summaryrefslogtreecommitdiff
path: root/compiler/utils/mips/assembler_mips.cc
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/utils/mips/assembler_mips.cc')
-rw-r--r--compiler/utils/mips/assembler_mips.cc5271
1 files changed, 0 insertions, 5271 deletions
diff --git a/compiler/utils/mips/assembler_mips.cc b/compiler/utils/mips/assembler_mips.cc
deleted file mode 100644
index 6b73695208..0000000000
--- a/compiler/utils/mips/assembler_mips.cc
+++ /dev/null
@@ -1,5271 +0,0 @@
-/*
- * Copyright (C) 2011 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "assembler_mips.h"
-
-#include "base/bit_utils.h"
-#include "base/casts.h"
-#include "base/memory_region.h"
-#include "entrypoints/quick/quick_entrypoints.h"
-#include "entrypoints/quick/quick_entrypoints_enum.h"
-#include "thread.h"
-
-namespace art {
-namespace mips {
-
-static_assert(static_cast<size_t>(kMipsPointerSize) == kMipsWordSize,
- "Unexpected Mips pointer size.");
-static_assert(kMipsPointerSize == PointerSize::k32, "Unexpected Mips pointer size.");
-
-
-std::ostream& operator<<(std::ostream& os, const DRegister& rhs) {
- if (rhs >= D0 && rhs < kNumberOfDRegisters) {
- os << "d" << static_cast<int>(rhs);
- } else {
- os << "DRegister[" << static_cast<int>(rhs) << "]";
- }
- return os;
-}
-
-MipsAssembler::DelaySlot::DelaySlot()
- : instruction_(0),
- patcher_label_(nullptr) {}
-
-InOutRegMasks& MipsAssembler::DsFsmInstr(uint32_t instruction, MipsLabel* patcher_label) {
- if (!reordering_) {
- CHECK_EQ(ds_fsm_state_, kExpectingLabel);
- CHECK_EQ(delay_slot_.instruction_, 0u);
- return delay_slot_.masks_;
- }
- switch (ds_fsm_state_) {
- case kExpectingLabel:
- break;
- case kExpectingInstruction:
- CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size());
- // If the last instruction is not suitable for delay slots, drop
- // the PC of the label preceding it so that no unconditional branch
- // uses this instruction to fill its delay slot.
- if (instruction == 0) {
- DsFsmDropLabel(); // Sets ds_fsm_state_ = kExpectingLabel.
- } else {
- // Otherwise wait for another instruction or label before we can
- // commit the label PC. The label PC will be dropped if instead
- // of another instruction or label there's a call from the code
- // generator to CodePosition() to record the buffer size.
- // Instructions after which the buffer size is recorded cannot
- // be moved into delay slots or anywhere else because they may
- // trigger signals and the signal handlers expect these signals
- // to be coming from the instructions immediately preceding the
- // recorded buffer locations.
- ds_fsm_state_ = kExpectingCommit;
- }
- break;
- case kExpectingCommit:
- CHECK_EQ(ds_fsm_target_pc_ + 2 * sizeof(uint32_t), buffer_.Size());
- DsFsmCommitLabel(); // Sets ds_fsm_state_ = kExpectingLabel.
- break;
- }
- delay_slot_.instruction_ = instruction;
- delay_slot_.masks_ = InOutRegMasks();
- delay_slot_.patcher_label_ = patcher_label;
- return delay_slot_.masks_;
-}
-
-void MipsAssembler::DsFsmLabel() {
- if (!reordering_) {
- CHECK_EQ(ds_fsm_state_, kExpectingLabel);
- CHECK_EQ(delay_slot_.instruction_, 0u);
- return;
- }
- switch (ds_fsm_state_) {
- case kExpectingLabel:
- ds_fsm_target_pc_ = buffer_.Size();
- ds_fsm_state_ = kExpectingInstruction;
- break;
- case kExpectingInstruction:
- // Allow consecutive labels.
- CHECK_EQ(ds_fsm_target_pc_, buffer_.Size());
- break;
- case kExpectingCommit:
- CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size());
- DsFsmCommitLabel();
- ds_fsm_target_pc_ = buffer_.Size();
- ds_fsm_state_ = kExpectingInstruction;
- break;
- }
- // We cannot move instructions into delay slots across labels.
- delay_slot_.instruction_ = 0;
-}
-
-void MipsAssembler::DsFsmCommitLabel() {
- if (ds_fsm_state_ == kExpectingCommit) {
- ds_fsm_target_pcs_.emplace_back(ds_fsm_target_pc_);
- }
- ds_fsm_state_ = kExpectingLabel;
-}
-
-void MipsAssembler::DsFsmDropLabel() {
- ds_fsm_state_ = kExpectingLabel;
-}
-
-bool MipsAssembler::SetReorder(bool enable) {
- bool last_state = reordering_;
- if (last_state != enable) {
- DsFsmCommitLabel();
- DsFsmInstrNop(0);
- }
- reordering_ = enable;
- return last_state;
-}
-
-size_t MipsAssembler::CodePosition() {
- // The last instruction cannot be used in a delay slot, do not commit
- // the label before it (if any) and clear the delay slot.
- DsFsmDropLabel();
- DsFsmInstrNop(0);
- size_t size = buffer_.Size();
- // In theory we can get the following sequence:
- // label1:
- // instr
- // label2: # label1 gets committed when label2 is seen
- // CodePosition() call
- // and we need to uncommit label1.
- if (ds_fsm_target_pcs_.size() != 0 && ds_fsm_target_pcs_.back() + sizeof(uint32_t) == size) {
- ds_fsm_target_pcs_.pop_back();
- }
- return size;
-}
-
-void MipsAssembler::DsFsmInstrNop(uint32_t instruction ATTRIBUTE_UNUSED) {
- DsFsmInstr(0);
-}
-
-void MipsAssembler::FinalizeCode() {
- for (auto& exception_block : exception_blocks_) {
- EmitExceptionPoll(&exception_block);
- }
- // Commit the last branch target label (if any) and disable instruction reordering.
- DsFsmCommitLabel();
- SetReorder(false);
- EmitLiterals();
- ReserveJumpTableSpace();
- PromoteBranches();
-}
-
-void MipsAssembler::FinalizeInstructions(const MemoryRegion& region) {
- size_t number_of_delayed_adjust_pcs = cfi().NumberOfDelayedAdvancePCs();
- EmitBranches();
- EmitJumpTables();
- Assembler::FinalizeInstructions(region);
- PatchCFI(number_of_delayed_adjust_pcs);
-}
-
-void MipsAssembler::PatchCFI(size_t number_of_delayed_adjust_pcs) {
- if (cfi().NumberOfDelayedAdvancePCs() == 0u) {
- DCHECK_EQ(number_of_delayed_adjust_pcs, 0u);
- return;
- }
-
- using DelayedAdvancePC = DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC;
- const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC();
- const std::vector<uint8_t>& old_stream = data.first;
- const std::vector<DelayedAdvancePC>& advances = data.second;
-
- // PCs recorded before EmitBranches() need to be adjusted.
- // PCs recorded during EmitBranches() are already adjusted.
- // Both ranges are separately sorted but they may overlap.
- if (kIsDebugBuild) {
- auto cmp = [](const DelayedAdvancePC& lhs, const DelayedAdvancePC& rhs) {
- return lhs.pc < rhs.pc;
- };
- CHECK(std::is_sorted(advances.begin(), advances.begin() + number_of_delayed_adjust_pcs, cmp));
- CHECK(std::is_sorted(advances.begin() + number_of_delayed_adjust_pcs, advances.end(), cmp));
- }
-
- // Append initial CFI data if any.
- size_t size = advances.size();
- DCHECK_NE(size, 0u);
- cfi().AppendRawData(old_stream, 0u, advances[0].stream_pos);
- // Emit PC adjustments interleaved with the old CFI stream.
- size_t adjust_pos = 0u;
- size_t late_emit_pos = number_of_delayed_adjust_pcs;
- while (adjust_pos != number_of_delayed_adjust_pcs || late_emit_pos != size) {
- size_t adjusted_pc = (adjust_pos != number_of_delayed_adjust_pcs)
- ? GetAdjustedPosition(advances[adjust_pos].pc)
- : static_cast<size_t>(-1);
- size_t late_emit_pc = (late_emit_pos != size)
- ? advances[late_emit_pos].pc
- : static_cast<size_t>(-1);
- size_t advance_pc = std::min(adjusted_pc, late_emit_pc);
- DCHECK_NE(advance_pc, static_cast<size_t>(-1));
- size_t entry = (adjusted_pc <= late_emit_pc) ? adjust_pos : late_emit_pos;
- if (adjusted_pc <= late_emit_pc) {
- ++adjust_pos;
- } else {
- ++late_emit_pos;
- }
- cfi().AdvancePC(advance_pc);
- size_t end_pos = (entry + 1u == size) ? old_stream.size() : advances[entry + 1u].stream_pos;
- cfi().AppendRawData(old_stream, advances[entry].stream_pos, end_pos);
- }
-}
-
-void MipsAssembler::EmitBranches() {
- CHECK(!overwriting_);
- CHECK(!reordering_);
- // Now that everything has its final position in the buffer (the branches have
- // been promoted), adjust the target label PCs.
- for (size_t cnt = ds_fsm_target_pcs_.size(), i = 0; i < cnt; i++) {
- ds_fsm_target_pcs_[i] = GetAdjustedPosition(ds_fsm_target_pcs_[i]);
- }
- // Switch from appending instructions at the end of the buffer to overwriting
- // existing instructions (branch placeholders) in the buffer.
- overwriting_ = true;
- for (size_t id = 0; id < branches_.size(); id++) {
- EmitBranch(id);
- }
- overwriting_ = false;
-}
-
-void MipsAssembler::Emit(uint32_t value) {
- if (overwriting_) {
- // Branches to labels are emitted into their placeholders here.
- buffer_.Store<uint32_t>(overwrite_location_, value);
- overwrite_location_ += sizeof(uint32_t);
- } else {
- // Other instructions are simply appended at the end here.
- AssemblerBuffer::EnsureCapacity ensured(&buffer_);
- buffer_.Emit<uint32_t>(value);
- }
-}
-
-uint32_t MipsAssembler::EmitR(int opcode,
- Register rs,
- Register rt,
- Register rd,
- int shamt,
- int funct) {
- CHECK_NE(rs, kNoRegister);
- CHECK_NE(rt, kNoRegister);
- CHECK_NE(rd, kNoRegister);
- uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
- static_cast<uint32_t>(rs) << kRsShift |
- static_cast<uint32_t>(rt) << kRtShift |
- static_cast<uint32_t>(rd) << kRdShift |
- shamt << kShamtShift |
- funct;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitI(int opcode, Register rs, Register rt, uint16_t imm) {
- CHECK_NE(rs, kNoRegister);
- CHECK_NE(rt, kNoRegister);
- uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
- static_cast<uint32_t>(rs) << kRsShift |
- static_cast<uint32_t>(rt) << kRtShift |
- imm;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitI21(int opcode, Register rs, uint32_t imm21) {
- CHECK_NE(rs, kNoRegister);
- CHECK(IsUint<21>(imm21)) << imm21;
- uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
- static_cast<uint32_t>(rs) << kRsShift |
- imm21;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitI26(int opcode, uint32_t imm26) {
- CHECK(IsUint<26>(imm26)) << imm26;
- uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitFR(int opcode,
- int fmt,
- FRegister ft,
- FRegister fs,
- FRegister fd,
- int funct) {
- CHECK_NE(ft, kNoFRegister);
- CHECK_NE(fs, kNoFRegister);
- CHECK_NE(fd, kNoFRegister);
- uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
- fmt << kFmtShift |
- static_cast<uint32_t>(ft) << kFtShift |
- static_cast<uint32_t>(fs) << kFsShift |
- static_cast<uint32_t>(fd) << kFdShift |
- funct;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitFI(int opcode, int fmt, FRegister ft, uint16_t imm) {
- CHECK_NE(ft, kNoFRegister);
- uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
- fmt << kFmtShift |
- static_cast<uint32_t>(ft) << kFtShift |
- imm;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitMsa3R(int operation,
- int df,
- VectorRegister wt,
- VectorRegister ws,
- VectorRegister wd,
- int minor_opcode) {
- CHECK_NE(wt, kNoVectorRegister);
- CHECK_NE(ws, kNoVectorRegister);
- CHECK_NE(wd, kNoVectorRegister);
- uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
- operation << kMsaOperationShift |
- df << kDfShift |
- static_cast<uint32_t>(wt) << kWtShift |
- static_cast<uint32_t>(ws) << kWsShift |
- static_cast<uint32_t>(wd) << kWdShift |
- minor_opcode;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitMsaBIT(int operation,
- int df_m,
- VectorRegister ws,
- VectorRegister wd,
- int minor_opcode) {
- CHECK_NE(ws, kNoVectorRegister);
- CHECK_NE(wd, kNoVectorRegister);
- uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
- operation << kMsaOperationShift |
- df_m << kDfMShift |
- static_cast<uint32_t>(ws) << kWsShift |
- static_cast<uint32_t>(wd) << kWdShift |
- minor_opcode;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitMsaELM(int operation,
- int df_n,
- VectorRegister ws,
- VectorRegister wd,
- int minor_opcode) {
- CHECK_NE(ws, kNoVectorRegister);
- CHECK_NE(wd, kNoVectorRegister);
- uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
- operation << kMsaELMOperationShift |
- df_n << kDfNShift |
- static_cast<uint32_t>(ws) << kWsShift |
- static_cast<uint32_t>(wd) << kWdShift |
- minor_opcode;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitMsaMI10(int s10,
- Register rs,
- VectorRegister wd,
- int minor_opcode,
- int df) {
- CHECK_NE(rs, kNoRegister);
- CHECK_NE(wd, kNoVectorRegister);
- CHECK(IsUint<10>(s10)) << s10;
- uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
- s10 << kS10Shift |
- static_cast<uint32_t>(rs) << kWsShift |
- static_cast<uint32_t>(wd) << kWdShift |
- minor_opcode << kS10MinorShift |
- df;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitMsaI10(int operation,
- int df,
- int i10,
- VectorRegister wd,
- int minor_opcode) {
- CHECK_NE(wd, kNoVectorRegister);
- CHECK(IsUint<10>(i10)) << i10;
- uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
- operation << kMsaOperationShift |
- df << kDfShift |
- i10 << kI10Shift |
- static_cast<uint32_t>(wd) << kWdShift |
- minor_opcode;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitMsa2R(int operation,
- int df,
- VectorRegister ws,
- VectorRegister wd,
- int minor_opcode) {
- CHECK_NE(ws, kNoVectorRegister);
- CHECK_NE(wd, kNoVectorRegister);
- uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
- operation << kMsa2ROperationShift |
- df << kDf2RShift |
- static_cast<uint32_t>(ws) << kWsShift |
- static_cast<uint32_t>(wd) << kWdShift |
- minor_opcode;
- Emit(encoding);
- return encoding;
-}
-
-uint32_t MipsAssembler::EmitMsa2RF(int operation,
- int df,
- VectorRegister ws,
- VectorRegister wd,
- int minor_opcode) {
- CHECK_NE(ws, kNoVectorRegister);
- CHECK_NE(wd, kNoVectorRegister);
- uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
- operation << kMsa2RFOperationShift |
- df << kDf2RShift |
- static_cast<uint32_t>(ws) << kWsShift |
- static_cast<uint32_t>(wd) << kWdShift |
- minor_opcode;
- Emit(encoding);
- return encoding;
-}
-
-void MipsAssembler::Addu(Register rd, Register rs, Register rt) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x21)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) {
- if (patcher_label != nullptr) {
- Bind(patcher_label);
- }
- DsFsmInstr(EmitI(0x9, rs, rt, imm16), patcher_label).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16) {
- Addiu(rt, rs, imm16, /* patcher_label= */ nullptr);
-}
-
-void MipsAssembler::Subu(Register rd, Register rs, Register rt) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x23)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::MultR2(Register rs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x18)).GprIns(rs, rt);
-}
-
-void MipsAssembler::MultuR2(Register rs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x19)).GprIns(rs, rt);
-}
-
-void MipsAssembler::DivR2(Register rs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1a)).GprIns(rs, rt);
-}
-
-void MipsAssembler::DivuR2(Register rs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1b)).GprIns(rs, rt);
-}
-
-void MipsAssembler::MulR2(Register rd, Register rs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0x1c, rs, rt, rd, 0, 2)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::DivR2(Register rd, Register rs, Register rt) {
- CHECK(!IsR6());
- DivR2(rs, rt);
- Mflo(rd);
-}
-
-void MipsAssembler::ModR2(Register rd, Register rs, Register rt) {
- CHECK(!IsR6());
- DivR2(rs, rt);
- Mfhi(rd);
-}
-
-void MipsAssembler::DivuR2(Register rd, Register rs, Register rt) {
- CHECK(!IsR6());
- DivuR2(rs, rt);
- Mflo(rd);
-}
-
-void MipsAssembler::ModuR2(Register rd, Register rs, Register rt) {
- CHECK(!IsR6());
- DivuR2(rs, rt);
- Mfhi(rd);
-}
-
-void MipsAssembler::MulR6(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x18)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::MuhR6(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x18)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::MuhuR6(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x19)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::DivR6(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x1a)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::ModR6(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x1a)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::DivuR6(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x1b)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::ModuR6(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x1b)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::And(Register rd, Register rs, Register rt) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x24)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Andi(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0xc, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Or(Register rd, Register rs, Register rt) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x25)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Ori(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0xd, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Xor(Register rd, Register rs, Register rt) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x26)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Xori(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0xe, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Nor(Register rd, Register rs, Register rt) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x27)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Movz(Register rd, Register rs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x0A)).GprInOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Movn(Register rd, Register rs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x0B)).GprInOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Seleqz(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x35)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Selnez(Register rd, Register rs, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x37)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::ClzR6(Register rd, Register rs) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x10)).GprOuts(rd).GprIns(rs);
-}
-
-void MipsAssembler::ClzR2(Register rd, Register rs) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0x1C, rs, rd, rd, 0, 0x20)).GprOuts(rd).GprIns(rs);
-}
-
-void MipsAssembler::CloR6(Register rd, Register rs) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x11)).GprOuts(rd).GprIns(rs);
-}
-
-void MipsAssembler::CloR2(Register rd, Register rs) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0x1C, rs, rd, rd, 0, 0x21)).GprOuts(rd).GprIns(rs);
-}
-
-void MipsAssembler::Seb(Register rd, Register rt) {
- DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x10, 0x20)).GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Seh(Register rd, Register rt) {
- DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x18, 0x20)).GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Wsbh(Register rd, Register rt) {
- DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 2, 0x20)).GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Bitswap(Register rd, Register rt) {
- CHECK(IsR6());
- DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x0, 0x20)).GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Sll(Register rd, Register rt, int shamt) {
- CHECK(IsUint<5>(shamt)) << shamt;
- DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x00)).GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Srl(Register rd, Register rt, int shamt) {
- CHECK(IsUint<5>(shamt)) << shamt;
- DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x02)).GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Rotr(Register rd, Register rt, int shamt) {
- CHECK(IsUint<5>(shamt)) << shamt;
- DsFsmInstr(EmitR(0, static_cast<Register>(1), rt, rd, shamt, 0x02)).GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Sra(Register rd, Register rt, int shamt) {
- CHECK(IsUint<5>(shamt)) << shamt;
- DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x03)).GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Sllv(Register rd, Register rt, Register rs) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x04)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Srlv(Register rd, Register rt, Register rs) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x06)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Rotrv(Register rd, Register rt, Register rs) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 1, 0x06)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Srav(Register rd, Register rt, Register rs) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x07)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Ext(Register rd, Register rt, int pos, int size) {
- CHECK(IsUint<5>(pos)) << pos;
- CHECK(0 < size && size <= 32) << size;
- CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size;
- DsFsmInstr(EmitR(0x1f, rt, rd, static_cast<Register>(size - 1), pos, 0x00))
- .GprOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Ins(Register rd, Register rt, int pos, int size) {
- CHECK(IsUint<5>(pos)) << pos;
- CHECK(0 < size && size <= 32) << size;
- CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size;
- DsFsmInstr(EmitR(0x1f, rt, rd, static_cast<Register>(pos + size - 1), pos, 0x04))
- .GprInOuts(rd).GprIns(rt);
-}
-
-void MipsAssembler::Lsa(Register rd, Register rs, Register rt, int saPlusOne) {
- CHECK(IsR6() || HasMsa());
- CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne;
- int sa = saPlusOne - 1;
- DsFsmInstr(EmitR(0x0, rs, rt, rd, sa, 0x05)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::ShiftAndAdd(Register dst,
- Register src_idx,
- Register src_base,
- int shamt,
- Register tmp) {
- CHECK(0 <= shamt && shamt <= 4) << shamt;
- CHECK_NE(src_base, tmp);
- if (shamt == TIMES_1) {
- // Catch the special case where the shift amount is zero (0).
- Addu(dst, src_base, src_idx);
- } else if (IsR6() || HasMsa()) {
- Lsa(dst, src_idx, src_base, shamt);
- } else {
- Sll(tmp, src_idx, shamt);
- Addu(dst, src_base, tmp);
- }
-}
-
-void MipsAssembler::Lb(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x20, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Lh(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x21, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) {
- if (patcher_label != nullptr) {
- Bind(patcher_label);
- }
- DsFsmInstr(EmitI(0x23, rs, rt, imm16), patcher_label).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16) {
- Lw(rt, rs, imm16, /* patcher_label= */ nullptr);
-}
-
-void MipsAssembler::Lwl(Register rt, Register rs, uint16_t imm16) {
- CHECK(!IsR6());
- DsFsmInstr(EmitI(0x22, rs, rt, imm16)).GprInOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Lwr(Register rt, Register rs, uint16_t imm16) {
- CHECK(!IsR6());
- DsFsmInstr(EmitI(0x26, rs, rt, imm16)).GprInOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Lbu(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x24, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Lhu(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x25, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Lwpc(Register rs, uint32_t imm19) {
- CHECK(IsR6());
- CHECK(IsUint<19>(imm19)) << imm19;
- DsFsmInstrNop(EmitI21(0x3B, rs, (0x01 << 19) | imm19));
-}
-
-void MipsAssembler::Lui(Register rt, uint16_t imm16) {
- DsFsmInstr(EmitI(0xf, static_cast<Register>(0), rt, imm16)).GprOuts(rt);
-}
-
-void MipsAssembler::Aui(Register rt, Register rs, uint16_t imm16) {
- CHECK(IsR6());
- DsFsmInstr(EmitI(0xf, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::AddUpper(Register rt, Register rs, uint16_t imm16, Register tmp) {
- bool increment = (rs == rt);
- if (increment) {
- CHECK_NE(rs, tmp);
- }
- if (IsR6()) {
- Aui(rt, rs, imm16);
- } else if (increment) {
- Lui(tmp, imm16);
- Addu(rt, rs, tmp);
- } else {
- Lui(rt, imm16);
- Addu(rt, rs, rt);
- }
-}
-
-void MipsAssembler::Sync(uint32_t stype) {
- DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, stype & 0x1f, 0xf));
-}
-
-void MipsAssembler::Mfhi(Register rd) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0, ZERO, ZERO, rd, 0, 0x10)).GprOuts(rd);
-}
-
-void MipsAssembler::Mflo(Register rd) {
- CHECK(!IsR6());
- DsFsmInstr(EmitR(0, ZERO, ZERO, rd, 0, 0x12)).GprOuts(rd);
-}
-
-void MipsAssembler::Sb(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x28, rs, rt, imm16)).GprIns(rt, rs);
-}
-
-void MipsAssembler::Sh(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x29, rs, rt, imm16)).GprIns(rt, rs);
-}
-
-void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) {
- if (patcher_label != nullptr) {
- Bind(patcher_label);
- }
- DsFsmInstr(EmitI(0x2b, rs, rt, imm16), patcher_label).GprIns(rt, rs);
-}
-
-void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16) {
- Sw(rt, rs, imm16, /* patcher_label= */ nullptr);
-}
-
-void MipsAssembler::Swl(Register rt, Register rs, uint16_t imm16) {
- CHECK(!IsR6());
- DsFsmInstr(EmitI(0x2a, rs, rt, imm16)).GprIns(rt, rs);
-}
-
-void MipsAssembler::Swr(Register rt, Register rs, uint16_t imm16) {
- CHECK(!IsR6());
- DsFsmInstr(EmitI(0x2e, rs, rt, imm16)).GprIns(rt, rs);
-}
-
-void MipsAssembler::LlR2(Register rt, Register base, int16_t imm16) {
- CHECK(!IsR6());
- DsFsmInstr(EmitI(0x30, base, rt, imm16)).GprOuts(rt).GprIns(base);
-}
-
-void MipsAssembler::ScR2(Register rt, Register base, int16_t imm16) {
- CHECK(!IsR6());
- DsFsmInstr(EmitI(0x38, base, rt, imm16)).GprInOuts(rt).GprIns(base);
-}
-
-void MipsAssembler::LlR6(Register rt, Register base, int16_t imm9) {
- CHECK(IsR6());
- CHECK(IsInt<9>(imm9));
- DsFsmInstr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x36)).GprOuts(rt).GprIns(base);
-}
-
-void MipsAssembler::ScR6(Register rt, Register base, int16_t imm9) {
- CHECK(IsR6());
- CHECK(IsInt<9>(imm9));
- DsFsmInstr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x26)).GprInOuts(rt).GprIns(base);
-}
-
-void MipsAssembler::Slt(Register rd, Register rs, Register rt) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x2a)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Sltu(Register rd, Register rs, Register rt) {
- DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x2b)).GprOuts(rd).GprIns(rs, rt);
-}
-
-void MipsAssembler::Slti(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0xa, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::Sltiu(Register rt, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0xb, rs, rt, imm16)).GprOuts(rt).GprIns(rs);
-}
-
-void MipsAssembler::B(uint16_t imm16) {
- DsFsmInstrNop(EmitI(0x4, static_cast<Register>(0), static_cast<Register>(0), imm16));
-}
-
-void MipsAssembler::Bal(uint16_t imm16) {
- DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x11), imm16));
-}
-
-void MipsAssembler::Beq(Register rs, Register rt, uint16_t imm16) {
- DsFsmInstrNop(EmitI(0x4, rs, rt, imm16));
-}
-
-void MipsAssembler::Bne(Register rs, Register rt, uint16_t imm16) {
- DsFsmInstrNop(EmitI(0x5, rs, rt, imm16));
-}
-
-void MipsAssembler::Beqz(Register rt, uint16_t imm16) {
- Beq(rt, ZERO, imm16);
-}
-
-void MipsAssembler::Bnez(Register rt, uint16_t imm16) {
- Bne(rt, ZERO, imm16);
-}
-
-void MipsAssembler::Bltz(Register rt, uint16_t imm16) {
- DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0), imm16));
-}
-
-void MipsAssembler::Bgez(Register rt, uint16_t imm16) {
- DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0x1), imm16));
-}
-
-void MipsAssembler::Blez(Register rt, uint16_t imm16) {
- DsFsmInstrNop(EmitI(0x6, rt, static_cast<Register>(0), imm16));
-}
-
-void MipsAssembler::Bgtz(Register rt, uint16_t imm16) {
- DsFsmInstrNop(EmitI(0x7, rt, static_cast<Register>(0), imm16));
-}
-
-void MipsAssembler::Bc1f(uint16_t imm16) {
- Bc1f(0, imm16);
-}
-
-void MipsAssembler::Bc1f(int cc, uint16_t imm16) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstrNop(EmitI(0x11, static_cast<Register>(0x8), static_cast<Register>(cc << 2), imm16));
-}
-
-void MipsAssembler::Bc1t(uint16_t imm16) {
- Bc1t(0, imm16);
-}
-
-void MipsAssembler::Bc1t(int cc, uint16_t imm16) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstrNop(EmitI(0x11,
- static_cast<Register>(0x8),
- static_cast<Register>((cc << 2) | 1),
- imm16));
-}
-
-void MipsAssembler::J(uint32_t addr26) {
- DsFsmInstrNop(EmitI26(0x2, addr26));
-}
-
-void MipsAssembler::Jal(uint32_t addr26) {
- DsFsmInstrNop(EmitI26(0x3, addr26));
-}
-
-void MipsAssembler::Jalr(Register rd, Register rs) {
- uint32_t last_instruction = delay_slot_.instruction_;
- MipsLabel* patcher_label = delay_slot_.patcher_label_;
- bool exchange = (last_instruction != 0 &&
- (delay_slot_.masks_.gpr_outs_ & (1u << rs)) == 0 &&
- ((delay_slot_.masks_.gpr_ins_ | delay_slot_.masks_.gpr_outs_) & (1u << rd)) == 0);
- if (exchange) {
- // The last instruction cannot be used in a different delay slot,
- // do not commit the label before it (if any).
- DsFsmDropLabel();
- }
- DsFsmInstrNop(EmitR(0, rs, static_cast<Register>(0), rd, 0, 0x09));
- if (exchange) {
- // Exchange the last two instructions in the assembler buffer.
- size_t size = buffer_.Size();
- CHECK_GE(size, 2 * sizeof(uint32_t));
- size_t pos1 = size - 2 * sizeof(uint32_t);
- size_t pos2 = size - sizeof(uint32_t);
- uint32_t instr1 = buffer_.Load<uint32_t>(pos1);
- uint32_t instr2 = buffer_.Load<uint32_t>(pos2);
- CHECK_EQ(instr1, last_instruction);
- buffer_.Store<uint32_t>(pos1, instr2);
- buffer_.Store<uint32_t>(pos2, instr1);
- // Move the patcher label along with the patched instruction.
- if (patcher_label != nullptr) {
- patcher_label->AdjustBoundPosition(sizeof(uint32_t));
- }
- } else if (reordering_) {
- Nop();
- }
-}
-
-void MipsAssembler::Jalr(Register rs) {
- Jalr(RA, rs);
-}
-
-void MipsAssembler::Jr(Register rs) {
- Jalr(ZERO, rs);
-}
-
-void MipsAssembler::Nal() {
- DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x10), 0));
-}
-
-void MipsAssembler::Auipc(Register rs, uint16_t imm16) {
- CHECK(IsR6());
- DsFsmInstrNop(EmitI(0x3B, rs, static_cast<Register>(0x1E), imm16));
-}
-
-void MipsAssembler::Addiupc(Register rs, uint32_t imm19) {
- CHECK(IsR6());
- CHECK(IsUint<19>(imm19)) << imm19;
- DsFsmInstrNop(EmitI21(0x3B, rs, imm19));
-}
-
-void MipsAssembler::Bc(uint32_t imm26) {
- CHECK(IsR6());
- DsFsmInstrNop(EmitI26(0x32, imm26));
-}
-
-void MipsAssembler::Balc(uint32_t imm26) {
- CHECK(IsR6());
- DsFsmInstrNop(EmitI26(0x3A, imm26));
-}
-
-void MipsAssembler::Jic(Register rt, uint16_t imm16) {
- CHECK(IsR6());
- DsFsmInstrNop(EmitI(0x36, static_cast<Register>(0), rt, imm16));
-}
-
-void MipsAssembler::Jialc(Register rt, uint16_t imm16) {
- CHECK(IsR6());
- DsFsmInstrNop(EmitI(0x3E, static_cast<Register>(0), rt, imm16));
-}
-
-void MipsAssembler::Bltc(Register rs, Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rs, ZERO);
- CHECK_NE(rt, ZERO);
- CHECK_NE(rs, rt);
- DsFsmInstrNop(EmitI(0x17, rs, rt, imm16));
-}
-
-void MipsAssembler::Bltzc(Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rt, ZERO);
- DsFsmInstrNop(EmitI(0x17, rt, rt, imm16));
-}
-
-void MipsAssembler::Bgtzc(Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rt, ZERO);
- DsFsmInstrNop(EmitI(0x17, static_cast<Register>(0), rt, imm16));
-}
-
-void MipsAssembler::Bgec(Register rs, Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rs, ZERO);
- CHECK_NE(rt, ZERO);
- CHECK_NE(rs, rt);
- DsFsmInstrNop(EmitI(0x16, rs, rt, imm16));
-}
-
-void MipsAssembler::Bgezc(Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rt, ZERO);
- DsFsmInstrNop(EmitI(0x16, rt, rt, imm16));
-}
-
-void MipsAssembler::Blezc(Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rt, ZERO);
- DsFsmInstrNop(EmitI(0x16, static_cast<Register>(0), rt, imm16));
-}
-
-void MipsAssembler::Bltuc(Register rs, Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rs, ZERO);
- CHECK_NE(rt, ZERO);
- CHECK_NE(rs, rt);
- DsFsmInstrNop(EmitI(0x7, rs, rt, imm16));
-}
-
-void MipsAssembler::Bgeuc(Register rs, Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rs, ZERO);
- CHECK_NE(rt, ZERO);
- CHECK_NE(rs, rt);
- DsFsmInstrNop(EmitI(0x6, rs, rt, imm16));
-}
-
-void MipsAssembler::Beqc(Register rs, Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rs, ZERO);
- CHECK_NE(rt, ZERO);
- CHECK_NE(rs, rt);
- DsFsmInstrNop(EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16));
-}
-
-void MipsAssembler::Bnec(Register rs, Register rt, uint16_t imm16) {
- CHECK(IsR6());
- CHECK_NE(rs, ZERO);
- CHECK_NE(rt, ZERO);
- CHECK_NE(rs, rt);
- DsFsmInstrNop(EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16));
-}
-
-void MipsAssembler::Beqzc(Register rs, uint32_t imm21) {
- CHECK(IsR6());
- CHECK_NE(rs, ZERO);
- DsFsmInstrNop(EmitI21(0x36, rs, imm21));
-}
-
-void MipsAssembler::Bnezc(Register rs, uint32_t imm21) {
- CHECK(IsR6());
- CHECK_NE(rs, ZERO);
- DsFsmInstrNop(EmitI21(0x3E, rs, imm21));
-}
-
-void MipsAssembler::Bc1eqz(FRegister ft, uint16_t imm16) {
- CHECK(IsR6());
- DsFsmInstrNop(EmitFI(0x11, 0x9, ft, imm16));
-}
-
-void MipsAssembler::Bc1nez(FRegister ft, uint16_t imm16) {
- CHECK(IsR6());
- DsFsmInstrNop(EmitFI(0x11, 0xD, ft, imm16));
-}
-
-void MipsAssembler::EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16) {
- switch (cond) {
- case kCondLTZ:
- CHECK_EQ(rt, ZERO);
- Bltz(rs, imm16);
- break;
- case kCondGEZ:
- CHECK_EQ(rt, ZERO);
- Bgez(rs, imm16);
- break;
- case kCondLEZ:
- CHECK_EQ(rt, ZERO);
- Blez(rs, imm16);
- break;
- case kCondGTZ:
- CHECK_EQ(rt, ZERO);
- Bgtz(rs, imm16);
- break;
- case kCondEQ:
- Beq(rs, rt, imm16);
- break;
- case kCondNE:
- Bne(rs, rt, imm16);
- break;
- case kCondEQZ:
- CHECK_EQ(rt, ZERO);
- Beqz(rs, imm16);
- break;
- case kCondNEZ:
- CHECK_EQ(rt, ZERO);
- Bnez(rs, imm16);
- break;
- case kCondF:
- CHECK_EQ(rt, ZERO);
- Bc1f(static_cast<int>(rs), imm16);
- break;
- case kCondT:
- CHECK_EQ(rt, ZERO);
- Bc1t(static_cast<int>(rs), imm16);
- break;
- case kCondLT:
- case kCondGE:
- case kCondLE:
- case kCondGT:
- case kCondLTU:
- case kCondGEU:
- case kUncond:
- // We don't support synthetic R2 branches (preceded with slt[u]) at this level
- // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
- LOG(FATAL) << "Unexpected branch condition " << cond;
- UNREACHABLE();
- }
-}
-
-void MipsAssembler::EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21) {
- switch (cond) {
- case kCondLT:
- Bltc(rs, rt, imm16_21);
- break;
- case kCondGE:
- Bgec(rs, rt, imm16_21);
- break;
- case kCondLE:
- Bgec(rt, rs, imm16_21);
- break;
- case kCondGT:
- Bltc(rt, rs, imm16_21);
- break;
- case kCondLTZ:
- CHECK_EQ(rt, ZERO);
- Bltzc(rs, imm16_21);
- break;
- case kCondGEZ:
- CHECK_EQ(rt, ZERO);
- Bgezc(rs, imm16_21);
- break;
- case kCondLEZ:
- CHECK_EQ(rt, ZERO);
- Blezc(rs, imm16_21);
- break;
- case kCondGTZ:
- CHECK_EQ(rt, ZERO);
- Bgtzc(rs, imm16_21);
- break;
- case kCondEQ:
- Beqc(rs, rt, imm16_21);
- break;
- case kCondNE:
- Bnec(rs, rt, imm16_21);
- break;
- case kCondEQZ:
- CHECK_EQ(rt, ZERO);
- Beqzc(rs, imm16_21);
- break;
- case kCondNEZ:
- CHECK_EQ(rt, ZERO);
- Bnezc(rs, imm16_21);
- break;
- case kCondLTU:
- Bltuc(rs, rt, imm16_21);
- break;
- case kCondGEU:
- Bgeuc(rs, rt, imm16_21);
- break;
- case kCondF:
- CHECK_EQ(rt, ZERO);
- Bc1eqz(static_cast<FRegister>(rs), imm16_21);
- break;
- case kCondT:
- CHECK_EQ(rt, ZERO);
- Bc1nez(static_cast<FRegister>(rs), imm16_21);
- break;
- case kUncond:
- LOG(FATAL) << "Unexpected branch condition " << cond;
- UNREACHABLE();
- }
-}
-
-void MipsAssembler::AddS(FRegister fd, FRegister fs, FRegister ft) {
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x0)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::SubS(FRegister fd, FRegister fs, FRegister ft) {
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::MulS(FRegister fd, FRegister fs, FRegister ft) {
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x2)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::DivS(FRegister fd, FRegister fs, FRegister ft) {
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x3)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::AddD(FRegister fd, FRegister fs, FRegister ft) {
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x0)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::SubD(FRegister fd, FRegister fs, FRegister ft) {
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::MulD(FRegister fd, FRegister fs, FRegister ft) {
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x2)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::DivD(FRegister fd, FRegister fs, FRegister ft) {
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x3)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::SqrtS(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x4)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::SqrtD(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x4)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::AbsS(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x5)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::AbsD(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x5)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::MovS(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x6)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::MovD(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x6)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::NegS(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x7)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::NegD(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x7)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::CunS(FRegister fs, FRegister ft) {
- CunS(0, fs, ft);
-}
-
-void MipsAssembler::CunS(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x31))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CeqS(FRegister fs, FRegister ft) {
- CeqS(0, fs, ft);
-}
-
-void MipsAssembler::CeqS(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x32))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CueqS(FRegister fs, FRegister ft) {
- CueqS(0, fs, ft);
-}
-
-void MipsAssembler::CueqS(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x33))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::ColtS(FRegister fs, FRegister ft) {
- ColtS(0, fs, ft);
-}
-
-void MipsAssembler::ColtS(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x34))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CultS(FRegister fs, FRegister ft) {
- CultS(0, fs, ft);
-}
-
-void MipsAssembler::CultS(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x35))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::ColeS(FRegister fs, FRegister ft) {
- ColeS(0, fs, ft);
-}
-
-void MipsAssembler::ColeS(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x36))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CuleS(FRegister fs, FRegister ft) {
- CuleS(0, fs, ft);
-}
-
-void MipsAssembler::CuleS(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x37))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CunD(FRegister fs, FRegister ft) {
- CunD(0, fs, ft);
-}
-
-void MipsAssembler::CunD(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x31))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CeqD(FRegister fs, FRegister ft) {
- CeqD(0, fs, ft);
-}
-
-void MipsAssembler::CeqD(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x32))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CueqD(FRegister fs, FRegister ft) {
- CueqD(0, fs, ft);
-}
-
-void MipsAssembler::CueqD(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x33))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::ColtD(FRegister fs, FRegister ft) {
- ColtD(0, fs, ft);
-}
-
-void MipsAssembler::ColtD(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x34))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CultD(FRegister fs, FRegister ft) {
- CultD(0, fs, ft);
-}
-
-void MipsAssembler::CultD(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x35))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::ColeD(FRegister fs, FRegister ft) {
- ColeD(0, fs, ft);
-}
-
-void MipsAssembler::ColeD(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x36))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CuleD(FRegister fs, FRegister ft) {
- CuleD(0, fs, ft);
-}
-
-void MipsAssembler::CuleD(int cc, FRegister fs, FRegister ft) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x37))
- .CcOuts(cc).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUnS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x01)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpEqS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x02)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUeqS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x03)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpLtS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x04)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUltS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x05)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpLeS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x06)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUleS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x07)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpOrS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x11)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUneS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x12)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpNeS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x13)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUnD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x01)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpEqD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x02)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUeqD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x03)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpLtD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x04)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUltD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x05)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpLeD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x06)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUleD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x07)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpOrD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x11)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpUneD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x12)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::CmpNeD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x13)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::Movf(Register rd, Register rs, int cc) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitR(0, rs, static_cast<Register>(cc << 2), rd, 0, 0x01))
- .GprInOuts(rd).GprIns(rs).CcIns(cc);
-}
-
-void MipsAssembler::Movt(Register rd, Register rs, int cc) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitR(0, rs, static_cast<Register>((cc << 2) | 1), rd, 0, 0x01))
- .GprInOuts(rd).GprIns(rs).CcIns(cc);
-}
-
-void MipsAssembler::MovfS(FRegister fd, FRegister fs, int cc) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(cc << 2), fs, fd, 0x11))
- .FprInOuts(fd).FprIns(fs).CcIns(cc);
-}
-
-void MipsAssembler::MovfD(FRegister fd, FRegister fs, int cc) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(cc << 2), fs, fd, 0x11))
- .FprInOuts(fd).FprIns(fs).CcIns(cc);
-}
-
-void MipsAssembler::MovtS(FRegister fd, FRegister fs, int cc) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11))
- .FprInOuts(fd).FprIns(fs).CcIns(cc);
-}
-
-void MipsAssembler::MovtD(FRegister fd, FRegister fs, int cc) {
- CHECK(!IsR6());
- CHECK(IsUint<3>(cc)) << cc;
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11))
- .FprInOuts(fd).FprIns(fs).CcIns(cc);
-}
-
-void MipsAssembler::MovzS(FRegister fd, FRegister fs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x12))
- .FprInOuts(fd).FprIns(fs).GprIns(rt);
-}
-
-void MipsAssembler::MovzD(FRegister fd, FRegister fs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x12))
- .FprInOuts(fd).FprIns(fs).GprIns(rt);
-}
-
-void MipsAssembler::MovnS(FRegister fd, FRegister fs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x13))
- .FprInOuts(fd).FprIns(fs).GprIns(rt);
-}
-
-void MipsAssembler::MovnD(FRegister fd, FRegister fs, Register rt) {
- CHECK(!IsR6());
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x13))
- .FprInOuts(fd).FprIns(fs).GprIns(rt);
-}
-
-void MipsAssembler::SelS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x10)).FprInOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::SelD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x10)).FprInOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::SeleqzS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x14)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::SeleqzD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x14)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::SelnezS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x17)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::SelnezD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x17)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::ClassS(FRegister fd, FRegister fs) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x1b)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::ClassD(FRegister fd, FRegister fs) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x1b)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::MinS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1c)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::MinD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1c)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::MaxS(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1e)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::MaxD(FRegister fd, FRegister fs, FRegister ft) {
- CHECK(IsR6());
- DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1e)).FprOuts(fd).FprIns(fs, ft);
-}
-
-void MipsAssembler::TruncLS(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x09)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::TruncLD(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x09)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::TruncWS(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x0D)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::TruncWD(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x0D)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::Cvtsw(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::Cvtdw(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::Cvtsd(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::Cvtds(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::Cvtsl(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::Cvtdl(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::FloorWS(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0xf)).FprOuts(fd).FprIns(fs);
-}
-
-void MipsAssembler::FloorWD(FRegister fd, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0xf)).FprOuts(fd).FprIns(fs);
-}
-
-FRegister MipsAssembler::GetFpuRegLow(FRegister reg) {
- // If FPRs are 32-bit (and get paired to hold 64-bit values), accesses to
- // odd-numbered FPRs are reattributed to even-numbered FPRs. This lets us
- // use only even-numbered FPRs irrespective of whether we're doing single-
- // or double-precision arithmetic. (We don't use odd-numbered 32-bit FPRs
- // to hold single-precision values).
- return Is32BitFPU() ? static_cast<FRegister>(reg & ~1u) : reg;
-}
-
-void MipsAssembler::Mfc1(Register rt, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x00, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0))
- .GprOuts(rt).FprIns(GetFpuRegLow(fs));
-}
-
-// Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs
-// when loading the value as 32-bit halves.
-void MipsAssembler::Mtc1(Register rt, FRegister fs) {
- uint32_t encoding =
- EmitFR(0x11, 0x04, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0);
- if (Is32BitFPU() && (fs % 2 != 0)) {
- // If mtc1 is used to simulate mthc1 by writing to the odd-numbered FPR in
- // a pair of 32-bit FPRs, the associated even-numbered FPR is an in/out.
- DsFsmInstr(encoding).FprInOuts(GetFpuRegLow(fs)).GprIns(rt);
- } else {
- // Otherwise (the FPR is 64-bit or even-numbered), the FPR is an out.
- DsFsmInstr(encoding).FprOuts(fs).GprIns(rt);
- }
-}
-
-void MipsAssembler::Mfhc1(Register rt, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x03, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0))
- .GprOuts(rt).FprIns(fs);
-}
-
-// Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs
-// when loading the value as 32-bit halves.
-void MipsAssembler::Mthc1(Register rt, FRegister fs) {
- DsFsmInstr(EmitFR(0x11, 0x07, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0))
- .FprInOuts(fs).GprIns(rt);
-}
-
-void MipsAssembler::MoveFromFpuHigh(Register rt, FRegister fs) {
- if (Is32BitFPU()) {
- CHECK_EQ(fs % 2, 0) << fs;
- Mfc1(rt, static_cast<FRegister>(fs + 1));
- } else {
- Mfhc1(rt, fs);
- }
-}
-
-void MipsAssembler::MoveToFpuHigh(Register rt, FRegister fs) {
- if (Is32BitFPU()) {
- CHECK_EQ(fs % 2, 0) << fs;
- Mtc1(rt, static_cast<FRegister>(fs + 1));
- } else {
- Mthc1(rt, fs);
- }
-}
-
-// Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs
-// when loading the value as 32-bit halves.
-void MipsAssembler::Lwc1(FRegister ft, Register rs, uint16_t imm16) {
- uint32_t encoding = EmitI(0x31, rs, static_cast<Register>(ft), imm16);
- if (Is32BitFPU() && (ft % 2 != 0)) {
- // If lwc1 is used to load the odd-numbered FPR in a pair of 32-bit FPRs,
- // the associated even-numbered FPR is an in/out.
- DsFsmInstr(encoding).FprInOuts(GetFpuRegLow(ft)).GprIns(rs);
- } else {
- // Otherwise (the FPR is 64-bit or even-numbered), the FPR is an out.
- DsFsmInstr(encoding).FprOuts(ft).GprIns(rs);
- }
-}
-
-void MipsAssembler::Ldc1(FRegister ft, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x35, rs, static_cast<Register>(ft), imm16)).FprOuts(ft).GprIns(rs);
-}
-
-void MipsAssembler::Swc1(FRegister ft, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x39, rs, static_cast<Register>(ft), imm16)).FprIns(GetFpuRegLow(ft)).GprIns(rs);
-}
-
-void MipsAssembler::Sdc1(FRegister ft, Register rs, uint16_t imm16) {
- DsFsmInstr(EmitI(0x3d, rs, static_cast<Register>(ft), imm16)).FprIns(ft).GprIns(rs);
-}
-
-void MipsAssembler::Break() {
- DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, 0, 0xD));
-}
-
-void MipsAssembler::Nop() {
- DsFsmInstrNop(EmitR(0x0, ZERO, ZERO, ZERO, 0, 0x0));
-}
-
-void MipsAssembler::NopIfNoReordering() {
- if (!reordering_) {
- Nop();
- }
-}
-
-void MipsAssembler::Move(Register rd, Register rs) {
- Or(rd, rs, ZERO);
-}
-
-void MipsAssembler::Clear(Register rd) {
- Move(rd, ZERO);
-}
-
-void MipsAssembler::Not(Register rd, Register rs) {
- Nor(rd, rs, ZERO);
-}
-
-void MipsAssembler::Push(Register rs) {
- IncreaseFrameSize(kStackAlignment);
- Sw(rs, SP, 0);
-}
-
-void MipsAssembler::Pop(Register rd) {
- Lw(rd, SP, 0);
- DecreaseFrameSize(kStackAlignment);
-}
-
-void MipsAssembler::PopAndReturn(Register rd, Register rt) {
- bool reordering = SetReorder(false);
- Lw(rd, SP, 0);
- Jr(rt);
- DecreaseFrameSize(kStackAlignment); // Single instruction in delay slot.
- SetReorder(reordering);
-}
-
-void MipsAssembler::AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x3, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x3, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x3, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x3, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Ffint_sW(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2RF(0x19e, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::Ffint_sD(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2RF(0x19e, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::Ftint_sW(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2RF(0x19c, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::Ftint_sD(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2RF(0x19c, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::SlliB(VectorRegister wd, VectorRegister ws, int shamt3) {
- CHECK(HasMsa());
- CHECK(IsUint<3>(shamt3)) << shamt3;
- DsFsmInstr(EmitMsaBIT(0x0, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SlliH(VectorRegister wd, VectorRegister ws, int shamt4) {
- CHECK(HasMsa());
- CHECK(IsUint<4>(shamt4)) << shamt4;
- DsFsmInstr(EmitMsaBIT(0x0, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SlliW(VectorRegister wd, VectorRegister ws, int shamt5) {
- CHECK(HasMsa());
- CHECK(IsUint<5>(shamt5)) << shamt5;
- DsFsmInstr(EmitMsaBIT(0x0, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SlliD(VectorRegister wd, VectorRegister ws, int shamt6) {
- CHECK(HasMsa());
- CHECK(IsUint<6>(shamt6)) << shamt6;
- DsFsmInstr(EmitMsaBIT(0x0, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SraiB(VectorRegister wd, VectorRegister ws, int shamt3) {
- CHECK(HasMsa());
- CHECK(IsUint<3>(shamt3)) << shamt3;
- DsFsmInstr(EmitMsaBIT(0x1, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SraiH(VectorRegister wd, VectorRegister ws, int shamt4) {
- CHECK(HasMsa());
- CHECK(IsUint<4>(shamt4)) << shamt4;
- DsFsmInstr(EmitMsaBIT(0x1, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SraiW(VectorRegister wd, VectorRegister ws, int shamt5) {
- CHECK(HasMsa());
- CHECK(IsUint<5>(shamt5)) << shamt5;
- DsFsmInstr(EmitMsaBIT(0x1, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SraiD(VectorRegister wd, VectorRegister ws, int shamt6) {
- CHECK(HasMsa());
- CHECK(IsUint<6>(shamt6)) << shamt6;
- DsFsmInstr(EmitMsaBIT(0x1, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SrliB(VectorRegister wd, VectorRegister ws, int shamt3) {
- CHECK(HasMsa());
- CHECK(IsUint<3>(shamt3)) << shamt3;
- DsFsmInstr(EmitMsaBIT(0x2, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SrliH(VectorRegister wd, VectorRegister ws, int shamt4) {
- CHECK(HasMsa());
- CHECK(IsUint<4>(shamt4)) << shamt4;
- DsFsmInstr(EmitMsaBIT(0x2, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SrliW(VectorRegister wd, VectorRegister ws, int shamt5) {
- CHECK(HasMsa());
- CHECK(IsUint<5>(shamt5)) << shamt5;
- DsFsmInstr(EmitMsaBIT(0x2, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SrliD(VectorRegister wd, VectorRegister ws, int shamt6) {
- CHECK(HasMsa());
- CHECK(IsUint<6>(shamt6)) << shamt6;
- DsFsmInstr(EmitMsaBIT(0x2, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::MoveV(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsaBIT(0x1, 0x3e, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SplatiB(VectorRegister wd, VectorRegister ws, int n4) {
- CHECK(HasMsa());
- CHECK(IsUint<4>(n4)) << n4;
- DsFsmInstr(EmitMsaELM(0x1, n4 | kMsaDfNByteMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SplatiH(VectorRegister wd, VectorRegister ws, int n3) {
- CHECK(HasMsa());
- CHECK(IsUint<3>(n3)) << n3;
- DsFsmInstr(EmitMsaELM(0x1, n3 | kMsaDfNHalfwordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SplatiW(VectorRegister wd, VectorRegister ws, int n2) {
- CHECK(HasMsa());
- CHECK(IsUint<2>(n2)) << n2;
- DsFsmInstr(EmitMsaELM(0x1, n2 | kMsaDfNWordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::SplatiD(VectorRegister wd, VectorRegister ws, int n1) {
- CHECK(HasMsa());
- CHECK(IsUint<1>(n1)) << n1;
- DsFsmInstr(EmitMsaELM(0x1, n1 | kMsaDfNDoublewordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::Copy_sB(Register rd, VectorRegister ws, int n4) {
- CHECK(HasMsa());
- CHECK(IsUint<4>(n4)) << n4;
- DsFsmInstr(EmitMsaELM(0x2, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19))
- .GprOuts(rd).FprIns(ws);
-}
-
-void MipsAssembler::Copy_sH(Register rd, VectorRegister ws, int n3) {
- CHECK(HasMsa());
- CHECK(IsUint<3>(n3)) << n3;
- DsFsmInstr(EmitMsaELM(0x2, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19))
- .GprOuts(rd).FprIns(ws);
-}
-
-void MipsAssembler::Copy_sW(Register rd, VectorRegister ws, int n2) {
- CHECK(HasMsa());
- CHECK(IsUint<2>(n2)) << n2;
- DsFsmInstr(EmitMsaELM(0x2, n2 | kMsaDfNWordMask, ws, static_cast<VectorRegister>(rd), 0x19))
- .GprOuts(rd).FprIns(ws);
-}
-
-void MipsAssembler::Copy_uB(Register rd, VectorRegister ws, int n4) {
- CHECK(HasMsa());
- CHECK(IsUint<4>(n4)) << n4;
- DsFsmInstr(EmitMsaELM(0x3, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19))
- .GprOuts(rd).FprIns(ws);
-}
-
-void MipsAssembler::Copy_uH(Register rd, VectorRegister ws, int n3) {
- CHECK(HasMsa());
- CHECK(IsUint<3>(n3)) << n3;
- DsFsmInstr(EmitMsaELM(0x3, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19))
- .GprOuts(rd).FprIns(ws);
-}
-
-void MipsAssembler::InsertB(VectorRegister wd, Register rs, int n4) {
- CHECK(HasMsa());
- CHECK(IsUint<4>(n4)) << n4;
- DsFsmInstr(EmitMsaELM(0x4, n4 | kMsaDfNByteMask, static_cast<VectorRegister>(rs), wd, 0x19))
- .FprInOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::InsertH(VectorRegister wd, Register rs, int n3) {
- CHECK(HasMsa());
- CHECK(IsUint<3>(n3)) << n3;
- DsFsmInstr(EmitMsaELM(0x4, n3 | kMsaDfNHalfwordMask, static_cast<VectorRegister>(rs), wd, 0x19))
- .FprInOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::InsertW(VectorRegister wd, Register rs, int n2) {
- CHECK(HasMsa());
- CHECK(IsUint<2>(n2)) << n2;
- DsFsmInstr(EmitMsaELM(0x4, n2 | kMsaDfNWordMask, static_cast<VectorRegister>(rs), wd, 0x19))
- .FprInOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::FillB(VectorRegister wd, Register rs) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2R(0xc0, 0x0, static_cast<VectorRegister>(rs), wd, 0x1e))
- .FprOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::FillH(VectorRegister wd, Register rs) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2R(0xc0, 0x1, static_cast<VectorRegister>(rs), wd, 0x1e))
- .FprOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::FillW(VectorRegister wd, Register rs) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2R(0xc0, 0x2, static_cast<VectorRegister>(rs), wd, 0x1e))
- .FprOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::LdiB(VectorRegister wd, int imm8) {
- CHECK(HasMsa());
- CHECK(IsInt<8>(imm8)) << imm8;
- DsFsmInstr(EmitMsaI10(0x6, 0x0, imm8 & kMsaS10Mask, wd, 0x7)).FprOuts(wd);
-}
-
-void MipsAssembler::LdiH(VectorRegister wd, int imm10) {
- CHECK(HasMsa());
- CHECK(IsInt<10>(imm10)) << imm10;
- DsFsmInstr(EmitMsaI10(0x6, 0x1, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd);
-}
-
-void MipsAssembler::LdiW(VectorRegister wd, int imm10) {
- CHECK(HasMsa());
- CHECK(IsInt<10>(imm10)) << imm10;
- DsFsmInstr(EmitMsaI10(0x6, 0x2, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd);
-}
-
-void MipsAssembler::LdiD(VectorRegister wd, int imm10) {
- CHECK(HasMsa());
- CHECK(IsInt<10>(imm10)) << imm10;
- DsFsmInstr(EmitMsaI10(0x6, 0x3, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd);
-}
-
-void MipsAssembler::LdB(VectorRegister wd, Register rs, int offset) {
- CHECK(HasMsa());
- CHECK(IsInt<10>(offset)) << offset;
- DsFsmInstr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x8, 0x0)).FprOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::LdH(VectorRegister wd, Register rs, int offset) {
- CHECK(HasMsa());
- CHECK(IsInt<11>(offset)) << offset;
- CHECK_ALIGNED(offset, kMipsHalfwordSize);
- DsFsmInstr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x8, 0x1))
- .FprOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::LdW(VectorRegister wd, Register rs, int offset) {
- CHECK(HasMsa());
- CHECK(IsInt<12>(offset)) << offset;
- CHECK_ALIGNED(offset, kMipsWordSize);
- DsFsmInstr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x8, 0x2))
- .FprOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::LdD(VectorRegister wd, Register rs, int offset) {
- CHECK(HasMsa());
- CHECK(IsInt<13>(offset)) << offset;
- CHECK_ALIGNED(offset, kMipsDoublewordSize);
- DsFsmInstr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x8, 0x3))
- .FprOuts(wd).GprIns(rs);
-}
-
-void MipsAssembler::StB(VectorRegister wd, Register rs, int offset) {
- CHECK(HasMsa());
- CHECK(IsInt<10>(offset)) << offset;
- DsFsmInstr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x9, 0x0)).FprIns(wd).GprIns(rs);
-}
-
-void MipsAssembler::StH(VectorRegister wd, Register rs, int offset) {
- CHECK(HasMsa());
- CHECK(IsInt<11>(offset)) << offset;
- CHECK_ALIGNED(offset, kMipsHalfwordSize);
- DsFsmInstr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x9, 0x1))
- .FprIns(wd).GprIns(rs);
-}
-
-void MipsAssembler::StW(VectorRegister wd, Register rs, int offset) {
- CHECK(HasMsa());
- CHECK(IsInt<12>(offset)) << offset;
- CHECK_ALIGNED(offset, kMipsWordSize);
- DsFsmInstr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x9, 0x2))
- .FprIns(wd).GprIns(rs);
-}
-
-void MipsAssembler::StD(VectorRegister wd, Register rs, int offset) {
- CHECK(HasMsa());
- CHECK(IsInt<13>(offset)) << offset;
- CHECK_ALIGNED(offset, kMipsDoublewordSize);
- DsFsmInstr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x9, 0x3))
- .FprIns(wd).GprIns(rs);
-}
-
-void MipsAssembler::IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt);
-}
-
-void MipsAssembler::PcntB(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2R(0xc1, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::PcntH(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2R(0xc1, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::PcntW(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2R(0xc1, 0x2, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::PcntD(VectorRegister wd, VectorRegister ws) {
- CHECK(HasMsa());
- DsFsmInstr(EmitMsa2R(0xc1, 0x3, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws);
-}
-
-void MipsAssembler::ReplicateFPToVectorRegister(VectorRegister dst,
- FRegister src,
- bool is_double) {
- // Float or double in FPU register Fx can be considered as 0th element in vector register Wx.
- if (is_double) {
- SplatiD(dst, static_cast<VectorRegister>(src), 0);
- } else {
- SplatiW(dst, static_cast<VectorRegister>(src), 0);
- }
-}
-
-void MipsAssembler::LoadConst32(Register rd, int32_t value) {
- if (IsUint<16>(value)) {
- // Use OR with (unsigned) immediate to encode 16b unsigned int.
- Ori(rd, ZERO, value);
- } else if (IsInt<16>(value)) {
- // Use ADD with (signed) immediate to encode 16b signed int.
- Addiu(rd, ZERO, value);
- } else {
- Lui(rd, High16Bits(value));
- if (value & 0xFFFF)
- Ori(rd, rd, Low16Bits(value));
- }
-}
-
-void MipsAssembler::LoadConst64(Register reg_hi, Register reg_lo, int64_t value) {
- uint32_t low = Low32Bits(value);
- uint32_t high = High32Bits(value);
- LoadConst32(reg_lo, low);
- if (high != low) {
- LoadConst32(reg_hi, high);
- } else {
- Move(reg_hi, reg_lo);
- }
-}
-
-void MipsAssembler::LoadSConst32(FRegister r, int32_t value, Register temp) {
- if (value == 0) {
- temp = ZERO;
- } else {
- LoadConst32(temp, value);
- }
- Mtc1(temp, r);
-}
-
-void MipsAssembler::LoadDConst64(FRegister rd, int64_t value, Register temp) {
- uint32_t low = Low32Bits(value);
- uint32_t high = High32Bits(value);
- if (low == 0) {
- Mtc1(ZERO, rd);
- } else {
- LoadConst32(temp, low);
- Mtc1(temp, rd);
- }
- if (high == 0) {
- MoveToFpuHigh(ZERO, rd);
- } else {
- LoadConst32(temp, high);
- MoveToFpuHigh(temp, rd);
- }
-}
-
-void MipsAssembler::Addiu32(Register rt, Register rs, int32_t value, Register temp) {
- CHECK_NE(rs, temp); // Must not overwrite the register `rs` while loading `value`.
- if (IsInt<16>(value)) {
- Addiu(rt, rs, value);
- } else if (IsR6()) {
- int16_t high = High16Bits(value);
- int16_t low = Low16Bits(value);
- high += (low < 0) ? 1 : 0; // Account for sign extension in addiu.
- if (low != 0) {
- Aui(temp, rs, high);
- Addiu(rt, temp, low);
- } else {
- Aui(rt, rs, high);
- }
- } else {
- // Do not load the whole 32-bit `value` if it can be represented as
- // a sum of two 16-bit signed values. This can save an instruction.
- constexpr int32_t kMinValueForSimpleAdjustment = std::numeric_limits<int16_t>::min() * 2;
- constexpr int32_t kMaxValueForSimpleAdjustment = std::numeric_limits<int16_t>::max() * 2;
- if (0 <= value && value <= kMaxValueForSimpleAdjustment) {
- Addiu(temp, rs, kMaxValueForSimpleAdjustment / 2);
- Addiu(rt, temp, value - kMaxValueForSimpleAdjustment / 2);
- } else if (kMinValueForSimpleAdjustment <= value && value < 0) {
- Addiu(temp, rs, kMinValueForSimpleAdjustment / 2);
- Addiu(rt, temp, value - kMinValueForSimpleAdjustment / 2);
- } else {
- // Now that all shorter options have been exhausted, load the full 32-bit value.
- LoadConst32(temp, value);
- Addu(rt, rs, temp);
- }
- }
-}
-
-void MipsAssembler::Branch::InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size,
- MipsAssembler::Branch::Type short_type,
- MipsAssembler::Branch::Type long_type) {
- type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type;
-}
-
-void MipsAssembler::Branch::InitializeType(Type initial_type, bool is_r6) {
- OffsetBits offset_size_needed = GetOffsetSizeNeeded(location_, target_);
- if (is_r6) {
- // R6
- switch (initial_type) {
- case kLabel:
- CHECK(!IsResolved());
- type_ = kR6Label;
- break;
- case kLiteral:
- CHECK(!IsResolved());
- type_ = kR6Literal;
- break;
- case kCall:
- InitShortOrLong(offset_size_needed, kR6Call, kR6LongCall);
- break;
- case kCondBranch:
- switch (condition_) {
- case kUncond:
- InitShortOrLong(offset_size_needed, kR6UncondBranch, kR6LongUncondBranch);
- break;
- case kCondEQZ:
- case kCondNEZ:
- // Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions.
- type_ = (offset_size_needed <= kOffset23) ? kR6CondBranch : kR6LongCondBranch;
- break;
- default:
- InitShortOrLong(offset_size_needed, kR6CondBranch, kR6LongCondBranch);
- break;
- }
- break;
- case kBareCall:
- type_ = kR6BareCall;
- CHECK_LE(offset_size_needed, GetOffsetSize());
- break;
- case kBareCondBranch:
- type_ = (condition_ == kUncond) ? kR6BareUncondBranch : kR6BareCondBranch;
- CHECK_LE(offset_size_needed, GetOffsetSize());
- break;
- default:
- LOG(FATAL) << "Unexpected branch type " << initial_type;
- UNREACHABLE();
- }
- } else {
- // R2
- switch (initial_type) {
- case kLabel:
- CHECK(!IsResolved());
- type_ = kLabel;
- break;
- case kLiteral:
- CHECK(!IsResolved());
- type_ = kLiteral;
- break;
- case kCall:
- InitShortOrLong(offset_size_needed, kCall, kLongCall);
- break;
- case kCondBranch:
- switch (condition_) {
- case kUncond:
- InitShortOrLong(offset_size_needed, kUncondBranch, kLongUncondBranch);
- break;
- default:
- InitShortOrLong(offset_size_needed, kCondBranch, kLongCondBranch);
- break;
- }
- break;
- case kBareCall:
- type_ = kBareCall;
- CHECK_LE(offset_size_needed, GetOffsetSize());
- break;
- case kBareCondBranch:
- type_ = (condition_ == kUncond) ? kBareUncondBranch : kBareCondBranch;
- CHECK_LE(offset_size_needed, GetOffsetSize());
- break;
- default:
- LOG(FATAL) << "Unexpected branch type " << initial_type;
- UNREACHABLE();
- }
- }
- old_type_ = type_;
-}
-
-bool MipsAssembler::Branch::IsNop(BranchCondition condition, Register lhs, Register rhs) {
- switch (condition) {
- case kCondLT:
- case kCondGT:
- case kCondNE:
- case kCondLTU:
- return lhs == rhs;
- default:
- return false;
- }
-}
-
-bool MipsAssembler::Branch::IsUncond(BranchCondition condition, Register lhs, Register rhs) {
- switch (condition) {
- case kUncond:
- return true;
- case kCondGE:
- case kCondLE:
- case kCondEQ:
- case kCondGEU:
- return lhs == rhs;
- default:
- return false;
- }
-}
-
-MipsAssembler::Branch::Branch(bool is_r6,
- uint32_t location,
- uint32_t target,
- bool is_call,
- bool is_bare)
- : old_location_(location),
- location_(location),
- target_(target),
- lhs_reg_(0),
- rhs_reg_(0),
- condition_(kUncond),
- delayed_instruction_(kUnfilledDelaySlot),
- patcher_label_(nullptr) {
- InitializeType(
- (is_call ? (is_bare ? kBareCall : kCall) : (is_bare ? kBareCondBranch : kCondBranch)),
- is_r6);
-}
-
-MipsAssembler::Branch::Branch(bool is_r6,
- uint32_t location,
- uint32_t target,
- MipsAssembler::BranchCondition condition,
- Register lhs_reg,
- Register rhs_reg,
- bool is_bare)
- : old_location_(location),
- location_(location),
- target_(target),
- lhs_reg_(lhs_reg),
- rhs_reg_(rhs_reg),
- condition_(condition),
- delayed_instruction_(kUnfilledDelaySlot),
- patcher_label_(nullptr) {
- CHECK_NE(condition, kUncond);
- switch (condition) {
- case kCondLT:
- case kCondGE:
- case kCondLE:
- case kCondGT:
- case kCondLTU:
- case kCondGEU:
- // We don't support synthetic R2 branches (preceded with slt[u]) at this level
- // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
- // We leave this up to the caller.
- CHECK(is_r6);
- FALLTHROUGH_INTENDED;
- case kCondEQ:
- case kCondNE:
- // Require registers other than 0 not only for R6, but also for R2 to catch errors.
- // To compare with 0, use dedicated kCond*Z conditions.
- CHECK_NE(lhs_reg, ZERO);
- CHECK_NE(rhs_reg, ZERO);
- break;
- case kCondLTZ:
- case kCondGEZ:
- case kCondLEZ:
- case kCondGTZ:
- case kCondEQZ:
- case kCondNEZ:
- // Require registers other than 0 not only for R6, but also for R2 to catch errors.
- CHECK_NE(lhs_reg, ZERO);
- CHECK_EQ(rhs_reg, ZERO);
- break;
- case kCondF:
- case kCondT:
- CHECK_EQ(rhs_reg, ZERO);
- break;
- case kUncond:
- UNREACHABLE();
- }
- CHECK(!IsNop(condition, lhs_reg, rhs_reg));
- if (IsUncond(condition, lhs_reg, rhs_reg)) {
- // Branch condition is always true, make the branch unconditional.
- condition_ = kUncond;
- }
- InitializeType((is_bare ? kBareCondBranch : kCondBranch), is_r6);
-}
-
-MipsAssembler::Branch::Branch(bool is_r6,
- uint32_t location,
- Register dest_reg,
- Register base_reg,
- Type label_or_literal_type)
- : old_location_(location),
- location_(location),
- target_(kUnresolved),
- lhs_reg_(dest_reg),
- rhs_reg_(base_reg),
- condition_(kUncond),
- delayed_instruction_(kUnfilledDelaySlot),
- patcher_label_(nullptr) {
- CHECK_NE(dest_reg, ZERO);
- if (is_r6) {
- CHECK_EQ(base_reg, ZERO);
- }
- InitializeType(label_or_literal_type, is_r6);
-}
-
-MipsAssembler::BranchCondition MipsAssembler::Branch::OppositeCondition(
- MipsAssembler::BranchCondition cond) {
- switch (cond) {
- case kCondLT:
- return kCondGE;
- case kCondGE:
- return kCondLT;
- case kCondLE:
- return kCondGT;
- case kCondGT:
- return kCondLE;
- case kCondLTZ:
- return kCondGEZ;
- case kCondGEZ:
- return kCondLTZ;
- case kCondLEZ:
- return kCondGTZ;
- case kCondGTZ:
- return kCondLEZ;
- case kCondEQ:
- return kCondNE;
- case kCondNE:
- return kCondEQ;
- case kCondEQZ:
- return kCondNEZ;
- case kCondNEZ:
- return kCondEQZ;
- case kCondLTU:
- return kCondGEU;
- case kCondGEU:
- return kCondLTU;
- case kCondF:
- return kCondT;
- case kCondT:
- return kCondF;
- case kUncond:
- LOG(FATAL) << "Unexpected branch condition " << cond;
- }
- UNREACHABLE();
-}
-
-MipsAssembler::Branch::Type MipsAssembler::Branch::GetType() const {
- return type_;
-}
-
-MipsAssembler::BranchCondition MipsAssembler::Branch::GetCondition() const {
- return condition_;
-}
-
-Register MipsAssembler::Branch::GetLeftRegister() const {
- return static_cast<Register>(lhs_reg_);
-}
-
-Register MipsAssembler::Branch::GetRightRegister() const {
- return static_cast<Register>(rhs_reg_);
-}
-
-uint32_t MipsAssembler::Branch::GetTarget() const {
- return target_;
-}
-
-uint32_t MipsAssembler::Branch::GetLocation() const {
- return location_;
-}
-
-uint32_t MipsAssembler::Branch::GetOldLocation() const {
- return old_location_;
-}
-
-uint32_t MipsAssembler::Branch::GetPrecedingInstructionLength(Type type) const {
- // Short branches with delay slots always consist of two instructions, the branch
- // and the delay slot, irrespective of whether the delay slot is filled with a
- // useful instruction or not.
- // Long composite branches may have a length longer by one instruction than
- // specified in branch_info_[].length. This happens when an instruction is taken
- // to fill the short branch delay slot, but the branch eventually becomes long
- // and formally has no delay slot to fill. This instruction is placed at the
- // beginning of the long composite branch and this needs to be accounted for in
- // the branch length and the location of the offset encoded in the branch.
- switch (type) {
- case kLongUncondBranch:
- case kLongCondBranch:
- case kLongCall:
- case kR6LongCondBranch:
- return (delayed_instruction_ != kUnfilledDelaySlot &&
- delayed_instruction_ != kUnfillableDelaySlot) ? 1 : 0;
- default:
- return 0;
- }
-}
-
-uint32_t MipsAssembler::Branch::GetPrecedingInstructionSize(Type type) const {
- return GetPrecedingInstructionLength(type) * sizeof(uint32_t);
-}
-
-uint32_t MipsAssembler::Branch::GetLength() const {
- return GetPrecedingInstructionLength(type_) + branch_info_[type_].length;
-}
-
-uint32_t MipsAssembler::Branch::GetOldLength() const {
- return GetPrecedingInstructionLength(old_type_) + branch_info_[old_type_].length;
-}
-
-uint32_t MipsAssembler::Branch::GetSize() const {
- return GetLength() * sizeof(uint32_t);
-}
-
-uint32_t MipsAssembler::Branch::GetOldSize() const {
- return GetOldLength() * sizeof(uint32_t);
-}
-
-uint32_t MipsAssembler::Branch::GetEndLocation() const {
- return GetLocation() + GetSize();
-}
-
-uint32_t MipsAssembler::Branch::GetOldEndLocation() const {
- return GetOldLocation() + GetOldSize();
-}
-
-bool MipsAssembler::Branch::IsBare() const {
- switch (type_) {
- // R2 short branches (can't be promoted to long), delay slots filled manually.
- case kBareUncondBranch:
- case kBareCondBranch:
- case kBareCall:
- // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually.
- case kR6BareUncondBranch:
- case kR6BareCondBranch:
- case kR6BareCall:
- return true;
- default:
- return false;
- }
-}
-
-bool MipsAssembler::Branch::IsLong() const {
- switch (type_) {
- // R2 short branches (can be promoted to long).
- case kUncondBranch:
- case kCondBranch:
- case kCall:
- // R2 short branches (can't be promoted to long), delay slots filled manually.
- case kBareUncondBranch:
- case kBareCondBranch:
- case kBareCall:
- // R2 near label.
- case kLabel:
- // R2 near literal.
- case kLiteral:
- // R6 short branches (can be promoted to long).
- case kR6UncondBranch:
- case kR6CondBranch:
- case kR6Call:
- // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually.
- case kR6BareUncondBranch:
- case kR6BareCondBranch:
- case kR6BareCall:
- // R6 near label.
- case kR6Label:
- // R6 near literal.
- case kR6Literal:
- return false;
- // R2 long branches.
- case kLongUncondBranch:
- case kLongCondBranch:
- case kLongCall:
- // R2 far label.
- case kFarLabel:
- // R2 far literal.
- case kFarLiteral:
- // R6 long branches.
- case kR6LongUncondBranch:
- case kR6LongCondBranch:
- case kR6LongCall:
- // R6 far label.
- case kR6FarLabel:
- // R6 far literal.
- case kR6FarLiteral:
- return true;
- }
- UNREACHABLE();
-}
-
-bool MipsAssembler::Branch::IsResolved() const {
- return target_ != kUnresolved;
-}
-
-MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSize() const {
- bool r6_cond_branch = (type_ == kR6CondBranch || type_ == kR6BareCondBranch);
- OffsetBits offset_size =
- (r6_cond_branch && (condition_ == kCondEQZ || condition_ == kCondNEZ))
- ? kOffset23
- : branch_info_[type_].offset_size;
- return offset_size;
-}
-
-MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSizeNeeded(uint32_t location,
- uint32_t target) {
- // For unresolved targets assume the shortest encoding
- // (later it will be made longer if needed).
- if (target == kUnresolved)
- return kOffset16;
- int64_t distance = static_cast<int64_t>(target) - location;
- // To simplify calculations in composite branches consisting of multiple instructions
- // bump up the distance by a value larger than the max byte size of a composite branch.
- distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize;
- if (IsInt<kOffset16>(distance))
- return kOffset16;
- else if (IsInt<kOffset18>(distance))
- return kOffset18;
- else if (IsInt<kOffset21>(distance))
- return kOffset21;
- else if (IsInt<kOffset23>(distance))
- return kOffset23;
- else if (IsInt<kOffset28>(distance))
- return kOffset28;
- return kOffset32;
-}
-
-void MipsAssembler::Branch::Resolve(uint32_t target) {
- target_ = target;
-}
-
-void MipsAssembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) {
- if (location_ > expand_location) {
- location_ += delta;
- }
- if (!IsResolved()) {
- return; // Don't know the target yet.
- }
- if (target_ > expand_location) {
- target_ += delta;
- }
-}
-
-void MipsAssembler::Branch::PromoteToLong() {
- CHECK(!IsBare()); // Bare branches do not promote.
- switch (type_) {
- // R2 short branches (can be promoted to long).
- case kUncondBranch:
- type_ = kLongUncondBranch;
- break;
- case kCondBranch:
- type_ = kLongCondBranch;
- break;
- case kCall:
- type_ = kLongCall;
- break;
- // R2 near label.
- case kLabel:
- type_ = kFarLabel;
- break;
- // R2 near literal.
- case kLiteral:
- type_ = kFarLiteral;
- break;
- // R6 short branches (can be promoted to long).
- case kR6UncondBranch:
- type_ = kR6LongUncondBranch;
- break;
- case kR6CondBranch:
- type_ = kR6LongCondBranch;
- break;
- case kR6Call:
- type_ = kR6LongCall;
- break;
- // R6 near label.
- case kR6Label:
- type_ = kR6FarLabel;
- break;
- // R6 near literal.
- case kR6Literal:
- type_ = kR6FarLiteral;
- break;
- default:
- // Note: 'type_' is already long.
- break;
- }
- CHECK(IsLong());
-}
-
-uint32_t MipsAssembler::GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const {
- switch (branch->GetType()) {
- case Branch::kLabel:
- case Branch::kFarLabel:
- case Branch::kLiteral:
- case Branch::kFarLiteral:
- if (branch->GetRightRegister() != ZERO) {
- return GetLabelLocation(&pc_rel_base_label_);
- }
- // For those label/literal loads which come with their own NAL instruction
- // and don't depend on `pc_rel_base_label_` we can simply use the location
- // of the "branch" (the NAL precedes the "branch" immediately). The location
- // is close enough for the user of the returned location, PromoteIfNeeded(),
- // to not miss needed promotion to a far load.
- // (GetOffsetSizeNeeded() provides a little leeway by means of kMaxBranchSize,
- // which is larger than all composite branches and label/literal loads: it's
- // OK to promote a bit earlier than strictly necessary, it makes things
- // simpler.)
- FALLTHROUGH_INTENDED;
- default:
- return branch->GetLocation();
- }
-}
-
-uint32_t MipsAssembler::Branch::PromoteIfNeeded(uint32_t location, uint32_t max_short_distance) {
- // `location` comes from GetBranchLocationOrPcRelBase() and is either the location
- // of the PC-relative branch or (for some R2 label and literal loads) the location
- // of `pc_rel_base_label_`. The PC-relative offset of the branch/load is relative
- // to this location.
- // If the branch is still unresolved or already long, nothing to do.
- if (IsLong() || !IsResolved()) {
- return 0;
- }
- // Promote the short branch to long if the offset size is too small
- // to hold the distance between location and target_.
- if (GetOffsetSizeNeeded(location, target_) > GetOffsetSize()) {
- PromoteToLong();
- uint32_t old_size = GetOldSize();
- uint32_t new_size = GetSize();
- CHECK_GT(new_size, old_size);
- return new_size - old_size;
- }
- // The following logic is for debugging/testing purposes.
- // Promote some short branches to long when it's not really required.
- if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max() && !IsBare())) {
- int64_t distance = static_cast<int64_t>(target_) - location;
- distance = (distance >= 0) ? distance : -distance;
- if (distance >= max_short_distance) {
- PromoteToLong();
- uint32_t old_size = GetOldSize();
- uint32_t new_size = GetSize();
- CHECK_GT(new_size, old_size);
- return new_size - old_size;
- }
- }
- return 0;
-}
-
-uint32_t MipsAssembler::Branch::GetOffsetLocation() const {
- return location_ + GetPrecedingInstructionSize(type_) +
- branch_info_[type_].instr_offset * sizeof(uint32_t);
-}
-
-uint32_t MipsAssembler::GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const {
- switch (branch->GetType()) {
- case Branch::kLabel:
- case Branch::kFarLabel:
- case Branch::kLiteral:
- case Branch::kFarLiteral:
- if (branch->GetRightRegister() == ZERO) {
- // These loads don't use `pc_rel_base_label_` and instead rely on their own
- // NAL instruction (it immediately precedes the "branch"). Therefore the
- // effective PC-relative base register is RA and it corresponds to the 2nd
- // instruction after the NAL.
- return branch->GetLocation() + sizeof(uint32_t);
- } else {
- return GetLabelLocation(&pc_rel_base_label_);
- }
- default:
- return branch->GetOffsetLocation() +
- Branch::branch_info_[branch->GetType()].pc_org * sizeof(uint32_t);
- }
-}
-
-uint32_t MipsAssembler::Branch::GetOffset(uint32_t location) const {
- // `location` comes from GetBranchOrPcRelBaseForEncoding() and is either a location
- // within/near the PC-relative branch or (for some R2 label and literal loads) the
- // location of `pc_rel_base_label_`. The PC-relative offset of the branch/load is
- // relative to this location.
- CHECK(IsResolved());
- uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize());
- // Calculate the byte distance between instructions and also account for
- // different PC-relative origins.
- uint32_t offset = target_ - location;
- // Prepare the offset for encoding into the instruction(s).
- offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift;
- return offset;
-}
-
-MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) {
- CHECK_LT(branch_id, branches_.size());
- return &branches_[branch_id];
-}
-
-const MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) const {
- CHECK_LT(branch_id, branches_.size());
- return &branches_[branch_id];
-}
-
-void MipsAssembler::BindRelativeToPrecedingBranch(MipsLabel* label,
- uint32_t prev_branch_id_plus_one,
- uint32_t position) {
- if (prev_branch_id_plus_one != 0) {
- const Branch* branch = GetBranch(prev_branch_id_plus_one - 1);
- position -= branch->GetEndLocation();
- }
- label->prev_branch_id_plus_one_ = prev_branch_id_plus_one;
- label->BindTo(position);
-}
-
-void MipsAssembler::Bind(MipsLabel* label) {
- CHECK(!label->IsBound());
- uint32_t bound_pc = buffer_.Size();
-
- // Make the delay slot FSM aware of the new label.
- DsFsmLabel();
-
- // Walk the list of branches referring to and preceding this label.
- // Store the previously unknown target addresses in them.
- while (label->IsLinked()) {
- uint32_t branch_id = label->Position();
- Branch* branch = GetBranch(branch_id);
- branch->Resolve(bound_pc);
-
- uint32_t branch_location = branch->GetLocation();
- // Extract the location of the previous branch in the list (walking the list backwards;
- // the previous branch ID was stored in the space reserved for this branch).
- uint32_t prev = buffer_.Load<uint32_t>(branch_location);
-
- // On to the previous branch in the list...
- label->position_ = prev;
- }
-
- // Now make the label object contain its own location (relative to the end of the preceding
- // branch, if any; it will be used by the branches referring to and following this label).
- BindRelativeToPrecedingBranch(label, branches_.size(), bound_pc);
-}
-
-uint32_t MipsAssembler::GetLabelLocation(const MipsLabel* label) const {
- CHECK(label->IsBound());
- uint32_t target = label->Position();
- if (label->prev_branch_id_plus_one_ != 0) {
- // Get label location based on the branch preceding it.
- const Branch* branch = GetBranch(label->prev_branch_id_plus_one_ - 1);
- target += branch->GetEndLocation();
- }
- return target;
-}
-
-uint32_t MipsAssembler::GetAdjustedPosition(uint32_t old_position) {
- // We can reconstruct the adjustment by going through all the branches from the beginning
- // up to the old_position. Since we expect AdjustedPosition() to be called in a loop
- // with increasing old_position, we can use the data from last AdjustedPosition() to
- // continue where we left off and the whole loop should be O(m+n) where m is the number
- // of positions to adjust and n is the number of branches.
- if (old_position < last_old_position_) {
- last_position_adjustment_ = 0;
- last_old_position_ = 0;
- last_branch_id_ = 0;
- }
- while (last_branch_id_ != branches_.size()) {
- const Branch* branch = GetBranch(last_branch_id_);
- if (branch->GetLocation() >= old_position + last_position_adjustment_) {
- break;
- }
- last_position_adjustment_ += branch->GetSize() - branch->GetOldSize();
- ++last_branch_id_;
- }
- last_old_position_ = old_position;
- return old_position + last_position_adjustment_;
-}
-
-void MipsAssembler::BindPcRelBaseLabel() {
- Bind(&pc_rel_base_label_);
-}
-
-uint32_t MipsAssembler::GetPcRelBaseLabelLocation() const {
- return GetLabelLocation(&pc_rel_base_label_);
-}
-
-void MipsAssembler::FinalizeLabeledBranch(MipsLabel* label) {
- uint32_t length = branches_.back().GetLength();
- // Commit the last branch target label (if any).
- DsFsmCommitLabel();
- if (!label->IsBound()) {
- // Branch forward (to a following label), distance is unknown.
- // The first branch forward will contain 0, serving as the terminator of
- // the list of forward-reaching branches.
- Emit(label->position_);
- // Nothing for the delay slot (yet).
- DsFsmInstrNop(0);
- length--;
- // Now make the label object point to this branch
- // (this forms a linked list of branches preceding this label).
- uint32_t branch_id = branches_.size() - 1;
- label->LinkTo(branch_id);
- }
- // Reserve space for the branch.
- for (; length != 0u; --length) {
- Nop();
- }
-}
-
-bool MipsAssembler::Branch::CanHaveDelayedInstruction(const DelaySlot& delay_slot) const {
- if (delay_slot.instruction_ == 0) {
- // NOP or no instruction for the delay slot.
- return false;
- }
- switch (type_) {
- // R2 unconditional branches.
- case kUncondBranch:
- case kLongUncondBranch:
- // There are no register interdependencies.
- return true;
-
- // R2 calls.
- case kCall:
- case kLongCall:
- // Instructions depending on or modifying RA should not be moved into delay slots
- // of branches modifying RA.
- return ((delay_slot.masks_.gpr_ins_ | delay_slot.masks_.gpr_outs_) & (1u << RA)) == 0;
-
- // R2 conditional branches.
- case kCondBranch:
- case kLongCondBranch:
- switch (condition_) {
- // Branches with one GPR source.
- case kCondLTZ:
- case kCondGEZ:
- case kCondLEZ:
- case kCondGTZ:
- case kCondEQZ:
- case kCondNEZ:
- return (delay_slot.masks_.gpr_outs_ & (1u << lhs_reg_)) == 0;
-
- // Branches with two GPR sources.
- case kCondEQ:
- case kCondNE:
- return (delay_slot.masks_.gpr_outs_ & ((1u << lhs_reg_) | (1u << rhs_reg_))) == 0;
-
- // Branches with one FPU condition code source.
- case kCondF:
- case kCondT:
- return (delay_slot.masks_.cc_outs_ & (1u << lhs_reg_)) == 0;
-
- default:
- // We don't support synthetic R2 branches (preceded with slt[u]) at this level
- // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
- LOG(FATAL) << "Unexpected branch condition " << condition_;
- UNREACHABLE();
- }
-
- // R6 unconditional branches.
- case kR6UncondBranch:
- case kR6LongUncondBranch:
- // R6 calls.
- case kR6Call:
- case kR6LongCall:
- // There are no delay slots.
- return false;
-
- // R6 conditional branches.
- case kR6CondBranch:
- case kR6LongCondBranch:
- switch (condition_) {
- // Branches with one FPU register source.
- case kCondF:
- case kCondT:
- return (delay_slot.masks_.fpr_outs_ & (1u << lhs_reg_)) == 0;
- // Others have a forbidden slot instead of a delay slot.
- default:
- return false;
- }
-
- // Literals.
- default:
- LOG(FATAL) << "Unexpected branch type " << type_;
- UNREACHABLE();
- }
-}
-
-uint32_t MipsAssembler::Branch::GetDelayedInstruction() const {
- return delayed_instruction_;
-}
-
-MipsLabel* MipsAssembler::Branch::GetPatcherLabel() const {
- return patcher_label_;
-}
-
-void MipsAssembler::Branch::SetDelayedInstruction(uint32_t instruction, MipsLabel* patcher_label) {
- CHECK_NE(instruction, kUnfilledDelaySlot);
- CHECK_EQ(delayed_instruction_, kUnfilledDelaySlot);
- delayed_instruction_ = instruction;
- patcher_label_ = patcher_label;
-}
-
-void MipsAssembler::Branch::DecrementLocations() {
- // We first create a branch object, which gets its type and locations initialized,
- // and then we check if the branch can actually have the preceding instruction moved
- // into its delay slot. If it can, the branch locations need to be decremented.
- //
- // We could make the check before creating the branch object and avoid the location
- // adjustment, but the check is cleaner when performed on an initialized branch
- // object.
- //
- // If the branch is backwards (to a previously bound label), reducing the locations
- // cannot cause a short branch to exceed its offset range because the offset reduces.
- // And this is not at all a problem for a long branch backwards.
- //
- // If the branch is forward (not linked to any label yet), reducing the locations
- // is harmless. The branch will be promoted to long if needed when the target is known.
- CHECK_EQ(location_, old_location_);
- CHECK_GE(old_location_, sizeof(uint32_t));
- old_location_ -= sizeof(uint32_t);
- location_ = old_location_;
-}
-
-void MipsAssembler::MoveInstructionToDelaySlot(Branch& branch) {
- if (branch.IsBare()) {
- // Delay slots are filled manually in bare branches.
- return;
- }
- if (branch.CanHaveDelayedInstruction(delay_slot_)) {
- // The last instruction cannot be used in a different delay slot,
- // do not commit the label before it (if any).
- DsFsmDropLabel();
- // Remove the last emitted instruction.
- size_t size = buffer_.Size();
- CHECK_GE(size, sizeof(uint32_t));
- size -= sizeof(uint32_t);
- CHECK_EQ(buffer_.Load<uint32_t>(size), delay_slot_.instruction_);
- buffer_.Resize(size);
- // Attach it to the branch and adjust the branch locations.
- branch.DecrementLocations();
- branch.SetDelayedInstruction(delay_slot_.instruction_, delay_slot_.patcher_label_);
- } else if (!reordering_ && branch.GetType() == Branch::kUncondBranch) {
- // If reordefing is disabled, prevent absorption of the target instruction.
- branch.SetDelayedInstruction(Branch::kUnfillableDelaySlot);
- }
-}
-
-void MipsAssembler::Buncond(MipsLabel* label, bool is_r6, bool is_bare) {
- uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
- branches_.emplace_back(is_r6, buffer_.Size(), target, /* is_call= */ false, is_bare);
- MoveInstructionToDelaySlot(branches_.back());
- FinalizeLabeledBranch(label);
-}
-
-void MipsAssembler::Bcond(MipsLabel* label,
- bool is_r6,
- bool is_bare,
- BranchCondition condition,
- Register lhs,
- Register rhs) {
- // If lhs = rhs, this can be a NOP.
- if (Branch::IsNop(condition, lhs, rhs)) {
- return;
- }
- uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
- branches_.emplace_back(is_r6, buffer_.Size(), target, condition, lhs, rhs, is_bare);
- MoveInstructionToDelaySlot(branches_.back());
- FinalizeLabeledBranch(label);
-}
-
-void MipsAssembler::Call(MipsLabel* label, bool is_r6, bool is_bare) {
- uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
- branches_.emplace_back(is_r6, buffer_.Size(), target, /* is_call= */ true, is_bare);
- MoveInstructionToDelaySlot(branches_.back());
- FinalizeLabeledBranch(label);
-}
-
-void MipsAssembler::LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label) {
- // Label address loads are treated as pseudo branches since they require very similar handling.
- DCHECK(!label->IsBound());
- // If `pc_rel_base_label_` isn't bound or none of registers contains its address, we
- // may generate an individual NAL instruction to simulate PC-relative addressing on R2
- // by specifying `base_reg` of `ZERO`. Check for it.
- if (base_reg == ZERO && !IsR6()) {
- Nal();
- }
- branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLabel);
- FinalizeLabeledBranch(label);
-}
-
-Literal* MipsAssembler::NewLiteral(size_t size, const uint8_t* data) {
- DCHECK(size == 4u || size == 8u) << size;
- literals_.emplace_back(size, data);
- return &literals_.back();
-}
-
-void MipsAssembler::LoadLiteral(Register dest_reg, Register base_reg, Literal* literal) {
- // Literal loads are treated as pseudo branches since they require very similar handling.
- DCHECK_EQ(literal->GetSize(), 4u);
- MipsLabel* label = literal->GetLabel();
- DCHECK(!label->IsBound());
- // If `pc_rel_base_label_` isn't bound or none of registers contains its address, we
- // may generate an individual NAL instruction to simulate PC-relative addressing on R2
- // by specifying `base_reg` of `ZERO`. Check for it.
- if (base_reg == ZERO && !IsR6()) {
- Nal();
- }
- branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLiteral);
- FinalizeLabeledBranch(label);
-}
-
-JumpTable* MipsAssembler::CreateJumpTable(std::vector<MipsLabel*>&& labels) {
- jump_tables_.emplace_back(std::move(labels));
- JumpTable* table = &jump_tables_.back();
- DCHECK(!table->GetLabel()->IsBound());
- return table;
-}
-
-void MipsAssembler::EmitLiterals() {
- if (!literals_.empty()) {
- // We don't support byte and half-word literals.
- // TODO: proper alignment for 64-bit literals when they're implemented.
- for (Literal& literal : literals_) {
- MipsLabel* label = literal.GetLabel();
- Bind(label);
- AssemblerBuffer::EnsureCapacity ensured(&buffer_);
- DCHECK(literal.GetSize() == 4u || literal.GetSize() == 8u);
- for (size_t i = 0, size = literal.GetSize(); i != size; ++i) {
- buffer_.Emit<uint8_t>(literal.GetData()[i]);
- }
- }
- }
-}
-
-void MipsAssembler::ReserveJumpTableSpace() {
- if (!jump_tables_.empty()) {
- for (JumpTable& table : jump_tables_) {
- MipsLabel* label = table.GetLabel();
- Bind(label);
-
- // Bulk ensure capacity, as this may be large.
- size_t orig_size = buffer_.Size();
- size_t required_capacity = orig_size + table.GetSize();
- if (required_capacity > buffer_.Capacity()) {
- buffer_.ExtendCapacity(required_capacity);
- }
-#ifndef NDEBUG
- buffer_.has_ensured_capacity_ = true;
-#endif
-
- // Fill the space with dummy data as the data is not final
- // until the branches have been promoted. And we shouldn't
- // be moving uninitialized data during branch promotion.
- for (size_t cnt = table.GetData().size(), i = 0; i < cnt; i++) {
- buffer_.Emit<uint32_t>(0x1abe1234u);
- }
-
-#ifndef NDEBUG
- buffer_.has_ensured_capacity_ = false;
-#endif
- }
- }
-}
-
-void MipsAssembler::EmitJumpTables() {
- if (!jump_tables_.empty()) {
- CHECK(!overwriting_);
- // Switch from appending instructions at the end of the buffer to overwriting
- // existing instructions (here, jump tables) in the buffer.
- overwriting_ = true;
-
- for (JumpTable& table : jump_tables_) {
- MipsLabel* table_label = table.GetLabel();
- uint32_t start = GetLabelLocation(table_label);
- overwrite_location_ = start;
-
- for (MipsLabel* target : table.GetData()) {
- CHECK_EQ(buffer_.Load<uint32_t>(overwrite_location_), 0x1abe1234u);
- // The table will contain target addresses relative to the table start.
- uint32_t offset = GetLabelLocation(target) - start;
- Emit(offset);
- }
- }
-
- overwriting_ = false;
- }
-}
-
-void MipsAssembler::PromoteBranches() {
- // Promote short branches to long as necessary.
- bool changed;
- do {
- changed = false;
- for (auto& branch : branches_) {
- CHECK(branch.IsResolved());
- uint32_t base = GetBranchLocationOrPcRelBase(&branch);
- uint32_t delta = branch.PromoteIfNeeded(base);
- // If this branch has been promoted and needs to expand in size,
- // relocate all branches by the expansion size.
- if (delta) {
- changed = true;
- uint32_t expand_location = branch.GetLocation();
- for (auto& branch2 : branches_) {
- branch2.Relocate(expand_location, delta);
- }
- }
- }
- } while (changed);
-
- // Account for branch expansion by resizing the code buffer
- // and moving the code in it to its final location.
- size_t branch_count = branches_.size();
- if (branch_count > 0) {
- // Resize.
- Branch& last_branch = branches_[branch_count - 1];
- uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation();
- uint32_t old_size = buffer_.Size();
- buffer_.Resize(old_size + size_delta);
- // Move the code residing between branch placeholders.
- uint32_t end = old_size;
- for (size_t i = branch_count; i > 0; ) {
- Branch& branch = branches_[--i];
- CHECK_GE(end, branch.GetOldEndLocation());
- uint32_t size = end - branch.GetOldEndLocation();
- buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size);
- end = branch.GetOldLocation();
- }
- }
-}
-
-// Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
-const MipsAssembler::Branch::BranchInfo MipsAssembler::Branch::branch_info_[] = {
- // R2 short branches (can be promoted to long).
- { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kUncondBranch
- { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCondBranch
- { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCall
- // R2 short branches (can't be promoted to long), delay slots filled manually.
- { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareUncondBranch
- { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareCondBranch
- { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareCall
- // R2 near label.
- { 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLabel
- // R2 near literal.
- { 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLiteral
- // R2 long branches.
- { 9, 3, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongUncondBranch
- { 10, 4, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCondBranch
- { 6, 1, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCall
- // R2 far label.
- { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLabel
- // R2 far literal.
- { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLiteral
- // R6 short branches (can be promoted to long).
- { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6UncondBranch
- { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6CondBranch
- // Exception: kOffset23 for beqzc/bnezc.
- { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6Call
- // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually.
- { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6BareUncondBranch
- { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6BareCondBranch
- // Exception: kOffset23 for beqzc/bnezc.
- { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6BareCall
- // R6 near label.
- { 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Label
- // R6 near literal.
- { 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Literal
- // R6 long branches.
- { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongUncondBranch
- { 3, 1, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCondBranch
- { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCall
- // R6 far label.
- { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLabel
- // R6 far literal.
- { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLiteral
-};
-
-static inline bool IsAbsorbableInstruction(uint32_t instruction) {
- // The relative patcher patches addiu, lw and sw with an immediate operand of 0x5678.
- // We want to make sure that these instructions do not get absorbed into delay slots
- // of unconditional branches on R2. Absorption would otherwise make copies of
- // unpatched instructions.
- if ((instruction & 0xFFFF) != 0x5678) {
- return true;
- }
- switch (instruction >> kOpcodeShift) {
- case 0x09: // Addiu.
- case 0x23: // Lw.
- case 0x2B: // Sw.
- return false;
- default:
- return true;
- }
-}
-
-static inline Register GetR2PcRelBaseRegister(Register reg) {
- // LoadLabelAddress() and LoadLiteral() generate individual NAL
- // instructions on R2 when the specified base register is ZERO
- // and so the effective PC-relative base register is RA, not ZERO.
- return (reg == ZERO) ? RA : reg;
-}
-
-// Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
-void MipsAssembler::EmitBranch(uint32_t branch_id) {
- CHECK_EQ(overwriting_, true);
- Branch* branch = GetBranch(branch_id);
- overwrite_location_ = branch->GetLocation();
- uint32_t offset = branch->GetOffset(GetBranchOrPcRelBaseForEncoding(branch));
- BranchCondition condition = branch->GetCondition();
- Register lhs = branch->GetLeftRegister();
- Register rhs = branch->GetRightRegister();
- uint32_t delayed_instruction = branch->GetDelayedInstruction();
- MipsLabel* patcher_label = branch->GetPatcherLabel();
- if (patcher_label != nullptr) {
- // Update the patcher label location to account for branch promotion and
- // delay slot filling.
- CHECK(patcher_label->IsBound());
- uint32_t bound_pc = branch->GetLocation();
- if (!branch->IsLong()) {
- // Short branches precede delay slots.
- // Long branches follow "delay slots".
- bound_pc += sizeof(uint32_t);
- }
- // Rebind the label.
- patcher_label->Reinitialize();
- BindRelativeToPrecedingBranch(patcher_label, branch_id, bound_pc);
- }
- switch (branch->GetType()) {
- // R2 short branches.
- case Branch::kUncondBranch:
- if (delayed_instruction == Branch::kUnfillableDelaySlot) {
- // The branch was created when reordering was disabled, do not absorb the target
- // instruction.
- delayed_instruction = 0; // NOP.
- } else if (delayed_instruction == Branch::kUnfilledDelaySlot) {
- // Try to absorb the target instruction into the delay slot.
- delayed_instruction = 0; // NOP.
- // Incrementing the signed 16-bit offset past the target instruction must not
- // cause overflow into the negative subrange, check for the max offset.
- if (offset != 0x7FFF) {
- uint32_t target = branch->GetTarget();
- if (std::binary_search(ds_fsm_target_pcs_.begin(), ds_fsm_target_pcs_.end(), target)) {
- uint32_t target_instruction = buffer_.Load<uint32_t>(target);
- if (IsAbsorbableInstruction(target_instruction)) {
- delayed_instruction = target_instruction;
- offset++;
- }
- }
- }
- }
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- B(offset);
- Emit(delayed_instruction);
- break;
- case Branch::kCondBranch:
- DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
- if (delayed_instruction == Branch::kUnfilledDelaySlot) {
- delayed_instruction = 0; // NOP.
- }
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- EmitBcondR2(condition, lhs, rhs, offset);
- Emit(delayed_instruction);
- break;
- case Branch::kCall:
- DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
- if (delayed_instruction == Branch::kUnfilledDelaySlot) {
- delayed_instruction = 0; // NOP.
- }
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Bal(offset);
- Emit(delayed_instruction);
- break;
- case Branch::kBareUncondBranch:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- B(offset);
- break;
- case Branch::kBareCondBranch:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- EmitBcondR2(condition, lhs, rhs, offset);
- break;
- case Branch::kBareCall:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Bal(offset);
- break;
-
- // R2 near label.
- case Branch::kLabel:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Addiu(lhs, GetR2PcRelBaseRegister(rhs), offset);
- break;
- // R2 near literal.
- case Branch::kLiteral:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Lw(lhs, GetR2PcRelBaseRegister(rhs), offset);
- break;
-
- // R2 long branches.
- case Branch::kLongUncondBranch:
- // To get the value of the PC register we need to use the NAL instruction.
- // NAL clobbers the RA register. However, RA must be preserved if the
- // method is compiled without the entry/exit sequences that would take care
- // of preserving RA (typically, leaf methods don't preserve RA explicitly).
- // So, we need to preserve RA in some temporary storage ourselves. The AT
- // register can't be used for this because we need it to load a constant
- // which will be added to the value that NAL stores in RA. And we can't
- // use T9 for this in the context of the JNI compiler, which uses it
- // as a scratch register (see InterproceduralScratchRegister()).
- // If we were to add a 32-bit constant to RA using two ADDIU instructions,
- // we'd also need to use the ROTR instruction, which requires no less than
- // MIPSR2.
- // Perhaps, we could use T8 or one of R2's multiplier/divider registers
- // (LO or HI) or even a floating-point register, but that doesn't seem
- // like a nice solution. We may want this to work on both R6 and pre-R6.
- // For now simply use the stack for RA. This should be OK since for the
- // vast majority of code a short PC-relative branch is sufficient.
- // TODO: can this be improved?
- // TODO: consider generation of a shorter sequence when we know that RA
- // is explicitly preserved by the method entry/exit code.
- if (delayed_instruction != Branch::kUnfilledDelaySlot &&
- delayed_instruction != Branch::kUnfillableDelaySlot) {
- Emit(delayed_instruction);
- }
- Push(RA);
- Nal();
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Lui(AT, High16Bits(offset));
- Ori(AT, AT, Low16Bits(offset));
- Addu(AT, AT, RA);
- Lw(RA, SP, 0);
- Jr(AT);
- DecreaseFrameSize(kStackAlignment);
- break;
- case Branch::kLongCondBranch:
- // The comment on case 'Branch::kLongUncondBranch' applies here as well.
- DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
- if (delayed_instruction != Branch::kUnfilledDelaySlot) {
- Emit(delayed_instruction);
- }
- // Note: the opposite condition branch encodes 8 as the distance, which is equal to the
- // number of instructions skipped:
- // (PUSH(IncreaseFrameSize(ADDIU) + SW) + NAL + LUI + ORI + ADDU + LW + JR).
- EmitBcondR2(Branch::OppositeCondition(condition), lhs, rhs, 8);
- Push(RA);
- Nal();
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Lui(AT, High16Bits(offset));
- Ori(AT, AT, Low16Bits(offset));
- Addu(AT, AT, RA);
- Lw(RA, SP, 0);
- Jr(AT);
- DecreaseFrameSize(kStackAlignment);
- break;
- case Branch::kLongCall:
- DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
- if (delayed_instruction != Branch::kUnfilledDelaySlot) {
- Emit(delayed_instruction);
- }
- Nal();
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Lui(AT, High16Bits(offset));
- Ori(AT, AT, Low16Bits(offset));
- Addu(AT, AT, RA);
- Jalr(AT);
- Nop();
- break;
-
- // R2 far label.
- case Branch::kFarLabel:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Lui(AT, High16Bits(offset));
- Ori(AT, AT, Low16Bits(offset));
- Addu(lhs, AT, GetR2PcRelBaseRegister(rhs));
- break;
- // R2 far literal.
- case Branch::kFarLiteral:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- offset += (offset & 0x8000) << 1; // Account for sign extension in lw.
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Lui(AT, High16Bits(offset));
- Addu(AT, AT, GetR2PcRelBaseRegister(rhs));
- Lw(lhs, AT, Low16Bits(offset));
- break;
-
- // R6 short branches.
- case Branch::kR6UncondBranch:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Bc(offset);
- break;
- case Branch::kR6CondBranch:
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- EmitBcondR6(condition, lhs, rhs, offset);
- DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
- if (delayed_instruction != Branch::kUnfilledDelaySlot) {
- Emit(delayed_instruction);
- } else {
- // TODO: improve by filling the forbidden slot (IFF this is
- // a forbidden and not a delay slot).
- Nop();
- }
- break;
- case Branch::kR6Call:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Balc(offset);
- break;
- case Branch::kR6BareUncondBranch:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Bc(offset);
- break;
- case Branch::kR6BareCondBranch:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- EmitBcondR6(condition, lhs, rhs, offset);
- break;
- case Branch::kR6BareCall:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Balc(offset);
- break;
-
- // R6 near label.
- case Branch::kR6Label:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Addiupc(lhs, offset);
- break;
- // R6 near literal.
- case Branch::kR6Literal:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Lwpc(lhs, offset);
- break;
-
- // R6 long branches.
- case Branch::kR6LongUncondBranch:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Auipc(AT, High16Bits(offset));
- Jic(AT, Low16Bits(offset));
- break;
- case Branch::kR6LongCondBranch:
- DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
- if (delayed_instruction != Branch::kUnfilledDelaySlot) {
- Emit(delayed_instruction);
- }
- EmitBcondR6(Branch::OppositeCondition(condition), lhs, rhs, 2);
- offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Auipc(AT, High16Bits(offset));
- Jic(AT, Low16Bits(offset));
- break;
- case Branch::kR6LongCall:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- offset += (offset & 0x8000) << 1; // Account for sign extension in jialc.
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Auipc(AT, High16Bits(offset));
- Jialc(AT, Low16Bits(offset));
- break;
-
- // R6 far label.
- case Branch::kR6FarLabel:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- offset += (offset & 0x8000) << 1; // Account for sign extension in addiu.
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Auipc(AT, High16Bits(offset));
- Addiu(lhs, AT, Low16Bits(offset));
- break;
- // R6 far literal.
- case Branch::kR6FarLiteral:
- DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
- offset += (offset & 0x8000) << 1; // Account for sign extension in lw.
- CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
- Auipc(AT, High16Bits(offset));
- Lw(lhs, AT, Low16Bits(offset));
- break;
- }
- CHECK_EQ(overwrite_location_, branch->GetEndLocation());
- CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize));
- if (patcher_label != nullptr) {
- // The patched instruction should look like one.
- uint32_t patched_instruction = buffer_.Load<uint32_t>(GetLabelLocation(patcher_label));
- CHECK(!IsAbsorbableInstruction(patched_instruction));
- }
-}
-
-void MipsAssembler::B(MipsLabel* label, bool is_bare) {
- Buncond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare);
-}
-
-void MipsAssembler::Bal(MipsLabel* label, bool is_bare) {
- Call(label, /* is_r6= */ (IsR6() && !is_bare), is_bare);
-}
-
-void MipsAssembler::Beq(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondEQ, rs, rt);
-}
-
-void MipsAssembler::Bne(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondNE, rs, rt);
-}
-
-void MipsAssembler::Beqz(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondEQZ, rt);
-}
-
-void MipsAssembler::Bnez(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondNEZ, rt);
-}
-
-void MipsAssembler::Bltz(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondLTZ, rt);
-}
-
-void MipsAssembler::Bgez(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondGEZ, rt);
-}
-
-void MipsAssembler::Blez(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondLEZ, rt);
-}
-
-void MipsAssembler::Bgtz(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondGTZ, rt);
-}
-
-bool MipsAssembler::CanExchangeWithSlt(Register rs, Register rt) const {
- // If the instruction modifies AT, `rs` or `rt`, it can't be exchanged with the slt[u]
- // instruction because either slt[u] depends on `rs` or `rt` or the following
- // conditional branch depends on AT set by slt[u].
- // Likewise, if the instruction depends on AT, it can't be exchanged with slt[u]
- // because slt[u] changes AT.
- return (delay_slot_.instruction_ != 0 &&
- (delay_slot_.masks_.gpr_outs_ & ((1u << AT) | (1u << rs) | (1u << rt))) == 0 &&
- (delay_slot_.masks_.gpr_ins_ & (1u << AT)) == 0);
-}
-
-void MipsAssembler::ExchangeWithSlt(const DelaySlot& forwarded_slot) {
- // Exchange the last two instructions in the assembler buffer.
- size_t size = buffer_.Size();
- CHECK_GE(size, 2 * sizeof(uint32_t));
- size_t pos1 = size - 2 * sizeof(uint32_t);
- size_t pos2 = size - sizeof(uint32_t);
- uint32_t instr1 = buffer_.Load<uint32_t>(pos1);
- uint32_t instr2 = buffer_.Load<uint32_t>(pos2);
- CHECK_EQ(instr1, forwarded_slot.instruction_);
- CHECK_EQ(instr2, delay_slot_.instruction_);
- buffer_.Store<uint32_t>(pos1, instr2);
- buffer_.Store<uint32_t>(pos2, instr1);
- // Set the current delay slot information to that of the last instruction
- // in the buffer.
- delay_slot_ = forwarded_slot;
-}
-
-void MipsAssembler::GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt) {
- // If possible, exchange the slt[u] instruction with the preceding instruction,
- // so it can fill the delay slot.
- DelaySlot forwarded_slot = delay_slot_;
- bool exchange = CanExchangeWithSlt(rs, rt);
- if (exchange) {
- // The last instruction cannot be used in a different delay slot,
- // do not commit the label before it (if any).
- DsFsmDropLabel();
- }
- if (unsigned_slt) {
- Sltu(AT, rs, rt);
- } else {
- Slt(AT, rs, rt);
- }
- if (exchange) {
- ExchangeWithSlt(forwarded_slot);
- }
-}
-
-void MipsAssembler::Blt(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- if (IsR6() && !is_bare) {
- Bcond(label, IsR6(), is_bare, kCondLT, rs, rt);
- } else if (!Branch::IsNop(kCondLT, rs, rt)) {
- // Synthesize the instruction (not available on R2).
- GenerateSltForCondBranch(/* unsigned_slt= */ false, rs, rt);
- Bnez(AT, label, is_bare);
- }
-}
-
-void MipsAssembler::Bge(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- if (IsR6() && !is_bare) {
- Bcond(label, IsR6(), is_bare, kCondGE, rs, rt);
- } else if (Branch::IsUncond(kCondGE, rs, rt)) {
- B(label, is_bare);
- } else {
- // Synthesize the instruction (not available on R2).
- GenerateSltForCondBranch(/* unsigned_slt= */ false, rs, rt);
- Beqz(AT, label, is_bare);
- }
-}
-
-void MipsAssembler::Bltu(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- if (IsR6() && !is_bare) {
- Bcond(label, IsR6(), is_bare, kCondLTU, rs, rt);
- } else if (!Branch::IsNop(kCondLTU, rs, rt)) {
- // Synthesize the instruction (not available on R2).
- GenerateSltForCondBranch(/* unsigned_slt= */ true, rs, rt);
- Bnez(AT, label, is_bare);
- }
-}
-
-void MipsAssembler::Bgeu(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- if (IsR6() && !is_bare) {
- Bcond(label, IsR6(), is_bare, kCondGEU, rs, rt);
- } else if (Branch::IsUncond(kCondGEU, rs, rt)) {
- B(label, is_bare);
- } else {
- // Synthesize the instruction (not available on R2).
- GenerateSltForCondBranch(/* unsigned_slt= */ true, rs, rt);
- Beqz(AT, label, is_bare);
- }
-}
-
-void MipsAssembler::Bc1f(MipsLabel* label, bool is_bare) {
- Bc1f(0, label, is_bare);
-}
-
-void MipsAssembler::Bc1f(int cc, MipsLabel* label, bool is_bare) {
- CHECK(IsUint<3>(cc)) << cc;
- Bcond(label, /* is_r6= */ false, is_bare, kCondF, static_cast<Register>(cc), ZERO);
-}
-
-void MipsAssembler::Bc1t(MipsLabel* label, bool is_bare) {
- Bc1t(0, label, is_bare);
-}
-
-void MipsAssembler::Bc1t(int cc, MipsLabel* label, bool is_bare) {
- CHECK(IsUint<3>(cc)) << cc;
- Bcond(label, /* is_r6= */ false, is_bare, kCondT, static_cast<Register>(cc), ZERO);
-}
-
-void MipsAssembler::Bc(MipsLabel* label, bool is_bare) {
- Buncond(label, /* is_r6= */ true, is_bare);
-}
-
-void MipsAssembler::Balc(MipsLabel* label, bool is_bare) {
- Call(label, /* is_r6= */ true, is_bare);
-}
-
-void MipsAssembler::Beqc(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondEQ, rs, rt);
-}
-
-void MipsAssembler::Bnec(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondNE, rs, rt);
-}
-
-void MipsAssembler::Beqzc(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondEQZ, rt);
-}
-
-void MipsAssembler::Bnezc(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondNEZ, rt);
-}
-
-void MipsAssembler::Bltzc(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondLTZ, rt);
-}
-
-void MipsAssembler::Bgezc(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondGEZ, rt);
-}
-
-void MipsAssembler::Blezc(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondLEZ, rt);
-}
-
-void MipsAssembler::Bgtzc(Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondGTZ, rt);
-}
-
-void MipsAssembler::Bltc(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondLT, rs, rt);
-}
-
-void MipsAssembler::Bgec(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondGE, rs, rt);
-}
-
-void MipsAssembler::Bltuc(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondLTU, rs, rt);
-}
-
-void MipsAssembler::Bgeuc(Register rs, Register rt, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondGEU, rs, rt);
-}
-
-void MipsAssembler::Bc1eqz(FRegister ft, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondF, static_cast<Register>(ft), ZERO);
-}
-
-void MipsAssembler::Bc1nez(FRegister ft, MipsLabel* label, bool is_bare) {
- Bcond(label, /* is_r6= */ true, is_bare, kCondT, static_cast<Register>(ft), ZERO);
-}
-
-void MipsAssembler::AdjustBaseAndOffset(Register& base,
- int32_t& offset,
- bool is_doubleword,
- bool is_float) {
- // This method is used to adjust the base register and offset pair
- // for a load/store when the offset doesn't fit into int16_t.
- // It is assumed that `base + offset` is sufficiently aligned for memory
- // operands that are machine word in size or smaller. For doubleword-sized
- // operands it's assumed that `base` is a multiple of 8, while `offset`
- // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
- // and spilled variables on the stack accessed relative to the stack
- // pointer register).
- // We preserve the "alignment" of `offset` by adjusting it by a multiple of 8.
- CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`.
-
- bool doubleword_aligned = IsAligned<kMipsDoublewordSize>(offset);
- bool two_accesses = is_doubleword && (!is_float || !doubleword_aligned);
-
- // IsInt<16> must be passed a signed value, hence the static cast below.
- if (IsInt<16>(offset) &&
- (!two_accesses || IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)))) {
- // Nothing to do: `offset` (and, if needed, `offset + 4`) fits into int16_t.
- return;
- }
-
- // Remember the "(mis)alignment" of `offset`, it will be checked at the end.
- uint32_t misalignment = offset & (kMipsDoublewordSize - 1);
-
- // Do not load the whole 32-bit `offset` if it can be represented as
- // a sum of two 16-bit signed offsets. This can save an instruction or two.
- // To simplify matters, only do this for a symmetric range of offsets from
- // about -64KB to about +64KB, allowing further addition of 4 when accessing
- // 64-bit variables with two 32-bit accesses.
- constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7ff8; // Max int16_t that's a multiple of 8.
- constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment;
- if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
- Addiu(AT, base, kMinOffsetForSimpleAdjustment);
- offset -= kMinOffsetForSimpleAdjustment;
- } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
- Addiu(AT, base, -kMinOffsetForSimpleAdjustment);
- offset += kMinOffsetForSimpleAdjustment;
- } else if (IsR6()) {
- // On R6 take advantage of the aui instruction, e.g.:
- // aui AT, base, offset_high
- // lw reg_lo, offset_low(AT)
- // lw reg_hi, (offset_low+4)(AT)
- // or when offset_low+4 overflows int16_t:
- // aui AT, base, offset_high
- // addiu AT, AT, 8
- // lw reg_lo, (offset_low-8)(AT)
- // lw reg_hi, (offset_low-4)(AT)
- int16_t offset_high = High16Bits(offset);
- int16_t offset_low = Low16Bits(offset);
- offset_high += (offset_low < 0) ? 1 : 0; // Account for offset sign extension in load/store.
- Aui(AT, base, offset_high);
- if (two_accesses && !IsInt<16>(static_cast<int32_t>(offset_low + kMipsWordSize))) {
- // Avoid overflow in the 16-bit offset of the load/store instruction when adding 4.
- Addiu(AT, AT, kMipsDoublewordSize);
- offset_low -= kMipsDoublewordSize;
- }
- offset = offset_low;
- } else {
- // Do not load the whole 32-bit `offset` if it can be represented as
- // a sum of three 16-bit signed offsets. This can save an instruction.
- // To simplify matters, only do this for a symmetric range of offsets from
- // about -96KB to about +96KB, allowing further addition of 4 when accessing
- // 64-bit variables with two 32-bit accesses.
- constexpr int32_t kMinOffsetForMediumAdjustment = 2 * kMinOffsetForSimpleAdjustment;
- constexpr int32_t kMaxOffsetForMediumAdjustment = 3 * kMinOffsetForSimpleAdjustment;
- if (0 <= offset && offset <= kMaxOffsetForMediumAdjustment) {
- Addiu(AT, base, kMinOffsetForMediumAdjustment / 2);
- Addiu(AT, AT, kMinOffsetForMediumAdjustment / 2);
- offset -= kMinOffsetForMediumAdjustment;
- } else if (-kMaxOffsetForMediumAdjustment <= offset && offset < 0) {
- Addiu(AT, base, -kMinOffsetForMediumAdjustment / 2);
- Addiu(AT, AT, -kMinOffsetForMediumAdjustment / 2);
- offset += kMinOffsetForMediumAdjustment;
- } else {
- // Now that all shorter options have been exhausted, load the full 32-bit offset.
- int32_t loaded_offset = RoundDown(offset, kMipsDoublewordSize);
- LoadConst32(AT, loaded_offset);
- Addu(AT, AT, base);
- offset -= loaded_offset;
- }
- }
- base = AT;
-
- CHECK(IsInt<16>(offset));
- if (two_accesses) {
- CHECK(IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)));
- }
- CHECK_EQ(misalignment, offset & (kMipsDoublewordSize - 1));
-}
-
-void MipsAssembler::AdjustBaseOffsetAndElementSizeShift(Register& base,
- int32_t& offset,
- int& element_size_shift) {
- // This method is used to adjust the base register, offset and element_size_shift
- // for a vector load/store when the offset doesn't fit into allowed number of bits.
- // MSA ld.df and st.df instructions take signed offsets as arguments, but maximum
- // offset is dependant on the size of the data format df (10-bit offsets for ld.b,
- // 11-bit for ld.h, 12-bit for ld.w and 13-bit for ld.d).
- // If element_size_shift is non-negative at entry, it won't be changed, but offset
- // will be checked for appropriate alignment. If negative at entry, it will be
- // adjusted based on offset for maximum fit.
- // It's assumed that `base` is a multiple of 8.
- CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`.
-
- if (element_size_shift >= 0) {
- CHECK_LE(element_size_shift, TIMES_8);
- CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift);
- } else if (IsAligned<kMipsDoublewordSize>(offset)) {
- element_size_shift = TIMES_8;
- } else if (IsAligned<kMipsWordSize>(offset)) {
- element_size_shift = TIMES_4;
- } else if (IsAligned<kMipsHalfwordSize>(offset)) {
- element_size_shift = TIMES_2;
- } else {
- element_size_shift = TIMES_1;
- }
-
- const int low_len = 10 + element_size_shift; // How many low bits of `offset` ld.df/st.df
- // will take.
- int16_t low = offset & ((1 << low_len) - 1); // Isolate these bits.
- low -= (low & (1 << (low_len - 1))) << 1; // Sign-extend these bits.
- if (low == offset) {
- return; // `offset` fits into ld.df/st.df.
- }
-
- // First, see if `offset` can be represented as a sum of two or three signed offsets.
- // This can save an instruction or two.
-
- // Max int16_t that's a multiple of element size.
- const int32_t kMaxDeltaForSimpleAdjustment = 0x8000 - (1 << element_size_shift);
- // Max ld.df/st.df offset that's a multiple of element size.
- const int32_t kMaxLoadStoreOffset = 0x1ff << element_size_shift;
- const int32_t kMaxOffsetForSimpleAdjustment = kMaxDeltaForSimpleAdjustment + kMaxLoadStoreOffset;
- const int32_t kMinOffsetForMediumAdjustment = 2 * kMaxDeltaForSimpleAdjustment;
- const int32_t kMaxOffsetForMediumAdjustment = kMinOffsetForMediumAdjustment + kMaxLoadStoreOffset;
-
- if (IsInt<16>(offset)) {
- Addiu(AT, base, offset);
- offset = 0;
- } else if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
- Addiu(AT, base, kMaxDeltaForSimpleAdjustment);
- offset -= kMaxDeltaForSimpleAdjustment;
- } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
- Addiu(AT, base, -kMaxDeltaForSimpleAdjustment);
- offset += kMaxDeltaForSimpleAdjustment;
- } else if (!IsR6() && 0 <= offset && offset <= kMaxOffsetForMediumAdjustment) {
- Addiu(AT, base, kMaxDeltaForSimpleAdjustment);
- if (offset <= kMinOffsetForMediumAdjustment) {
- Addiu(AT, AT, offset - kMaxDeltaForSimpleAdjustment);
- offset = 0;
- } else {
- Addiu(AT, AT, kMaxDeltaForSimpleAdjustment);
- offset -= kMinOffsetForMediumAdjustment;
- }
- } else if (!IsR6() && -kMaxOffsetForMediumAdjustment <= offset && offset < 0) {
- Addiu(AT, base, -kMaxDeltaForSimpleAdjustment);
- if (-kMinOffsetForMediumAdjustment <= offset) {
- Addiu(AT, AT, offset + kMaxDeltaForSimpleAdjustment);
- offset = 0;
- } else {
- Addiu(AT, AT, -kMaxDeltaForSimpleAdjustment);
- offset += kMinOffsetForMediumAdjustment;
- }
- } else {
- // 16-bit or smaller parts of `offset`:
- // |31 hi 16|15 mid 13-10|12-9 low 0|
- //
- // Instructions that supply each part as a signed integer addend:
- // |aui |addiu |ld.df/st.df |
- uint32_t tmp = static_cast<uint32_t>(offset) - low; // Exclude `low` from the rest of `offset`
- // (accounts for sign of `low`).
- tmp += (tmp & (UINT32_C(1) << 15)) << 1; // Account for sign extension in addiu.
- int16_t mid = Low16Bits(tmp);
- int16_t hi = High16Bits(tmp);
- if (IsR6()) {
- Aui(AT, base, hi);
- } else {
- Lui(AT, hi);
- Addu(AT, AT, base);
- }
- if (mid != 0) {
- Addiu(AT, AT, mid);
- }
- offset = low;
- }
- base = AT;
- CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift);
- CHECK(IsInt<10>(offset >> element_size_shift));
-}
-
-void MipsAssembler::LoadFromOffset(LoadOperandType type,
- Register reg,
- Register base,
- int32_t offset) {
- LoadFromOffset<>(type, reg, base, offset);
-}
-
-void MipsAssembler::LoadSFromOffset(FRegister reg, Register base, int32_t offset) {
- LoadSFromOffset<>(reg, base, offset);
-}
-
-void MipsAssembler::LoadDFromOffset(FRegister reg, Register base, int32_t offset) {
- LoadDFromOffset<>(reg, base, offset);
-}
-
-void MipsAssembler::LoadQFromOffset(FRegister reg, Register base, int32_t offset) {
- LoadQFromOffset<>(reg, base, offset);
-}
-
-void MipsAssembler::EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset,
- size_t size) {
- MipsManagedRegister dst = m_dst.AsMips();
- if (dst.IsNoRegister()) {
- CHECK_EQ(0u, size) << dst;
- } else if (dst.IsCoreRegister()) {
- CHECK_EQ(kMipsWordSize, size) << dst;
- LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset);
- } else if (dst.IsRegisterPair()) {
- CHECK_EQ(kMipsDoublewordSize, size) << dst;
- LoadFromOffset(kLoadDoubleword, dst.AsRegisterPairLow(), src_register, src_offset);
- } else if (dst.IsFRegister()) {
- if (size == kMipsWordSize) {
- LoadSFromOffset(dst.AsFRegister(), src_register, src_offset);
- } else {
- CHECK_EQ(kMipsDoublewordSize, size) << dst;
- LoadDFromOffset(dst.AsFRegister(), src_register, src_offset);
- }
- } else if (dst.IsDRegister()) {
- CHECK_EQ(kMipsDoublewordSize, size) << dst;
- LoadDFromOffset(dst.AsOverlappingDRegisterLow(), src_register, src_offset);
- }
-}
-
-void MipsAssembler::StoreToOffset(StoreOperandType type,
- Register reg,
- Register base,
- int32_t offset) {
- StoreToOffset<>(type, reg, base, offset);
-}
-
-void MipsAssembler::StoreSToOffset(FRegister reg, Register base, int32_t offset) {
- StoreSToOffset<>(reg, base, offset);
-}
-
-void MipsAssembler::StoreDToOffset(FRegister reg, Register base, int32_t offset) {
- StoreDToOffset<>(reg, base, offset);
-}
-
-void MipsAssembler::StoreQToOffset(FRegister reg, Register base, int32_t offset) {
- StoreQToOffset<>(reg, base, offset);
-}
-
-static dwarf::Reg DWARFReg(Register reg) {
- return dwarf::Reg::MipsCore(static_cast<int>(reg));
-}
-
-constexpr size_t kFramePointerSize = 4;
-
-void MipsAssembler::BuildFrame(size_t frame_size,
- ManagedRegister method_reg,
- ArrayRef<const ManagedRegister> callee_save_regs,
- const ManagedRegisterEntrySpills& entry_spills) {
- CHECK_ALIGNED(frame_size, kStackAlignment);
- DCHECK(!overwriting_);
-
- // Increase frame to required size.
- IncreaseFrameSize(frame_size);
-
- // Push callee saves and return address.
- int stack_offset = frame_size - kFramePointerSize;
- StoreToOffset(kStoreWord, RA, SP, stack_offset);
- cfi_.RelOffset(DWARFReg(RA), stack_offset);
- for (int i = callee_save_regs.size() - 1; i >= 0; --i) {
- stack_offset -= kFramePointerSize;
- Register reg = callee_save_regs[i].AsMips().AsCoreRegister();
- StoreToOffset(kStoreWord, reg, SP, stack_offset);
- cfi_.RelOffset(DWARFReg(reg), stack_offset);
- }
-
- // Write out Method*.
- StoreToOffset(kStoreWord, method_reg.AsMips().AsCoreRegister(), SP, 0);
-
- // Write out entry spills.
- int32_t offset = frame_size + kFramePointerSize;
- for (const ManagedRegisterSpill& spill : entry_spills) {
- MipsManagedRegister reg = spill.AsMips();
- if (reg.IsNoRegister()) {
- offset += spill.getSize();
- } else if (reg.IsCoreRegister()) {
- StoreToOffset(kStoreWord, reg.AsCoreRegister(), SP, offset);
- offset += kMipsWordSize;
- } else if (reg.IsFRegister()) {
- StoreSToOffset(reg.AsFRegister(), SP, offset);
- offset += kMipsWordSize;
- } else if (reg.IsDRegister()) {
- StoreDToOffset(reg.AsOverlappingDRegisterLow(), SP, offset);
- offset += kMipsDoublewordSize;
- }
- }
-}
-
-void MipsAssembler::RemoveFrame(size_t frame_size,
- ArrayRef<const ManagedRegister> callee_save_regs,
- bool may_suspend ATTRIBUTE_UNUSED) {
- CHECK_ALIGNED(frame_size, kStackAlignment);
- DCHECK(!overwriting_);
- cfi_.RememberState();
-
- // Pop callee saves and return address.
- int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize;
- for (size_t i = 0; i < callee_save_regs.size(); ++i) {
- Register reg = callee_save_regs[i].AsMips().AsCoreRegister();
- LoadFromOffset(kLoadWord, reg, SP, stack_offset);
- cfi_.Restore(DWARFReg(reg));
- stack_offset += kFramePointerSize;
- }
- LoadFromOffset(kLoadWord, RA, SP, stack_offset);
- cfi_.Restore(DWARFReg(RA));
-
- // Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
- bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
- bool reordering = SetReorder(false);
- if (exchange) {
- // Jump to the return address.
- Jr(RA);
- // Decrease frame to required size.
- DecreaseFrameSize(frame_size); // Single instruction in delay slot.
- } else {
- // Decrease frame to required size.
- DecreaseFrameSize(frame_size);
- // Jump to the return address.
- Jr(RA);
- Nop(); // In delay slot.
- }
- SetReorder(reordering);
-
- // The CFI should be restored for any code that follows the exit block.
- cfi_.RestoreState();
- cfi_.DefCFAOffset(frame_size);
-}
-
-void MipsAssembler::IncreaseFrameSize(size_t adjust) {
- CHECK_ALIGNED(adjust, kFramePointerSize);
- Addiu32(SP, SP, -adjust);
- cfi_.AdjustCFAOffset(adjust);
- if (overwriting_) {
- cfi_.OverrideDelayedPC(overwrite_location_);
- }
-}
-
-void MipsAssembler::DecreaseFrameSize(size_t adjust) {
- CHECK_ALIGNED(adjust, kFramePointerSize);
- Addiu32(SP, SP, adjust);
- cfi_.AdjustCFAOffset(-adjust);
- if (overwriting_) {
- cfi_.OverrideDelayedPC(overwrite_location_);
- }
-}
-
-void MipsAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) {
- MipsManagedRegister src = msrc.AsMips();
- if (src.IsNoRegister()) {
- CHECK_EQ(0u, size);
- } else if (src.IsCoreRegister()) {
- CHECK_EQ(kMipsWordSize, size);
- StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
- } else if (src.IsRegisterPair()) {
- CHECK_EQ(kMipsDoublewordSize, size);
- StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value());
- StoreToOffset(kStoreWord, src.AsRegisterPairHigh(),
- SP, dest.Int32Value() + kMipsWordSize);
- } else if (src.IsFRegister()) {
- if (size == kMipsWordSize) {
- StoreSToOffset(src.AsFRegister(), SP, dest.Int32Value());
- } else {
- CHECK_EQ(kMipsDoublewordSize, size);
- StoreDToOffset(src.AsFRegister(), SP, dest.Int32Value());
- }
- } else if (src.IsDRegister()) {
- CHECK_EQ(kMipsDoublewordSize, size);
- StoreDToOffset(src.AsOverlappingDRegisterLow(), SP, dest.Int32Value());
- }
-}
-
-void MipsAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
- MipsManagedRegister src = msrc.AsMips();
- CHECK(src.IsCoreRegister());
- StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
-}
-
-void MipsAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
- MipsManagedRegister src = msrc.AsMips();
- CHECK(src.IsCoreRegister());
- StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
-}
-
-void MipsAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
- ManagedRegister mscratch) {
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(scratch.IsCoreRegister()) << scratch;
- LoadConst32(scratch.AsCoreRegister(), imm);
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
-}
-
-void MipsAssembler::StoreStackOffsetToThread(ThreadOffset32 thr_offs,
- FrameOffset fr_offs,
- ManagedRegister mscratch) {
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(scratch.IsCoreRegister()) << scratch;
- Addiu32(scratch.AsCoreRegister(), SP, fr_offs.Int32Value());
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
- S1, thr_offs.Int32Value());
-}
-
-void MipsAssembler::StoreStackPointerToThread(ThreadOffset32 thr_offs) {
- StoreToOffset(kStoreWord, SP, S1, thr_offs.Int32Value());
-}
-
-void MipsAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc,
- FrameOffset in_off, ManagedRegister mscratch) {
- MipsManagedRegister src = msrc.AsMips();
- MipsManagedRegister scratch = mscratch.AsMips();
- StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value());
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize);
-}
-
-void MipsAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
- return EmitLoad(mdest, SP, src.Int32Value(), size);
-}
-
-void MipsAssembler::LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) {
- return EmitLoad(mdest, S1, src.Int32Value(), size);
-}
-
-void MipsAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
- MipsManagedRegister dest = mdest.AsMips();
- CHECK(dest.IsCoreRegister());
- LoadFromOffset(kLoadWord, dest.AsCoreRegister(), SP, src.Int32Value());
-}
-
-void MipsAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
- bool unpoison_reference) {
- MipsManagedRegister dest = mdest.AsMips();
- CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister());
- LoadFromOffset(kLoadWord, dest.AsCoreRegister(),
- base.AsMips().AsCoreRegister(), offs.Int32Value());
- if (unpoison_reference) {
- MaybeUnpoisonHeapReference(dest.AsCoreRegister());
- }
-}
-
-void MipsAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) {
- MipsManagedRegister dest = mdest.AsMips();
- CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister());
- LoadFromOffset(kLoadWord, dest.AsCoreRegister(),
- base.AsMips().AsCoreRegister(), offs.Int32Value());
-}
-
-void MipsAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) {
- MipsManagedRegister dest = mdest.AsMips();
- CHECK(dest.IsCoreRegister());
- LoadFromOffset(kLoadWord, dest.AsCoreRegister(), S1, offs.Int32Value());
-}
-
-void MipsAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
- UNIMPLEMENTED(FATAL) << "no sign extension necessary for mips";
-}
-
-void MipsAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
- UNIMPLEMENTED(FATAL) << "no zero extension necessary for mips";
-}
-
-void MipsAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
- MipsManagedRegister dest = mdest.AsMips();
- MipsManagedRegister src = msrc.AsMips();
- if (!dest.Equals(src)) {
- if (dest.IsCoreRegister()) {
- CHECK(src.IsCoreRegister()) << src;
- Move(dest.AsCoreRegister(), src.AsCoreRegister());
- } else if (dest.IsFRegister()) {
- CHECK(src.IsFRegister()) << src;
- if (size == kMipsWordSize) {
- MovS(dest.AsFRegister(), src.AsFRegister());
- } else {
- CHECK_EQ(kMipsDoublewordSize, size);
- MovD(dest.AsFRegister(), src.AsFRegister());
- }
- } else if (dest.IsDRegister()) {
- CHECK(src.IsDRegister()) << src;
- MovD(dest.AsOverlappingDRegisterLow(), src.AsOverlappingDRegisterLow());
- } else {
- CHECK(dest.IsRegisterPair()) << dest;
- CHECK(src.IsRegisterPair()) << src;
- // Ensure that the first move doesn't clobber the input of the second.
- if (src.AsRegisterPairHigh() != dest.AsRegisterPairLow()) {
- Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow());
- Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh());
- } else {
- Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh());
- Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow());
- }
- }
- }
-}
-
-void MipsAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) {
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(scratch.IsCoreRegister()) << scratch;
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
-}
-
-void MipsAssembler::CopyRawPtrFromThread(FrameOffset fr_offs,
- ThreadOffset32 thr_offs,
- ManagedRegister mscratch) {
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(scratch.IsCoreRegister()) << scratch;
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
- S1, thr_offs.Int32Value());
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
- SP, fr_offs.Int32Value());
-}
-
-void MipsAssembler::CopyRawPtrToThread(ThreadOffset32 thr_offs,
- FrameOffset fr_offs,
- ManagedRegister mscratch) {
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(scratch.IsCoreRegister()) << scratch;
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
- SP, fr_offs.Int32Value());
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
- S1, thr_offs.Int32Value());
-}
-
-void MipsAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) {
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(scratch.IsCoreRegister()) << scratch;
- CHECK(size == kMipsWordSize || size == kMipsDoublewordSize) << size;
- if (size == kMipsWordSize) {
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
- } else if (size == kMipsDoublewordSize) {
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + kMipsWordSize);
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize);
- }
-}
-
-void MipsAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
- ManagedRegister mscratch, size_t size) {
- Register scratch = mscratch.AsMips().AsCoreRegister();
- CHECK_EQ(size, kMipsWordSize);
- LoadFromOffset(kLoadWord, scratch, src_base.AsMips().AsCoreRegister(), src_offset.Int32Value());
- StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value());
-}
-
-void MipsAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
- ManagedRegister mscratch, size_t size) {
- Register scratch = mscratch.AsMips().AsCoreRegister();
- CHECK_EQ(size, kMipsWordSize);
- LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value());
- StoreToOffset(kStoreWord, scratch, dest_base.AsMips().AsCoreRegister(), dest_offset.Int32Value());
-}
-
-void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
- FrameOffset src_base ATTRIBUTE_UNUSED,
- Offset src_offset ATTRIBUTE_UNUSED,
- ManagedRegister mscratch ATTRIBUTE_UNUSED,
- size_t size ATTRIBUTE_UNUSED) {
- UNIMPLEMENTED(FATAL) << "no MIPS implementation";
-}
-
-void MipsAssembler::Copy(ManagedRegister dest, Offset dest_offset,
- ManagedRegister src, Offset src_offset,
- ManagedRegister mscratch, size_t size) {
- CHECK_EQ(size, kMipsWordSize);
- Register scratch = mscratch.AsMips().AsCoreRegister();
- LoadFromOffset(kLoadWord, scratch, src.AsMips().AsCoreRegister(), src_offset.Int32Value());
- StoreToOffset(kStoreWord, scratch, dest.AsMips().AsCoreRegister(), dest_offset.Int32Value());
-}
-
-void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
- Offset dest_offset ATTRIBUTE_UNUSED,
- FrameOffset src ATTRIBUTE_UNUSED,
- Offset src_offset ATTRIBUTE_UNUSED,
- ManagedRegister mscratch ATTRIBUTE_UNUSED,
- size_t size ATTRIBUTE_UNUSED) {
- UNIMPLEMENTED(FATAL) << "no MIPS implementation";
-}
-
-void MipsAssembler::MemoryBarrier(ManagedRegister) {
- // TODO: sync?
- UNIMPLEMENTED(FATAL) << "no MIPS implementation";
-}
-
-void MipsAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
- FrameOffset handle_scope_offset,
- ManagedRegister min_reg,
- bool null_allowed) {
- MipsManagedRegister out_reg = mout_reg.AsMips();
- MipsManagedRegister in_reg = min_reg.AsMips();
- CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg;
- CHECK(out_reg.IsCoreRegister()) << out_reg;
- if (null_allowed) {
- MipsLabel null_arg;
- // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
- // the address in the handle scope holding the reference.
- // E.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset).
- if (in_reg.IsNoRegister()) {
- LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
- SP, handle_scope_offset.Int32Value());
- in_reg = out_reg;
- }
- if (!out_reg.Equals(in_reg)) {
- LoadConst32(out_reg.AsCoreRegister(), 0);
- }
- Beqz(in_reg.AsCoreRegister(), &null_arg);
- Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
- Bind(&null_arg);
- } else {
- Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
- }
-}
-
-void MipsAssembler::CreateHandleScopeEntry(FrameOffset out_off,
- FrameOffset handle_scope_offset,
- ManagedRegister mscratch,
- bool null_allowed) {
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(scratch.IsCoreRegister()) << scratch;
- if (null_allowed) {
- MipsLabel null_arg;
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
- // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
- // the address in the handle scope holding the reference.
- // E.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset).
- Beqz(scratch.AsCoreRegister(), &null_arg);
- Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
- Bind(&null_arg);
- } else {
- Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
- }
- StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value());
-}
-
-// Given a handle scope entry, load the associated reference.
-void MipsAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
- ManagedRegister min_reg) {
- MipsManagedRegister out_reg = mout_reg.AsMips();
- MipsManagedRegister in_reg = min_reg.AsMips();
- CHECK(out_reg.IsCoreRegister()) << out_reg;
- CHECK(in_reg.IsCoreRegister()) << in_reg;
- MipsLabel null_arg;
- if (!out_reg.Equals(in_reg)) {
- LoadConst32(out_reg.AsCoreRegister(), 0);
- }
- Beqz(in_reg.AsCoreRegister(), &null_arg);
- LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
- in_reg.AsCoreRegister(), 0);
- Bind(&null_arg);
-}
-
-void MipsAssembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED,
- bool could_be_null ATTRIBUTE_UNUSED) {
- // TODO: not validating references.
-}
-
-void MipsAssembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED,
- bool could_be_null ATTRIBUTE_UNUSED) {
- // TODO: not validating references.
-}
-
-void MipsAssembler::Jump(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) {
- MipsManagedRegister base = mbase.AsMips();
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(base.IsCoreRegister()) << base;
- CHECK(scratch.IsCoreRegister()) << scratch;
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
- base.AsCoreRegister(), offset.Int32Value());
- Jr(scratch.AsCoreRegister());
- NopIfNoReordering();
-}
-
-void MipsAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) {
- MipsManagedRegister base = mbase.AsMips();
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(base.IsCoreRegister()) << base;
- CHECK(scratch.IsCoreRegister()) << scratch;
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
- base.AsCoreRegister(), offset.Int32Value());
- Jalr(scratch.AsCoreRegister());
- NopIfNoReordering();
- // TODO: place reference map on call.
-}
-
-void MipsAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
- MipsManagedRegister scratch = mscratch.AsMips();
- CHECK(scratch.IsCoreRegister()) << scratch;
- // Call *(*(SP + base) + offset)
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value());
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
- scratch.AsCoreRegister(), offset.Int32Value());
- Jalr(scratch.AsCoreRegister());
- NopIfNoReordering();
- // TODO: place reference map on call.
-}
-
-void MipsAssembler::CallFromThread(ThreadOffset32 offset ATTRIBUTE_UNUSED,
- ManagedRegister mscratch ATTRIBUTE_UNUSED) {
- UNIMPLEMENTED(FATAL) << "no mips implementation";
-}
-
-void MipsAssembler::GetCurrentThread(ManagedRegister tr) {
- Move(tr.AsMips().AsCoreRegister(), S1);
-}
-
-void MipsAssembler::GetCurrentThread(FrameOffset offset,
- ManagedRegister mscratch ATTRIBUTE_UNUSED) {
- StoreToOffset(kStoreWord, S1, SP, offset.Int32Value());
-}
-
-void MipsAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) {
- MipsManagedRegister scratch = mscratch.AsMips();
- exception_blocks_.emplace_back(scratch, stack_adjust);
- LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
- S1, Thread::ExceptionOffset<kMipsPointerSize>().Int32Value());
- Bnez(scratch.AsCoreRegister(), exception_blocks_.back().Entry());
-}
-
-void MipsAssembler::EmitExceptionPoll(MipsExceptionSlowPath* exception) {
- Bind(exception->Entry());
- if (exception->stack_adjust_ != 0) { // Fix up the frame.
- DecreaseFrameSize(exception->stack_adjust_);
- }
- // Pass exception object as argument.
- // Don't care about preserving A0 as this call won't return.
- CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
- Move(A0, exception->scratch_.AsCoreRegister());
- // Set up call to Thread::Current()->pDeliverException.
- LoadFromOffset(kLoadWord, T9, S1,
- QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, pDeliverException).Int32Value());
- Jr(T9);
- NopIfNoReordering();
-
- // Call never returns.
- Break();
-}
-
-} // namespace mips
-} // namespace art