaskLeastSignificant<T>(width);
+
+ return static_cast<T>(val & ~(mask << lsb));
+}
+
+// Inserts the contents of 'data' into bitfield of 'value' starting
+// at the least significant bit "lsb" with a bitwidth of 'width'.
+// Note: data must be within range of [MinInt(width), MaxInt(width)].
+// (Equivalent of ARM BFI instruction).
+//
+// Given (data):
+// <-- width -->
+// +--------+------------+--------+
+// | ABC... | bitfield | XYZ... +
+// +--------+------------+--------+
+// lsb 0
+// Returns:
+// <-- width -->
+// +--------+------------+--------+
+// | ABC... | 0...data | XYZ... +
+// +--------+------------+--------+
+// lsb 0
+
+template <typename T, typename T2>
+inline static constexpr T BitFieldInsert(T value, T2 data, size_t lsb, size_t width) {
+ DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
+ if (width != 0u) {
+ DCHECK_GE(MaxInt<T2>(width), data) << "Data out of range [too large] for bitwidth";
+ DCHECK_LE(MinInt<T2>(width), data) << "Data out of range [too small] for bitwidth";
+ } else {
+ DCHECK_EQ(static_cast<T2>(0), data) << "Data out of range [nonzero] for bitwidth 0";
+ }
+ const auto data_mask = MaskLeastSignificant<T2>(width);
+ const auto value_cleared = BitFieldClear(value, lsb, width);
+
+ return static_cast<T>(value_cleared | ((data & data_mask) << lsb));
+}
+
+// Extracts the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'.
+// Signed types are sign-extended during extraction. (Equivalent of ARM UBFX/SBFX instruction).
+//
+// Given:
+// <-- width -->
+// +--------+-------------+-------+
+// | | bitfield | +
+// +--------+-------------+-------+
+// lsb 0
+// (Unsigned) Returns:
+// <-- width -->
+// +----------------+-------------+
+// | 0... 0 | bitfield |
+// +----------------+-------------+
+// 0
+// (Signed) Returns:
+// <-- width -->
+// +----------------+-------------+
+// | S... S | bitfield |
+// +----------------+-------------+
+// 0
+// where S is the highest bit in 'bitfield'.
+template <typename T>
+inline static constexpr T BitFieldExtract(T value, size_t lsb, size_t width) {
+ DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
+ const auto val = static_cast<std::make_unsigned_t<T>>(value);
+
+ const T bitfield_unsigned =
+ static_cast<T>((val >> lsb) & MaskLeastSignificant<T>(width));
+ if (std::is_signed<T>::value) {
+ // Perform sign extension
+ if (width == 0) { // Avoid underflow.
+ return static_cast<T>(0);
+ } else if (bitfield_unsigned & (1 << (width - 1))) { // Detect if sign bit was set.
+ // MSB <width> LSB
+ // 0b11111...100...000000
+ const auto ones_negmask = ~MaskLeastSignificant<T>(width);
+ return static_cast<T>(bitfield_unsigned | ones_negmask);
+ }
+ }
+ // Skip sign extension.
+ return bitfield_unsigned;
+}
+
+} // namespace art
+
+#endif // ART_LIBARTBASE_BASE_BIT_UTILS_H_