summaryrefslogtreecommitdiff
path: root/compiler/optimizing
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/optimizing')
-rw-r--r--compiler/optimizing/bounds_check_elimination.cc26
-rw-r--r--compiler/optimizing/code_generator_arm.cc33
-rw-r--r--compiler/optimizing/code_generator_arm64.cc39
-rw-r--r--compiler/optimizing/code_generator_arm_vixl.cc64
-rw-r--r--compiler/optimizing/code_generator_x86.cc9
-rw-r--r--compiler/optimizing/code_generator_x86_64.cc200
-rw-r--r--compiler/optimizing/code_generator_x86_64.h3
-rw-r--r--compiler/optimizing/instruction_simplifier_arm.h2
-rw-r--r--compiler/optimizing/instruction_simplifier_arm64.h7
-rw-r--r--compiler/optimizing/instruction_simplifier_shared.cc19
-rw-r--r--compiler/optimizing/intrinsics_arm.cc7
-rw-r--r--compiler/optimizing/intrinsics_arm64.cc7
-rw-r--r--compiler/optimizing/intrinsics_arm_vixl.cc2694
-rw-r--r--compiler/optimizing/intrinsics_arm_vixl.h81
-rw-r--r--compiler/optimizing/intrinsics_x86.cc9
-rw-r--r--compiler/optimizing/intrinsics_x86_64.cc9
-rw-r--r--compiler/optimizing/load_store_elimination.cc56
-rw-r--r--compiler/optimizing/locations.cc5
-rw-r--r--compiler/optimizing/locations.h8
-rw-r--r--compiler/optimizing/loop_optimization.cc133
-rw-r--r--compiler/optimizing/loop_optimization.h4
-rw-r--r--compiler/optimizing/register_allocation_resolver.cc4
22 files changed, 3226 insertions, 193 deletions
diff --git a/compiler/optimizing/bounds_check_elimination.cc b/compiler/optimizing/bounds_check_elimination.cc
index d2357a5d05..7dc094b25f 100644
--- a/compiler/optimizing/bounds_check_elimination.cc
+++ b/compiler/optimizing/bounds_check_elimination.cc
@@ -548,7 +548,21 @@ class BCEVisitor : public HGraphVisitor {
void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
DCHECK(!IsAddedBlock(block));
first_index_bounds_check_map_.clear();
- HGraphVisitor::VisitBasicBlock(block);
+ // Visit phis and instructions using a safe iterator. The iteration protects
+ // against deleting the current instruction during iteration. However, it
+ // must advance next_ if that instruction is deleted during iteration.
+ for (HInstruction* instruction = block->GetFirstPhi(); instruction != nullptr;) {
+ DCHECK(instruction->IsInBlock());
+ next_ = instruction->GetNext();
+ instruction->Accept(this);
+ instruction = next_;
+ }
+ for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
+ DCHECK(instruction->IsInBlock());
+ next_ = instruction->GetNext();
+ instruction->Accept(this);
+ instruction = next_;
+ }
// We should never deoptimize from an osr method, otherwise we might wrongly optimize
// code dominated by the deoptimization.
if (!GetGraph()->IsCompilingOsr()) {
@@ -1798,7 +1812,12 @@ class BCEVisitor : public HGraphVisitor {
}
/** Helper method to replace an instruction with another instruction. */
- static void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) {
+ void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) {
+ // Safe iteration.
+ if (instruction == next_) {
+ next_ = next_->GetNext();
+ }
+ // Replace and remove.
instruction->ReplaceWith(replacement);
instruction->GetBlock()->RemoveInstruction(instruction);
}
@@ -1831,6 +1850,9 @@ class BCEVisitor : public HGraphVisitor {
// Range analysis based on induction variables.
InductionVarRange induction_range_;
+ // Safe iteration.
+ HInstruction* next_;
+
DISALLOW_COPY_AND_ASSIGN(BCEVisitor);
};
diff --git a/compiler/optimizing/code_generator_arm.cc b/compiler/optimizing/code_generator_arm.cc
index be65f89ef1..7cab97d2e5 100644
--- a/compiler/optimizing/code_generator_arm.cc
+++ b/compiler/optimizing/code_generator_arm.cc
@@ -638,6 +638,11 @@ class ReadBarrierMarkSlowPathARM : public SlowPathCodeARM {
(instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier marking slow path: "
<< instruction_->DebugName();
+ // The read barrier instrumentation of object ArrayGet
+ // instructions does not support the HIntermediateAddress
+ // instruction.
+ DCHECK(!(instruction_->IsArrayGet() &&
+ instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
__ Bind(GetEntryLabel());
// No need to save live registers; it's taken care of by the
@@ -894,6 +899,11 @@ class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM {
(instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified())
<< "Unexpected instruction in read barrier for heap reference slow path: "
<< instruction_->DebugName();
+ // The read barrier instrumentation of object ArrayGet
+ // instructions does not support the HIntermediateAddress
+ // instruction.
+ DCHECK(!(instruction_->IsArrayGet() &&
+ instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
@@ -4841,8 +4851,6 @@ void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
instruction->IsStringCharAt();
HInstruction* array_instr = instruction->GetArray();
bool has_intermediate_address = array_instr->IsIntermediateAddress();
- // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
- DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
switch (type) {
case Primitive::kPrimBoolean:
@@ -4915,6 +4923,11 @@ void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
}
case Primitive::kPrimNot: {
+ // The read barrier instrumentation of object ArrayGet
+ // instructions does not support the HIntermediateAddress
+ // instruction.
+ DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
+
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
@@ -5055,8 +5068,6 @@ void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) {
Location value_loc = locations->InAt(2);
HInstruction* array_instr = instruction->GetArray();
bool has_intermediate_address = array_instr->IsIntermediateAddress();
- // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
- DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
switch (value_type) {
case Primitive::kPrimBoolean:
@@ -5306,8 +5317,6 @@ void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) {
}
void LocationsBuilderARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
- // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
- DCHECK(!kEmitCompilerReadBarrier);
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
@@ -5322,9 +5331,6 @@ void InstructionCodeGeneratorARM::VisitIntermediateAddress(HIntermediateAddress*
Location first = locations->InAt(0);
Location second = locations->InAt(1);
- // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
- DCHECK(!kEmitCompilerReadBarrier);
-
if (second.IsRegister()) {
__ add(out.AsRegister<Register>(),
first.AsRegister<Register>(),
@@ -6843,7 +6849,7 @@ void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* i
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<Object> ref = *src; // Original reference load.
- // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
// }
@@ -6919,14 +6925,13 @@ void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* i
}
AddSlowPath(slow_path);
- // if (rb_state == ReadBarrier::gray_ptr_)
+ // if (rb_state == ReadBarrier::GrayState())
// ref = ReadBarrier::Mark(ref);
// Given the numeric representation, it's enough to check the low bit of the
// rb_state. We do that by shifting the bit out of the lock word with LSRS
// which can be a 16-bit instruction unlike the TST immediate.
- static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
- static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
- static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Lsrs(temp_reg, temp_reg, LockWord::kReadBarrierStateShift + 1);
__ b(slow_path->GetEntryLabel(), CS); // Carry flag is the last bit shifted out by LSRS.
__ Bind(slow_path->GetExitLabel());
diff --git a/compiler/optimizing/code_generator_arm64.cc b/compiler/optimizing/code_generator_arm64.cc
index b53750966d..d868984387 100644
--- a/compiler/optimizing/code_generator_arm64.cc
+++ b/compiler/optimizing/code_generator_arm64.cc
@@ -626,6 +626,11 @@ class ReadBarrierMarkSlowPathARM64 : public SlowPathCodeARM64 {
(instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier marking slow path: "
<< instruction_->DebugName();
+ // The read barrier instrumentation of object ArrayGet
+ // instructions does not support the HIntermediateAddress
+ // instruction.
+ DCHECK(!(instruction_->IsArrayGet() &&
+ instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
__ Bind(GetEntryLabel());
// No need to save live registers; it's taken care of by the
@@ -876,7 +881,9 @@ class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
(instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified())
<< "Unexpected instruction in read barrier for heap reference slow path: "
<< instruction_->DebugName();
- // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
+ // The read barrier instrumentation of object ArrayGet
+ // instructions does not support the HIntermediateAddress
+ // instruction.
DCHECK(!(instruction_->IsArrayGet() &&
instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
@@ -2192,8 +2199,6 @@ void InstructionCodeGeneratorARM64::VisitArm64DataProcWithShifterOp(
}
void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
- // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
- DCHECK(!kEmitCompilerReadBarrier);
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
@@ -2201,10 +2206,7 @@ void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instr
locations->SetOut(Location::RequiresRegister());
}
-void InstructionCodeGeneratorARM64::VisitIntermediateAddress(
- HIntermediateAddress* instruction) {
- // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
- DCHECK(!kEmitCompilerReadBarrier);
+void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
__ Add(OutputRegister(instruction),
InputRegisterAt(instruction, 0),
Operand(InputOperandAt(instruction, 1)));
@@ -2304,11 +2306,15 @@ void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
// Block pools between `Load` and `MaybeRecordImplicitNullCheck`.
BlockPoolsScope block_pools(masm);
+ // The read barrier instrumentation of object ArrayGet instructions
+ // does not support the HIntermediateAddress instruction.
+ DCHECK(!((type == Primitive::kPrimNot) &&
+ instruction->GetArray()->IsIntermediateAddress() &&
+ kEmitCompilerReadBarrier));
+
if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// Object ArrayGet with Baker's read barrier case.
Register temp = temps.AcquireW();
- // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
- DCHECK(!instruction->GetArray()->IsIntermediateAddress());
// Note that a potential implicit null check is handled in the
// CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
codegen_->GenerateArrayLoadWithBakerReadBarrier(
@@ -2341,9 +2347,6 @@ void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
} else {
Register temp = temps.AcquireSameSizeAs(obj);
if (instruction->GetArray()->IsIntermediateAddress()) {
- // The read barrier instrumentation does not support the
- // HIntermediateAddress instruction yet.
- DCHECK(!kEmitCompilerReadBarrier);
// We do not need to compute the intermediate address from the array: the
// input instruction has done it already. See the comment in
// `TryExtractArrayAccessAddress()`.
@@ -2451,9 +2454,6 @@ void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireSameSizeAs(array);
if (instruction->GetArray()->IsIntermediateAddress()) {
- // The read barrier instrumentation does not support the
- // HIntermediateAddress instruction yet.
- DCHECK(!kEmitCompilerReadBarrier);
// We do not need to compute the intermediate address from the array: the
// input instruction has done it already. See the comment in
// `TryExtractArrayAccessAddress()`.
@@ -5426,7 +5426,7 @@ void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction*
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<Object> ref = *src; // Original reference load.
- // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
// }
@@ -5517,12 +5517,11 @@ void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction*
}
AddSlowPath(slow_path);
- // if (rb_state == ReadBarrier::gray_ptr_)
+ // if (rb_state == ReadBarrier::GrayState())
// ref = ReadBarrier::Mark(ref);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
- static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
- static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
- static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Tbnz(temp, LockWord::kReadBarrierStateShift, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
diff --git a/compiler/optimizing/code_generator_arm_vixl.cc b/compiler/optimizing/code_generator_arm_vixl.cc
index c00ee553ef..e69528e43f 100644
--- a/compiler/optimizing/code_generator_arm_vixl.cc
+++ b/compiler/optimizing/code_generator_arm_vixl.cc
@@ -23,6 +23,7 @@
#include "compiled_method.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "gc/accounting/card_table.h"
+#include "intrinsics_arm_vixl.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "thread.h"
@@ -1474,19 +1475,36 @@ void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* i
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
- // TODO(VIXL): TryDispatch
+ IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
+ if (intrinsic.TryDispatch(invoke)) {
+ if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
+ invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
+ }
+ return;
+ }
HandleInvoke(invoke);
// TODO(VIXL): invoke->HasPcRelativeDexCache()
}
+static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) {
+ if (invoke->GetLocations()->Intrinsified()) {
+ IntrinsicCodeGeneratorARMVIXL intrinsic(codegen);
+ intrinsic.Dispatch(invoke);
+ return true;
+ }
+ return false;
+}
+
void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
- // TODO(VIXL): TryGenerateIntrinsicCode
+ if (TryGenerateIntrinsicCode(invoke, codegen_)) {
+ return;
+ }
LocationSummary* locations = invoke->GetLocations();
DCHECK(locations->HasTemps());
@@ -1502,13 +1520,18 @@ void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) {
}
void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
- // TODO(VIXL): TryDispatch
+ IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
+ if (intrinsic.TryDispatch(invoke)) {
+ return;
+ }
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
- // TODO(VIXL): TryGenerateIntrinsicCode
+ if (TryGenerateIntrinsicCode(invoke, codegen_)) {
+ return;
+ }
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
DCHECK(!codegen_->IsLeafMethod());
@@ -5039,6 +5062,39 @@ void InstructionCodeGeneratorARMVIXL::GenerateGcRootFieldLoad(
}
}
+void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(
+ HInstruction* instruction ATTRIBUTE_UNUSED,
+ Location ref ATTRIBUTE_UNUSED,
+ vixl::aarch32::Register obj ATTRIBUTE_UNUSED,
+ uint32_t offset ATTRIBUTE_UNUSED,
+ Location temp ATTRIBUTE_UNUSED,
+ bool needs_null_check ATTRIBUTE_UNUSED) {
+ TODO_VIXL32(FATAL);
+}
+
+void CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier(
+ HInstruction* instruction ATTRIBUTE_UNUSED,
+ Location ref ATTRIBUTE_UNUSED,
+ vixl::aarch32::Register obj ATTRIBUTE_UNUSED,
+ uint32_t offset ATTRIBUTE_UNUSED,
+ Location index ATTRIBUTE_UNUSED,
+ ScaleFactor scale_factor ATTRIBUTE_UNUSED,
+ Location temp ATTRIBUTE_UNUSED,
+ bool needs_null_check ATTRIBUTE_UNUSED,
+ bool always_update_field ATTRIBUTE_UNUSED,
+ vixl::aarch32::Register* temp2 ATTRIBUTE_UNUSED) {
+ TODO_VIXL32(FATAL);
+}
+
+void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction ATTRIBUTE_UNUSED,
+ Location out ATTRIBUTE_UNUSED,
+ Location ref ATTRIBUTE_UNUSED,
+ Location obj ATTRIBUTE_UNUSED,
+ uint32_t offset ATTRIBUTE_UNUSED,
+ Location index ATTRIBUTE_UNUSED) {
+ TODO_VIXL32(FATAL);
+}
+
void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction ATTRIBUTE_UNUSED,
Location out,
Location ref ATTRIBUTE_UNUSED,
diff --git a/compiler/optimizing/code_generator_x86.cc b/compiler/optimizing/code_generator_x86.cc
index efd33c7025..2f946e4263 100644
--- a/compiler/optimizing/code_generator_x86.cc
+++ b/compiler/optimizing/code_generator_x86.cc
@@ -7093,7 +7093,7 @@ void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* i
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<Object> ref = *src; // Original reference load.
- // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
// }
@@ -7111,14 +7111,13 @@ void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* i
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
// Given the numeric representation, it's enough to check the low bit of the rb_state.
- static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
- static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
- static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
- // if (rb_state == ReadBarrier::gray_ptr_)
+ // if (rb_state == ReadBarrier::GrayState())
// ref = ReadBarrier::Mark(ref);
// At this point, just do the "if" and make sure that flags are preserved until the branch.
__ testb(Address(obj, monitor_offset + gray_byte_position), Immediate(test_value));
diff --git a/compiler/optimizing/code_generator_x86_64.cc b/compiler/optimizing/code_generator_x86_64.cc
index fcabeeae5d..232c3b3cbb 100644
--- a/compiler/optimizing/code_generator_x86_64.cc
+++ b/compiler/optimizing/code_generator_x86_64.cc
@@ -5740,7 +5740,19 @@ void InstructionCodeGeneratorX86_64::VisitThrow(HThrow* instruction) {
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}
-static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
+static bool CheckCastTypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
+ if (type_check_kind == TypeCheckKind::kInterfaceCheck && !kPoisonHeapReferences) {
+ // We need a temporary for holding the iftable length.
+ return true;
+ }
+ return kEmitCompilerReadBarrier &&
+ !kUseBakerReadBarrier &&
+ (type_check_kind == TypeCheckKind::kAbstractClassCheck ||
+ type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
+ type_check_kind == TypeCheckKind::kArrayObjectCheck);
+}
+
+static bool InstanceOfTypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
return kEmitCompilerReadBarrier &&
!kUseBakerReadBarrier &&
(type_check_kind == TypeCheckKind::kAbstractClassCheck ||
@@ -5778,7 +5790,7 @@ void LocationsBuilderX86_64::VisitInstanceOf(HInstanceOf* instruction) {
locations->SetOut(Location::RequiresRegister());
// When read barriers are enabled, we need a temporary register for
// some cases.
- if (TypeCheckNeedsATemporary(type_check_kind)) {
+ if (InstanceOfTypeCheckNeedsATemporary(type_check_kind)) {
locations->AddTemp(Location::RequiresRegister());
}
}
@@ -5791,7 +5803,7 @@ void InstructionCodeGeneratorX86_64::VisitInstanceOf(HInstanceOf* instruction) {
Location cls = locations->InAt(1);
Location out_loc = locations->Out();
CpuRegister out = out_loc.AsRegister<CpuRegister>();
- Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
+ Location maybe_temp_loc = InstanceOfTypeCheckNeedsATemporary(type_check_kind) ?
locations->GetTemp(0) :
Location::NoLocation();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
@@ -5809,7 +5821,11 @@ void InstructionCodeGeneratorX86_64::VisitInstanceOf(HInstanceOf* instruction) {
}
// /* HeapReference<Class> */ out = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset);
+ GenerateReferenceLoadTwoRegisters(instruction,
+ out_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
switch (type_check_kind) {
case TypeCheckKind::kExactCheck: {
@@ -5970,33 +5986,45 @@ void InstructionCodeGeneratorX86_64::VisitInstanceOf(HInstanceOf* instruction) {
}
}
-void LocationsBuilderX86_64::VisitCheckCast(HCheckCast* instruction) {
- LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
- bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
- TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
+bool IsTypeCheckSlowPathFatal(TypeCheckKind type_check_kind, bool throws_into_catch) {
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kAbstractClassCheck:
case TypeCheckKind::kClassHierarchyCheck:
case TypeCheckKind::kArrayObjectCheck:
- call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
- LocationSummary::kCallOnSlowPath :
- LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path.
- break;
+ return !throws_into_catch && !kEmitCompilerReadBarrier;
+ case TypeCheckKind::kInterfaceCheck:
+ return !throws_into_catch && !kEmitCompilerReadBarrier && !kPoisonHeapReferences;
case TypeCheckKind::kArrayCheck:
case TypeCheckKind::kUnresolvedCheck:
- case TypeCheckKind::kInterfaceCheck:
- call_kind = LocationSummary::kCallOnSlowPath;
- break;
+ return false;
}
+ LOG(FATAL) << "Unreachable";
+ UNREACHABLE();
+}
+
+void LocationsBuilderX86_64::VisitCheckCast(HCheckCast* instruction) {
+ bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
+ TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
+ bool is_fatal_slow_path = IsTypeCheckSlowPathFatal(type_check_kind, throws_into_catch);
+ LocationSummary::CallKind call_kind = is_fatal_slow_path
+ ? LocationSummary::kNoCall
+ : LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
- locations->SetInAt(1, Location::Any());
+ if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
+ // Require a register for the interface check since there is a loop that compares the class to
+ // a memory address.
+ locations->SetInAt(1, Location::RequiresRegister());
+ } else {
+ locations->SetInAt(1, Location::Any());
+ }
+
// Note that TypeCheckSlowPathX86_64 uses this "temp" register too.
locations->AddTemp(Location::RequiresRegister());
// When read barriers are enabled, we need an additional temporary
// register for some cases.
- if (TypeCheckNeedsATemporary(type_check_kind)) {
+ if (CheckCastTypeCheckNeedsATemporary(type_check_kind)) {
locations->AddTemp(Location::RequiresRegister());
}
}
@@ -6009,20 +6037,19 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
Location cls = locations->InAt(1);
Location temp_loc = locations->GetTemp(0);
CpuRegister temp = temp_loc.AsRegister<CpuRegister>();
- Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
+ Location maybe_temp2_loc = CheckCastTypeCheckNeedsATemporary(type_check_kind) ?
locations->GetTemp(1) :
Location::NoLocation();
- uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
- uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
- uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
- uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
+ const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
+ const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
+ const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
+ const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
+ const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
+ const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
+ const int object_array_data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
bool is_type_check_slow_path_fatal =
- (type_check_kind == TypeCheckKind::kExactCheck ||
- type_check_kind == TypeCheckKind::kAbstractClassCheck ||
- type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
- type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
- !instruction->CanThrowIntoCatchBlock();
+ IsTypeCheckSlowPathFatal(type_check_kind, instruction->CanThrowIntoCatchBlock());
SlowPathCode* type_check_slow_path =
new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(instruction,
is_type_check_slow_path_fatal);
@@ -6039,8 +6066,11 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
}
// /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
-
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
if (cls.IsRegister()) {
__ cmpl(temp, cls.AsRegister<CpuRegister>());
} else {
@@ -6063,8 +6093,11 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
}
// /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
-
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
NearLabel loop, compare_classes;
@@ -6083,7 +6116,11 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
// going into the slow path, as it has been overwritten in the
// meantime.
// /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
__ jmp(type_check_slow_path->GetEntryLabel());
__ Bind(&compare_classes);
@@ -6107,8 +6144,11 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
}
// /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
-
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
// Walk over the class hierarchy to find a match.
NearLabel loop;
__ Bind(&loop);
@@ -6133,7 +6173,11 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
// going into the slow path, as it has been overwritten in the
// meantime.
// /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
__ jmp(type_check_slow_path->GetEntryLabel());
__ Bind(&done);
break;
@@ -6152,8 +6196,11 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
}
// /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
-
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
// Do an exact check.
NearLabel check_non_primitive_component_type;
if (cls.IsRegister()) {
@@ -6180,7 +6227,11 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
// going into the slow path, as it has been overwritten in the
// meantime.
// /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
__ jmp(type_check_slow_path->GetEntryLabel());
__ Bind(&check_non_primitive_component_type);
@@ -6188,7 +6239,11 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
__ j(kEqual, &done);
// Same comment as above regarding `temp` and the slow path.
// /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
__ jmp(type_check_slow_path->GetEntryLabel());
__ Bind(&done);
break;
@@ -6197,17 +6252,15 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck:
NearLabel done;
+
// Avoid null check if we know obj is not null.
if (instruction->MustDoNullCheck()) {
__ testl(obj, obj);
__ j(kEqual, &done);
}
- // /* HeapReference<Class> */ temp = obj->klass_
- GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset);
- // We always go into the type check slow path for the unresolved
- // and interface check cases.
+ // We always go into the type check slow path for the unresolved case.
//
// We cannot directly call the CheckCast runtime entry point
// without resorting to a type checking slow path here (i.e. by
@@ -6223,6 +6276,53 @@ void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) {
// case of the `switch` code as it was previously (with a direct
// call to the runtime not using a type checking slow path).
// This should also be beneficial for the other cases above.
+
+ // Fast path for the interface check. Since we compare with a memory location in the inner
+ // loop we would need to have cls poisoned. However unpoisoning cls would reset the
+ // conditional flags and cause the conditional jump to be incorrect.
+ if (type_check_kind == TypeCheckKind::kInterfaceCheck && !kPoisonHeapReferences) {
+ // Try to avoid read barriers to improve the fast path. We can not get false positives by
+ // doing this.
+ // /* HeapReference<Class> */ temp = obj->klass_
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ /*emit_read_barrier*/ false);
+
+ // /* HeapReference<Class> */ temp = temp->iftable_
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ temp_loc,
+ iftable_offset,
+ /*emit_read_barrier*/ false);
+ NearLabel is_null;
+ // Null iftable means it is empty.
+ __ testl(temp_loc.AsRegister<CpuRegister>(), temp_loc.AsRegister<CpuRegister>());
+ __ j(kZero, &is_null);
+
+ // Loop through the iftable and check if any class matches.
+ __ movl(maybe_temp2_loc.AsRegister<CpuRegister>(),
+ Address(temp_loc.AsRegister<CpuRegister>(), array_length_offset));
+
+ NearLabel start_loop;
+ __ Bind(&start_loop);
+ __ cmpl(cls.AsRegister<CpuRegister>(),
+ Address(temp_loc.AsRegister<CpuRegister>(), object_array_data_offset));
+ __ j(kEqual, &done); // Return if same class.
+ // Go to next interface.
+ __ addq(temp_loc.AsRegister<CpuRegister>(), Immediate(2 * kHeapReferenceSize));
+ __ subq(maybe_temp2_loc.AsRegister<CpuRegister>(), Immediate(2));
+ __ j(kNotZero, &start_loop);
+ __ Bind(&is_null);
+ }
+
+ // Since we clobbered temp_loc holding the class, we need to reload it.
+ GenerateReferenceLoadTwoRegisters(instruction,
+ temp_loc,
+ obj_loc,
+ class_offset,
+ kEmitCompilerReadBarrier);
__ jmp(type_check_slow_path->GetEntryLabel());
__ Bind(&done);
break;
@@ -6397,10 +6497,11 @@ void InstructionCodeGeneratorX86_64::GenerateReferenceLoadOneRegister(HInstructi
void InstructionCodeGeneratorX86_64::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
Location out,
Location obj,
- uint32_t offset) {
+ uint32_t offset,
+ bool emit_read_barrier) {
CpuRegister out_reg = out.AsRegister<CpuRegister>();
CpuRegister obj_reg = obj.AsRegister<CpuRegister>();
- if (kEmitCompilerReadBarrier) {
+ if (emit_read_barrier) {
if (kUseBakerReadBarrier) {
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
@@ -6535,7 +6636,7 @@ void CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<Object> ref = *src; // Original reference load.
- // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
// }
@@ -6553,14 +6654,13 @@ void CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
// Given the numeric representation, it's enough to check the low bit of the rb_state.
- static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
- static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
- static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
- // if (rb_state == ReadBarrier::gray_ptr_)
+ // if (rb_state == ReadBarrier::GrayState())
// ref = ReadBarrier::Mark(ref);
// At this point, just do the "if" and make sure that flags are preserved until the branch.
__ testb(Address(obj, monitor_offset + gray_byte_position), Immediate(test_value));
diff --git a/compiler/optimizing/code_generator_x86_64.h b/compiler/optimizing/code_generator_x86_64.h
index 8b19dad0d0..5a6dc54e7a 100644
--- a/compiler/optimizing/code_generator_x86_64.h
+++ b/compiler/optimizing/code_generator_x86_64.h
@@ -248,7 +248,8 @@ class InstructionCodeGeneratorX86_64 : public InstructionCodeGenerator {
void GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
Location out,
Location obj,
- uint32_t offset);
+ uint32_t offset,
+ bool emit_read_barrier);
// Generate a GC root reference load:
//
// root <- *address
diff --git a/compiler/optimizing/instruction_simplifier_arm.h b/compiler/optimizing/instruction_simplifier_arm.h
index 782110c40a..9b54511340 100644
--- a/compiler/optimizing/instruction_simplifier_arm.h
+++ b/compiler/optimizing/instruction_simplifier_arm.h
@@ -48,7 +48,7 @@ class InstructionSimplifierArmVisitor : public HGraphVisitor {
class InstructionSimplifierArm : public HOptimization {
public:
InstructionSimplifierArm(HGraph* graph, OptimizingCompilerStats* stats)
- : HOptimization(graph, kInstructionSimplifierArmPassName, stats) {}
+ : HOptimization(graph, kInstructionSimplifierArmPassName, stats) {}
static constexpr const char* kInstructionSimplifierArmPassName = "instruction_simplifier_arm";
diff --git a/compiler/optimizing/instruction_simplifier_arm64.h b/compiler/optimizing/instruction_simplifier_arm64.h
index f71684efe9..d4cb1f14b7 100644
--- a/compiler/optimizing/instruction_simplifier_arm64.h
+++ b/compiler/optimizing/instruction_simplifier_arm64.h
@@ -82,9 +82,10 @@ class InstructionSimplifierArm64Visitor : public HGraphVisitor {
class InstructionSimplifierArm64 : public HOptimization {
public:
InstructionSimplifierArm64(HGraph* graph, OptimizingCompilerStats* stats)
- : HOptimization(graph, kInstructionSimplifierArm64PassName, stats) {}
- static constexpr const char* kInstructionSimplifierArm64PassName
- = "instruction_simplifier_arm64";
+ : HOptimization(graph, kInstructionSimplifierArm64PassName, stats) {}
+
+ static constexpr const char* kInstructionSimplifierArm64PassName = "instruction_simplifier_arm64";
+
void Run() OVERRIDE {
InstructionSimplifierArm64Visitor visitor(graph_, stats_);
visitor.VisitReversePostOrder();
diff --git a/compiler/optimizing/instruction_simplifier_shared.cc b/compiler/optimizing/instruction_simplifier_shared.cc
index 04e063c92e..c2b1374f62 100644
--- a/compiler/optimizing/instruction_simplifier_shared.cc
+++ b/compiler/optimizing/instruction_simplifier_shared.cc
@@ -231,15 +231,6 @@ bool TryExtractArrayAccessAddress(HInstruction* access,
HInstruction* array,
HInstruction* index,
size_t data_offset) {
- if (kEmitCompilerReadBarrier) {
- // The read barrier instrumentation does not support the
- // HIntermediateAddress instruction yet.
- //
- // TODO: Handle this case properly in the ARM64 and ARM code generator and
- // re-enable this optimization; otherwise, remove this TODO.
- // b/26601270
- return false;
- }
if (index->IsConstant() ||
(index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) {
// When the index is a constant all the addressing can be fitted in the
@@ -251,14 +242,20 @@ bool TryExtractArrayAccessAddress(HInstruction* access,
// The access may require a runtime call or the original array pointer.
return false;
}
+ if (kEmitCompilerReadBarrier &&
+ access->IsArrayGet() &&
+ access->GetType() == Primitive::kPrimNot) {
+ // For object arrays, the read barrier instrumentation requires
+ // the original array pointer.
+ return false;
+ }
// Proceed to extract the base address computation.
HGraph* graph = access->GetBlock()->GetGraph();
ArenaAllocator* arena = graph->GetArena();
HIntConstant* offset = graph->GetIntConstant(data_offset);
- HIntermediateAddress* address =
- new (arena) HIntermediateAddress(array, offset, kNoDexPc);
+ HIntermediateAddress* address = new (arena) HIntermediateAddress(array, offset, kNoDexPc);
// TODO: Is it ok to not have this on the intermediate address?
// address->SetReferenceTypeInfo(array->GetReferenceTypeInfo());
access->GetBlock()->InsertInstructionBefore(address, access);
diff --git a/compiler/optimizing/intrinsics_arm.cc b/compiler/optimizing/intrinsics_arm.cc
index 8790c1e4f1..93a2340a32 100644
--- a/compiler/optimizing/intrinsics_arm.cc
+++ b/compiler/optimizing/intrinsics_arm.cc
@@ -1945,7 +1945,7 @@ void IntrinsicCodeGeneratorARM::VisitSystemArrayCopy(HInvoke* invoke) {
// if (src_ptr != end_ptr) {
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
- // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// do {
@@ -1986,9 +1986,8 @@ void IntrinsicCodeGeneratorARM::VisitSystemArrayCopy(HInvoke* invoke) {
// Given the numeric representation, it's enough to check the low bit of the
// rb_state. We do that by shifting the bit out of the lock word with LSRS
// which can be a 16-bit instruction unlike the TST immediate.
- static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
- static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
- static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1);
// Carry flag is the last bit shifted out by LSRS.
__ b(read_barrier_slow_path->GetEntryLabel(), CS);
diff --git a/compiler/optimizing/intrinsics_arm64.cc b/compiler/optimizing/intrinsics_arm64.cc
index db1c022868..47e6d9699d 100644
--- a/compiler/optimizing/intrinsics_arm64.cc
+++ b/compiler/optimizing/intrinsics_arm64.cc
@@ -2659,7 +2659,7 @@ void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopy(HInvoke* invoke) {
// if (src_ptr != end_ptr) {
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
- // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// do {
@@ -2704,9 +2704,8 @@ void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopy(HInvoke* invoke) {
codegen_->AddSlowPath(read_barrier_slow_path);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
- static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
- static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
- static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Tbnz(tmp, LockWord::kReadBarrierStateShift, read_barrier_slow_path->GetEntryLabel());
// Fast-path copy.
diff --git a/compiler/optimizing/intrinsics_arm_vixl.cc b/compiler/optimizing/intrinsics_arm_vixl.cc
new file mode 100644
index 0000000000..6ff0ca4eab
--- /dev/null
+++ b/compiler/optimizing/intrinsics_arm_vixl.cc
@@ -0,0 +1,2694 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "intrinsics_arm_vixl.h"
+
+#include "arch/arm/instruction_set_features_arm.h"
+#include "code_generator_arm_vixl.h"
+#include "common_arm.h"
+#include "lock_word.h"
+#include "mirror/array-inl.h"
+
+#include "aarch32/constants-aarch32.h"
+
+namespace art {
+namespace arm {
+
+#define __ assembler->GetVIXLAssembler()->
+
+using helpers::DRegisterFrom;
+using helpers::HighRegisterFrom;
+using helpers::InputDRegisterAt;
+using helpers::InputRegisterAt;
+using helpers::InputSRegisterAt;
+using helpers::InputVRegisterAt;
+using helpers::Int32ConstantFrom;
+using helpers::LocationFrom;
+using helpers::LowRegisterFrom;
+using helpers::LowSRegisterFrom;
+using helpers::OutputDRegister;
+using helpers::OutputRegister;
+using helpers::OutputVRegister;
+using helpers::RegisterFrom;
+using helpers::SRegisterFrom;
+
+using namespace vixl::aarch32; // NOLINT(build/namespaces)
+
+ArmVIXLAssembler* IntrinsicCodeGeneratorARMVIXL::GetAssembler() {
+ return codegen_->GetAssembler();
+}
+
+ArenaAllocator* IntrinsicCodeGeneratorARMVIXL::GetAllocator() {
+ return codegen_->GetGraph()->GetArena();
+}
+
+// Default slow-path for fallback (calling the managed code to handle the intrinsic) in an
+// intrinsified call. This will copy the arguments into the positions for a regular call.
+//
+// Note: The actual parameters are required to be in the locations given by the invoke's location
+// summary. If an intrinsic modifies those locations before a slowpath call, they must be
+// restored!
+//
+// Note: If an invoke wasn't sharpened, we will put down an invoke-virtual here. That's potentially
+// sub-optimal (compared to a direct pointer call), but this is a slow-path.
+
+class IntrinsicSlowPathARMVIXL : public SlowPathCodeARMVIXL {
+ public:
+ explicit IntrinsicSlowPathARMVIXL(HInvoke* invoke)
+ : SlowPathCodeARMVIXL(invoke), invoke_(invoke) {}
+
+ Location MoveArguments(CodeGenerator* codegen) {
+ InvokeDexCallingConventionVisitorARM calling_convention_visitor;
+ IntrinsicVisitor::MoveArguments(invoke_, codegen, &calling_convention_visitor);
+ return calling_convention_visitor.GetMethodLocation();
+ }
+
+ void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
+ ArmVIXLAssembler* assembler = down_cast<ArmVIXLAssembler*>(codegen->GetAssembler());
+ __ Bind(GetEntryLabel());
+
+ SaveLiveRegisters(codegen, invoke_->GetLocations());
+
+ Location method_loc = MoveArguments(codegen);
+
+ if (invoke_->IsInvokeStaticOrDirect()) {
+ codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(), method_loc);
+ } else {
+ codegen->GenerateVirtualCall(invoke_->AsInvokeVirtual(), method_loc);
+ }
+ codegen->RecordPcInfo(invoke_, invoke_->GetDexPc(), this);
+
+ // Copy the result back to the expected output.
+ Location out = invoke_->GetLocations()->Out();
+ if (out.IsValid()) {
+ DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
+ DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
+ codegen->MoveFromReturnRegister(out, invoke_->GetType());
+ }
+
+ RestoreLiveRegisters(codegen, invoke_->GetLocations());
+ __ B(GetExitLabel());
+ }
+
+ const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPath"; }
+
+ private:
+ // The instruction where this slow path is happening.
+ HInvoke* const invoke_;
+
+ DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathARMVIXL);
+};
+
+// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
+class ReadBarrierSystemArrayCopySlowPathARMVIXL : public SlowPathCodeARMVIXL {
+ public:
+ explicit ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction* instruction)
+ : SlowPathCodeARMVIXL(instruction) {
+ DCHECK(kEmitCompilerReadBarrier);
+ DCHECK(kUseBakerReadBarrier);
+ }
+
+ void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
+ CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
+ ArmVIXLAssembler* assembler = arm_codegen->GetAssembler();
+ LocationSummary* locations = instruction_->GetLocations();
+ DCHECK(locations->CanCall());
+ DCHECK(instruction_->IsInvokeStaticOrDirect())
+ << "Unexpected instruction in read barrier arraycopy slow path: "
+ << instruction_->DebugName();
+ DCHECK(instruction_->GetLocations()->Intrinsified());
+ DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
+
+ int32_t element_size = Primitive::ComponentSize(Primitive::kPrimNot);
+ uint32_t element_size_shift = Primitive::ComponentSizeShift(Primitive::kPrimNot);
+ uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
+
+ vixl32::Register dest = InputRegisterAt(instruction_, 2);
+ Location dest_pos = locations->InAt(3);
+ vixl32::Register src_curr_addr = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register dst_curr_addr = RegisterFrom(locations->GetTemp(1));
+ vixl32::Register src_stop_addr = RegisterFrom(locations->GetTemp(2));
+ vixl32::Register tmp = RegisterFrom(locations->GetTemp(3));
+
+ __ Bind(GetEntryLabel());
+ // Compute the base destination address in `dst_curr_addr`.
+ if (dest_pos.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(dest_pos);
+ __ Add(dst_curr_addr, dest, element_size * constant + offset);
+ } else {
+ __ Add(dst_curr_addr,
+ dest,
+ Operand(RegisterFrom(dest_pos), vixl32::LSL, element_size_shift));
+ __ Add(dst_curr_addr, dst_curr_addr, offset);
+ }
+
+ vixl32::Label loop;
+ __ Bind(&loop);
+ __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
+ assembler->MaybeUnpoisonHeapReference(tmp);
+ // TODO: Inline the mark bit check before calling the runtime?
+ // tmp = ReadBarrier::Mark(tmp);
+ // No need to save live registers; it's taken care of by the
+ // entrypoint. Also, there is no need to update the stack mask,
+ // as this runtime call will not trigger a garbage collection.
+ // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more
+ // explanations.)
+ DCHECK(!tmp.IsSP());
+ DCHECK(!tmp.IsLR());
+ DCHECK(!tmp.IsPC());
+ // IP is used internally by the ReadBarrierMarkRegX entry point
+ // as a temporary (and not preserved). It thus cannot be used by
+ // any live register in this slow path.
+ DCHECK(!src_curr_addr.Is(ip));
+ DCHECK(!dst_curr_addr.Is(ip));
+ DCHECK(!src_stop_addr.Is(ip));
+ DCHECK(!tmp.Is(ip));
+ DCHECK(tmp.IsRegister()) << tmp;
+ int32_t entry_point_offset =
+ CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp.GetCode());
+ // This runtime call does not require a stack map.
+ arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
+ assembler->MaybePoisonHeapReference(tmp);
+ __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
+ __ Cmp(src_curr_addr, src_stop_addr);
+ __ B(ne, &loop);
+ __ B(GetExitLabel());
+ }
+
+ const char* GetDescription() const OVERRIDE {
+ return "ReadBarrierSystemArrayCopySlowPathARMVIXL";
+ }
+
+ private:
+ DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARMVIXL);
+};
+
+IntrinsicLocationsBuilderARMVIXL::IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen)
+ : arena_(codegen->GetGraph()->GetArena()),
+ assembler_(codegen->GetAssembler()),
+ features_(codegen->GetInstructionSetFeatures()) {}
+
+bool IntrinsicLocationsBuilderARMVIXL::TryDispatch(HInvoke* invoke) {
+ Dispatch(invoke);
+ LocationSummary* res = invoke->GetLocations();
+ if (res == nullptr) {
+ return false;
+ }
+ return res->Intrinsified();
+}
+
+static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresFpuRegister());
+ locations->SetOut(Location::RequiresRegister());
+}
+
+static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresFpuRegister());
+}
+
+static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
+ Location input = locations->InAt(0);
+ Location output = locations->Out();
+ if (is64bit) {
+ __ Vmov(LowRegisterFrom(output), HighRegisterFrom(output), DRegisterFrom(input));
+ } else {
+ __ Vmov(RegisterFrom(output), SRegisterFrom(input));
+ }
+}
+
+static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
+ Location input = locations->InAt(0);
+ Location output = locations->Out();
+ if (is64bit) {
+ __ Vmov(DRegisterFrom(output), LowRegisterFrom(input), HighRegisterFrom(input));
+ } else {
+ __ Vmov(SRegisterFrom(output), RegisterFrom(input));
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
+ CreateFPToIntLocations(arena_, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
+ CreateIntToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
+ MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
+ MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
+ CreateFPToIntLocations(arena_, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
+ CreateIntToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
+ MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
+ MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
+}
+
+static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
+}
+
+static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresFpuRegister());
+ locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
+}
+
+static void GenNumberOfLeadingZeros(LocationSummary* locations,
+ Primitive::Type type,
+ ArmVIXLAssembler* assembler) {
+ Location in = locations->InAt(0);
+ vixl32::Register out = RegisterFrom(locations->Out());
+
+ DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
+
+ if (type == Primitive::kPrimLong) {
+ vixl32::Register in_reg_lo = LowRegisterFrom(in);
+ vixl32::Register in_reg_hi = HighRegisterFrom(in);
+ vixl32::Label end;
+ __ Clz(out, in_reg_hi);
+ __ Cbnz(in_reg_hi, &end);
+ __ Clz(out, in_reg_lo);
+ __ Add(out, out, 32);
+ __ Bind(&end);
+ } else {
+ __ Clz(out, RegisterFrom(in));
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
+ GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
+ GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
+}
+
+static void GenNumberOfTrailingZeros(LocationSummary* locations,
+ Primitive::Type type,
+ ArmVIXLAssembler* assembler) {
+ DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
+
+ vixl32::Register out = RegisterFrom(locations->Out());
+
+ if (type == Primitive::kPrimLong) {
+ vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
+ vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
+ vixl32::Label end;
+ __ Rbit(out, in_reg_lo);
+ __ Clz(out, out);
+ __ Cbnz(in_reg_lo, &end);
+ __ Rbit(out, in_reg_hi);
+ __ Clz(out, out);
+ __ Add(out, out, 32);
+ __ Bind(&end);
+ } else {
+ vixl32::Register in = RegisterFrom(locations->InAt(0));
+ __ Rbit(out, in);
+ __ Clz(out, out);
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
+ GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
+ GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
+}
+
+static void MathAbsFP(HInvoke* invoke, ArmVIXLAssembler* assembler) {
+ __ Vabs(OutputVRegister(invoke), InputVRegisterAt(invoke, 0));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsDouble(HInvoke* invoke) {
+ CreateFPToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsDouble(HInvoke* invoke) {
+ MathAbsFP(invoke, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsFloat(HInvoke* invoke) {
+ CreateFPToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsFloat(HInvoke* invoke) {
+ MathAbsFP(invoke, GetAssembler());
+}
+
+static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
+
+ locations->AddTemp(Location::RequiresRegister());
+}
+
+static void GenAbsInteger(LocationSummary* locations,
+ bool is64bit,
+ ArmVIXLAssembler* assembler) {
+ Location in = locations->InAt(0);
+ Location output = locations->Out();
+
+ vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
+
+ if (is64bit) {
+ vixl32::Register in_reg_lo = LowRegisterFrom(in);
+ vixl32::Register in_reg_hi = HighRegisterFrom(in);
+ vixl32::Register out_reg_lo = LowRegisterFrom(output);
+ vixl32::Register out_reg_hi = HighRegisterFrom(output);
+
+ DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected.";
+
+ __ Asr(mask, in_reg_hi, 31);
+ __ Adds(out_reg_lo, in_reg_lo, mask);
+ __ Adc(out_reg_hi, in_reg_hi, mask);
+ __ Eor(out_reg_lo, mask, out_reg_lo);
+ __ Eor(out_reg_hi, mask, out_reg_hi);
+ } else {
+ vixl32::Register in_reg = RegisterFrom(in);
+ vixl32::Register out_reg = RegisterFrom(output);
+
+ __ Asr(mask, in_reg, 31);
+ __ Add(out_reg, in_reg, mask);
+ __ Eor(out_reg, mask, out_reg);
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsInt(HInvoke* invoke) {
+ CreateIntToIntPlusTemp(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsInt(HInvoke* invoke) {
+ GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
+}
+
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsLong(HInvoke* invoke) {
+ CreateIntToIntPlusTemp(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsLong(HInvoke* invoke) {
+ GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
+}
+
+static void GenMinMax(HInvoke* invoke, bool is_min, ArmVIXLAssembler* assembler) {
+ vixl32::Register op1 = InputRegisterAt(invoke, 0);
+ vixl32::Register op2 = InputRegisterAt(invoke, 1);
+ vixl32::Register out = OutputRegister(invoke);
+
+ __ Cmp(op1, op2);
+
+ {
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 3 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ ite(is_min ? lt : gt);
+ __ mov(is_min ? lt : gt, out, op1);
+ __ mov(is_min ? ge : le, out, op2);
+ }
+}
+
+static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathMinIntInt(HInvoke* invoke) {
+ CreateIntIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathMinIntInt(HInvoke* invoke) {
+ GenMinMax(invoke, /* is_min */ true, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxIntInt(HInvoke* invoke) {
+ CreateIntIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxIntInt(HInvoke* invoke) {
+ GenMinMax(invoke, /* is_min */ false, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathSqrt(HInvoke* invoke) {
+ CreateFPToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathSqrt(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Vsqrt(OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ __ Ldrsb(OutputRegister(invoke), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ __ Ldr(OutputRegister(invoke), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
+ // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
+ // exception. So we can't use ldrd as addr may be unaligned.
+ vixl32::Register lo = LowRegisterFrom(invoke->GetLocations()->Out());
+ vixl32::Register hi = HighRegisterFrom(invoke->GetLocations()->Out());
+ if (addr.Is(lo)) {
+ __ Ldr(hi, MemOperand(addr, 4));
+ __ Ldr(lo, addr);
+ } else {
+ __ Ldr(lo, addr);
+ __ Ldr(hi, MemOperand(addr, 4));
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ __ Ldrsh(OutputRegister(invoke), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
+ CreateIntIntToVoidLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Strb(InputRegisterAt(invoke, 1), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
+ CreateIntIntToVoidLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Str(InputRegisterAt(invoke, 1), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
+ CreateIntIntToVoidLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
+ // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
+ // exception. So we can't use ldrd as addr may be unaligned.
+ __ Str(LowRegisterFrom(invoke->GetLocations()->InAt(1)), addr);
+ __ Str(HighRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr, 4));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
+ CreateIntIntToVoidLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Strh(InputRegisterAt(invoke, 1), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetOut(Location::RequiresRegister());
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Ldr(OutputRegister(invoke),
+ MemOperand(tr, Thread::PeerOffset<kArmPointerSize>().Int32Value()));
+}
+
+static void GenUnsafeGet(HInvoke* invoke,
+ Primitive::Type type,
+ bool is_volatile,
+ CodeGeneratorARMVIXL* codegen) {
+ LocationSummary* locations = invoke->GetLocations();
+ ArmVIXLAssembler* assembler = codegen->GetAssembler();
+ Location base_loc = locations->InAt(1);
+ vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
+ Location offset_loc = locations->InAt(2);
+ vixl32::Register offset = LowRegisterFrom(offset_loc); // Long offset, lo part only.
+ Location trg_loc = locations->Out();
+
+ switch (type) {
+ case Primitive::kPrimInt: {
+ vixl32::Register trg = RegisterFrom(trg_loc);
+ __ Ldr(trg, MemOperand(base, offset));
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ break;
+ }
+
+ case Primitive::kPrimNot: {
+ vixl32::Register trg = RegisterFrom(trg_loc);
+ if (kEmitCompilerReadBarrier) {
+ if (kUseBakerReadBarrier) {
+ Location temp = locations->GetTemp(0);
+ codegen->GenerateReferenceLoadWithBakerReadBarrier(
+ invoke, trg_loc, base, 0U, offset_loc, TIMES_1, temp, /* needs_null_check */ false);
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ } else {
+ __ Ldr(trg, MemOperand(base, offset));
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc);
+ }
+ } else {
+ __ Ldr(trg, MemOperand(base, offset));
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ assembler->MaybeUnpoisonHeapReference(trg);
+ }
+ break;
+ }
+
+ case Primitive::kPrimLong: {
+ vixl32::Register trg_lo = LowRegisterFrom(trg_loc);
+ vixl32::Register trg_hi = HighRegisterFrom(trg_loc);
+ if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
+ __ Ldrexd(trg_lo, trg_hi, MemOperand(base, offset));
+ } else {
+ __ Ldrd(trg_lo, trg_hi, MemOperand(base, offset));
+ }
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ break;
+ }
+
+ default:
+ LOG(FATAL) << "Unexpected type " << type;
+ UNREACHABLE();
+ }
+}
+
+static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
+ HInvoke* invoke,
+ Primitive::Type type) {
+ bool can_call = kEmitCompilerReadBarrier &&
+ (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
+ invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ (can_call
+ ? LocationSummary::kCallOnSlowPath
+ : LocationSummary::kNoCall),
+ kIntrinsified);
+ if (can_call && kUseBakerReadBarrier) {
+ locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
+ }
+ locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetInAt(2, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(),
+ (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
+ if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // We need a temporary register for the read barrier marking slow
+ // path in InstructionCodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier.
+ locations->AddTemp(Location::RequiresRegister());
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
+}
+
+static void CreateIntIntIntIntToVoid(ArenaAllocator* arena,
+ const ArmInstructionSetFeatures& features,
+ Primitive::Type type,
+ bool is_volatile,
+ HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetInAt(2, Location::RequiresRegister());
+ locations->SetInAt(3, Location::RequiresRegister());
+
+ if (type == Primitive::kPrimLong) {
+ // Potentially need temps for ldrexd-strexd loop.
+ if (is_volatile && !features.HasAtomicLdrdAndStrd()) {
+ locations->AddTemp(Location::RequiresRegister()); // Temp_lo.
+ locations->AddTemp(Location::RequiresRegister()); // Temp_hi.
+ }
+ } else if (type == Primitive::kPrimNot) {
+ // Temps for card-marking.
+ locations->AddTemp(Location::RequiresRegister()); // Temp.
+ locations->AddTemp(Location::RequiresRegister()); // Card.
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePut(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ true, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ true, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(
+ arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(
+ arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(
+ arena_, features_, Primitive::kPrimLong, /* is_volatile */ true, invoke);
+}
+
+static void GenUnsafePut(LocationSummary* locations,
+ Primitive::Type type,
+ bool is_volatile,
+ bool is_ordered,
+ CodeGeneratorARMVIXL* codegen) {
+ ArmVIXLAssembler* assembler = codegen->GetAssembler();
+
+ vixl32::Register base = RegisterFrom(locations->InAt(1)); // Object pointer.
+ vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Long offset, lo part only.
+ vixl32::Register value;
+
+ if (is_volatile || is_ordered) {
+ __ Dmb(vixl32::ISH);
+ }
+
+ if (type == Primitive::kPrimLong) {
+ vixl32::Register value_lo = LowRegisterFrom(locations->InAt(3));
+ vixl32::Register value_hi = HighRegisterFrom(locations->InAt(3));
+ value = value_lo;
+ if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
+ vixl32::Register temp_lo = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register temp_hi = RegisterFrom(locations->GetTemp(1));
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ const vixl32::Register temp_reg = temps.Acquire();
+
+ __ Add(temp_reg, base, offset);
+ vixl32::Label loop_head;
+ __ Bind(&loop_head);
+ __ Ldrexd(temp_lo, temp_hi, temp_reg);
+ __ Strexd(temp_lo, value_lo, value_hi, temp_reg);
+ __ Cmp(temp_lo, 0);
+ __ B(ne, &loop_head);
+ } else {
+ __ Strd(value_lo, value_hi, MemOperand(base, offset));
+ }
+ } else {
+ value = RegisterFrom(locations->InAt(3));
+ vixl32::Register source = value;
+ if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
+ vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
+ __ Mov(temp, value);
+ assembler->PoisonHeapReference(temp);
+ source = temp;
+ }
+ __ Str(source, MemOperand(base, offset));
+ }
+
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+
+ if (type == Primitive::kPrimNot) {
+ vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register card = RegisterFrom(locations->GetTemp(1));
+ bool value_can_be_null = true; // TODO: Worth finding out this information?
+ codegen->MarkGCCard(temp, card, base, value, value_can_be_null);
+ }
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePut(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimInt,
+ /* is_volatile */ false,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimInt,
+ /* is_volatile */ false,
+ /* is_ordered */ true,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimInt,
+ /* is_volatile */ true,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimNot,
+ /* is_volatile */ false,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimNot,
+ /* is_volatile */ false,
+ /* is_ordered */ true,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimNot,
+ /* is_volatile */ true,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimLong,
+ /* is_volatile */ false,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimLong,
+ /* is_volatile */ false,
+ /* is_ordered */ true,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimLong,
+ /* is_volatile */ true,
+ /* is_ordered */ false,
+ codegen_);
+}
+
+static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena,
+ HInvoke* invoke,
+ Primitive::Type type) {
+ bool can_call = kEmitCompilerReadBarrier &&
+ kUseBakerReadBarrier &&
+ (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ (can_call
+ ? LocationSummary::kCallOnSlowPath
+ : LocationSummary::kNoCall),
+ kIntrinsified);
+ locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetInAt(2, Location::RequiresRegister());
+ locations->SetInAt(3, Location::RequiresRegister());
+ locations->SetInAt(4, Location::RequiresRegister());
+
+ // If heap poisoning is enabled, we don't want the unpoisoning
+ // operations to potentially clobber the output. Likewise when
+ // emitting a (Baker) read barrier, which may call.
+ Location::OutputOverlap overlaps =
+ ((kPoisonHeapReferences && type == Primitive::kPrimNot) || can_call)
+ ? Location::kOutputOverlap
+ : Location::kNoOutputOverlap;
+ locations->SetOut(Location::RequiresRegister(), overlaps);
+
+ // Temporary registers used in CAS. In the object case
+ // (UnsafeCASObject intrinsic), these are also used for
+ // card-marking, and possibly for (Baker) read barrier.
+ locations->AddTemp(Location::RequiresRegister()); // Pointer.
+ locations->AddTemp(Location::RequiresRegister()); // Temp 1.
+}
+
+static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorARMVIXL* codegen) {
+ DCHECK_NE(type, Primitive::kPrimLong);
+
+ ArmVIXLAssembler* assembler = codegen->GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ Location out_loc = locations->Out();
+ vixl32::Register out = OutputRegister(invoke); // Boolean result.
+
+ vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
+ Location offset_loc = locations->InAt(2);
+ vixl32::Register offset = LowRegisterFrom(offset_loc); // Offset (discard high 4B).
+ vixl32::Register expected = InputRegisterAt(invoke, 3); // Expected.
+ vixl32::Register value = InputRegisterAt(invoke, 4); // Value.
+
+ Location tmp_ptr_loc = locations->GetTemp(0);
+ vixl32::Register tmp_ptr = RegisterFrom(tmp_ptr_loc); // Pointer to actual memory.
+ vixl32::Register tmp = RegisterFrom(locations->GetTemp(1)); // Value in memory.
+
+ if (type == Primitive::kPrimNot) {
+ // The only read barrier implementation supporting the
+ // UnsafeCASObject intrinsic is the Baker-style read barriers.
+ DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
+
+ // Mark card for object assuming new value is stored. Worst case we will mark an unchanged
+ // object and scan the receiver at the next GC for nothing.
+ bool value_can_be_null = true; // TODO: Worth finding out this information?
+ codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null);
+
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // Need to make sure the reference stored in the field is a to-space
+ // one before attempting the CAS or the CAS could fail incorrectly.
+ codegen->GenerateReferenceLoadWithBakerReadBarrier(
+ invoke,
+ out_loc, // Unused, used only as a "temporary" within the read barrier.
+ base,
+ /* offset */ 0u,
+ /* index */ offset_loc,
+ ScaleFactor::TIMES_1,
+ tmp_ptr_loc,
+ /* needs_null_check */ false,
+ /* always_update_field */ true,
+ &tmp);
+ }
+ }
+
+ // Prevent reordering with prior memory operations.
+ // Emit a DMB ISH instruction instead of an DMB ISHST one, as the
+ // latter allows a preceding load to be delayed past the STXR
+ // instruction below.
+ __ Dmb(vixl32::ISH);
+
+ __ Add(tmp_ptr, base, offset);
+
+ if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
+ codegen->GetAssembler()->PoisonHeapReference(expected);
+ if (value.Is(expected)) {
+ // Do not poison `value`, as it is the same register as
+ // `expected`, which has just been poisoned.
+ } else {
+ codegen->GetAssembler()->PoisonHeapReference(value);
+ }
+ }
+
+ // do {
+ // tmp = [r_ptr] - expected;
+ // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
+ // result = tmp != 0;
+
+ vixl32::Label loop_head;
+ __ Bind(&loop_head);
+
+ __ Ldrex(tmp, tmp_ptr);
+
+ __ Subs(tmp, tmp, expected);
+
+ {
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 3 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ itt(eq);
+ __ strex(eq, tmp, value, tmp_ptr);
+ __ cmp(eq, tmp, 1);
+ }
+
+ __ B(eq, &loop_head);
+
+ __ Dmb(vixl32::ISH);
+
+ __ Rsbs(out, tmp, 1);
+
+ {
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 2 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ it(cc);
+ __ mov(cc, out, 0);
+ }
+
+ if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
+ codegen->GetAssembler()->UnpoisonHeapReference(expected);
+ if (value.Is(expected)) {
+ // Do not unpoison `value`, as it is the same register as
+ // `expected`, which has just been unpoisoned.
+ } else {
+ codegen->GetAssembler()->UnpoisonHeapReference(value);
+ }
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
+ CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimInt);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
+ // The only read barrier implementation supporting the
+ // UnsafeCASObject intrinsic is the Baker-style read barriers.
+ if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
+ return;
+ }
+
+ CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimNot);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
+ GenCas(invoke, Primitive::kPrimInt, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
+ // The only read barrier implementation supporting the
+ // UnsafeCASObject intrinsic is the Baker-style read barriers.
+ DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
+
+ GenCas(invoke, Primitive::kPrimNot, codegen_);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
+ // The inputs plus one temp.
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ invoke->InputAt(1)->CanBeNull()
+ ? LocationSummary::kCallOnSlowPath
+ : LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ // Need temporary registers for String compression's feature.
+ if (mirror::kUseStringCompression) {
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ }
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ vixl32::Register str = InputRegisterAt(invoke, 0);
+ vixl32::Register arg = InputRegisterAt(invoke, 1);
+ vixl32::Register out = OutputRegister(invoke);
+
+ vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
+ vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
+ vixl32::Register temp3, temp4;
+ if (mirror::kUseStringCompression) {
+ temp3 = RegisterFrom(locations->GetTemp(3));
+ temp4 = RegisterFrom(locations->GetTemp(4));
+ }
+
+ vixl32::Label loop;
+ vixl32::Label find_char_diff;
+ vixl32::Label end;
+ vixl32::Label different_compression;
+
+ // Get offsets of count and value fields within a string object.
+ const int32_t count_offset = mirror::String::CountOffset().Int32Value();
+ const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
+
+ // Note that the null check must have been done earlier.
+ DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
+
+ // Take slow path and throw if input can be and is null.
+ SlowPathCodeARMVIXL* slow_path = nullptr;
+ const bool can_slow_path = invoke->InputAt(1)->CanBeNull();
+ if (can_slow_path) {
+ slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(slow_path);
+ __ Cbz(arg, slow_path->GetEntryLabel());
+ }
+
+ // Reference equality check, return 0 if same reference.
+ __ Subs(out, str, arg);
+ __ B(eq, &end);
+
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ vixl32::Register temp_reg = temps.Acquire();
+
+ if (mirror::kUseStringCompression) {
+ // Load lengths of this and argument strings.
+ __ Ldr(temp3, MemOperand(str, count_offset));
+ __ Ldr(temp4, MemOperand(arg, count_offset));
+ // Clean out compression flag from lengths.
+ __ Bic(temp0, temp3, 0x80000000);
+ __ Bic(temp_reg, temp4, 0x80000000);
+ } else {
+ // Load lengths of this and argument strings.
+ __ Ldr(temp0, MemOperand(str, count_offset));
+ __ Ldr(temp_reg, MemOperand(arg, count_offset));
+ }
+ // out = length diff.
+ __ Subs(out, temp0, temp_reg);
+ // temp0 = min(len(str), len(arg)).
+
+ {
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 2 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ it(gt);
+ __ mov(gt, temp0, temp_reg);
+ }
+
+ temps.Release(temp_reg);
+ // Shorter string is empty?
+ __ Cbz(temp0, &end);
+
+ if (mirror::kUseStringCompression) {
+ // Check if both strings using same compression style to use this comparison loop.
+ __ Eors(temp3, temp3, temp4);
+ __ B(mi, &different_compression);
+ }
+ // Store offset of string value in preparation for comparison loop.
+ __ Mov(temp1, value_offset);
+ if (mirror::kUseStringCompression) {
+ // For string compression, calculate the number of bytes to compare (not chars).
+ // This could in theory exceed INT32_MAX, so treat temp0 as unsigned.
+ __ Cmp(temp4, 0);
+
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 2 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ it(ge);
+ __ add(ge, temp0, temp0, temp0);
+ }
+
+ // Assertions that must hold in order to compare multiple characters at a time.
+ CHECK_ALIGNED(value_offset, 8);
+ static_assert(IsAligned<8>(kObjectAlignment),
+ "String data must be 8-byte aligned for unrolled CompareTo loop.");
+
+ const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
+ DCHECK_EQ(char_size, 2u);
+
+ vixl32::Label find_char_diff_2nd_cmp;
+ // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment).
+ __ Bind(&loop);
+ temp_reg = temps.Acquire();
+ __ Ldr(temp_reg, MemOperand(str, temp1));
+ __ Ldr(temp2, MemOperand(arg, temp1));
+ __ Cmp(temp_reg, temp2);
+ __ B(ne, &find_char_diff);
+ __ Add(temp1, temp1, char_size * 2);
+
+ __ Ldr(temp_reg, MemOperand(str, temp1));
+ __ Ldr(temp2, MemOperand(arg, temp1));
+ __ Cmp(temp_reg, temp2);
+ __ B(ne, &find_char_diff_2nd_cmp);
+ __ Add(temp1, temp1, char_size * 2);
+ // With string compression, we have compared 8 bytes, otherwise 4 chars.
+ __ Subs(temp0, temp0, (mirror::kUseStringCompression ? 8 : 4));
+ __ B(hi, &loop);
+ __ B(&end);
+
+ __ Bind(&find_char_diff_2nd_cmp);
+ if (mirror::kUseStringCompression) {
+ __ Subs(temp0, temp0, 4); // 4 bytes previously compared.
+ __ B(ls, &end); // Was the second comparison fully beyond the end?
+ } else {
+ // Without string compression, we can start treating temp0 as signed
+ // and rely on the signed comparison below.
+ __ Sub(temp0, temp0, 2);
+ }
+
+ // Find the single character difference.
+ __ Bind(&find_char_diff);
+ // Get the bit position of the first character that differs.
+ __ Eor(temp1, temp2, temp_reg);
+ __ Rbit(temp1, temp1);
+ __ Clz(temp1, temp1);
+
+ // temp0 = number of characters remaining to compare.
+ // (Without string compression, it could be < 1 if a difference is found by the second CMP
+ // in the comparison loop, and after the end of the shorter string data).
+
+ // Without string compression (temp1 >> 4) = character where difference occurs between the last
+ // two words compared, in the interval [0,1].
+ // (0 for low half-word different, 1 for high half-word different).
+ // With string compression, (temp1 << 3) = byte where the difference occurs,
+ // in the interval [0,3].
+
+ // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside
+ // the remaining string data, so just return length diff (out).
+ // The comparison is unsigned for string compression, otherwise signed.
+ __ Cmp(temp0, Operand(temp1, vixl32::LSR, (mirror::kUseStringCompression ? 3 : 4)));
+ __ B((mirror::kUseStringCompression ? ls : le), &end);
+ // Extract the characters and calculate the difference.
+ vixl32::Label uncompressed_string, continue_process;
+ if (mirror::kUseStringCompression) {
+ __ Cmp(temp4, 0);
+ __ B(ge, &uncompressed_string);
+ __ Bic(temp1, temp1, 0x7);
+ __ B(&continue_process);
+ }
+ __ Bind(&uncompressed_string);
+ __ Bic(temp1, temp1, 0xf);
+ __ Bind(&continue_process);
+
+ __ Lsr(temp2, temp2, temp1);
+ __ Lsr(temp_reg, temp_reg, temp1);
+ vixl32::Label calculate_difference, uncompressed_string_extract_chars;
+ if (mirror::kUseStringCompression) {
+ __ Cmp(temp4, 0);
+ __ B(ge, &uncompressed_string_extract_chars);
+ __ Ubfx(temp2, temp2, 0, 8);
+ __ Ubfx(temp_reg, temp_reg, 0, 8);
+ __ B(&calculate_difference);
+ }
+ __ Bind(&uncompressed_string_extract_chars);
+ __ Movt(temp2, 0);
+ __ Movt(temp_reg, 0);
+ __ Bind(&calculate_difference);
+ __ Sub(out, temp_reg, temp2);
+ temps.Release(temp_reg);
+ __ B(&end);
+
+ if (mirror::kUseStringCompression) {
+ const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
+ DCHECK_EQ(c_char_size, 1u);
+ vixl32::Label loop_arg_compressed, loop_this_compressed, find_diff;
+ // Comparison for different compression style.
+ // This part is when THIS is compressed and ARG is not.
+ __ Bind(&different_compression);
+ __ Add(temp2, str, value_offset);
+ __ Add(temp3, arg, value_offset);
+ __ Cmp(temp4, 0);
+ __ B(lt, &loop_arg_compressed);
+
+ __ Bind(&loop_this_compressed);
+ temp_reg = temps.Acquire();
+ __ Ldrb(temp_reg, MemOperand(temp2, c_char_size, PostIndex));
+ __ Ldrh(temp4, MemOperand(temp3, char_size, PostIndex));
+ __ Cmp(temp_reg, temp4);
+ __ B(ne, &find_diff);
+ __ Subs(temp0, temp0, 1);
+ __ B(gt, &loop_this_compressed);
+ __ B(&end);
+
+ // This part is when THIS is not compressed and ARG is.
+ __ Bind(&loop_arg_compressed);
+ __ Ldrh(temp_reg, MemOperand(temp2, char_size, PostIndex));
+ __ Ldrb(temp4, MemOperand(temp3, c_char_size, PostIndex));
+ __ Cmp(temp_reg, temp4);
+ __ B(ne, &find_diff);
+ __ Subs(temp0, temp0, 1);
+ __ B(gt, &loop_arg_compressed);
+ __ B(&end);
+
+ // Calculate the difference.
+ __ Bind(&find_diff);
+ __ Sub(out, temp_reg, temp4);
+ temps.Release(temp_reg);
+ }
+
+ __ Bind(&end);
+
+ if (can_slow_path) {
+ __ Bind(slow_path->GetExitLabel());
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringEquals(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+ // Temporary registers to store lengths of strings and for calculations.
+ // Using instruction cbz requires a low register, so explicitly set a temp to be R0.
+ locations->AddTemp(LocationFrom(r0));
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+
+ locations->SetOut(Location::RequiresRegister());
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringEquals(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ vixl32::Register str = InputRegisterAt(invoke, 0);
+ vixl32::Register arg = InputRegisterAt(invoke, 1);
+ vixl32::Register out = OutputRegister(invoke);
+
+ vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
+ vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
+
+ vixl32::Label loop, preloop;
+ vixl32::Label end;
+ vixl32::Label return_true;
+ vixl32::Label return_false;
+
+ // Get offsets of count, value, and class fields within a string object.
+ const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
+ const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
+ const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
+
+ // Note that the null check must have been done earlier.
+ DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
+
+ StringEqualsOptimizations optimizations(invoke);
+ if (!optimizations.GetArgumentNotNull()) {
+ // Check if input is null, return false if it is.
+ __ Cbz(arg, &return_false);
+ }
+
+ if (!optimizations.GetArgumentIsString()) {
+ // Instanceof check for the argument by comparing class fields.
+ // All string objects must have the same type since String cannot be subclassed.
+ // Receiver must be a string object, so its class field is equal to all strings' class fields.
+ // If the argument is a string object, its class field must be equal to receiver's class field.
+ __ Ldr(temp, MemOperand(str, class_offset));
+ __ Ldr(temp1, MemOperand(arg, class_offset));
+ __ Cmp(temp, temp1);
+ __ B(ne, &return_false);
+ }
+
+ // Load lengths of this and argument strings.
+ __ Ldr(temp, MemOperand(str, count_offset));
+ __ Ldr(temp1, MemOperand(arg, count_offset));
+ // Check if lengths are equal, return false if they're not.
+ // Also compares the compression style, if differs return false.
+ __ Cmp(temp, temp1);
+ __ B(ne, &return_false);
+ // Return true if both strings are empty.
+ if (mirror::kUseStringCompression) {
+ // Length needs to be masked out first because 0 is treated as compressed.
+ __ Bic(temp, temp, 0x80000000);
+ }
+ __ Cbz(temp, &return_true);
+ // Reference equality check, return true if same reference.
+ __ Cmp(str, arg);
+ __ B(eq, &return_true);
+
+ // Assertions that must hold in order to compare strings 2 characters at a time.
+ DCHECK_ALIGNED(value_offset, 4);
+ static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare.");
+
+ if (mirror::kUseStringCompression) {
+ // If not compressed, directly to fast compare. Else do preprocess on length.
+ __ Cmp(temp1, 0);
+ __ B(gt, &preloop);
+ // Mask out compression flag and adjust length for compressed string (8-bit)
+ // as if it is a 16-bit data, new_length = (length + 1) / 2.
+ __ Add(temp, temp, 1);
+ __ Lsr(temp, temp, 1);
+ __ Bind(&preloop);
+ }
+ // Loop to compare strings 2 characters at a time starting at the front of the string.
+ // Ok to do this because strings with an odd length are zero-padded.
+ __ Mov(temp1, value_offset);
+ __ Bind(&loop);
+ __ Ldr(out, MemOperand(str, temp1));
+ __ Ldr(temp2, MemOperand(arg, temp1));
+ __ Cmp(out, temp2);
+ __ B(ne, &return_false);
+ __ Add(temp1, temp1, sizeof(uint32_t));
+ __ Subs(temp, temp, sizeof(uint32_t) / sizeof(uint16_t));
+ __ B(gt, &loop);
+
+ // Return true and exit the function.
+ // If loop does not result in returning false, we return true.
+ __ Bind(&return_true);
+ __ Mov(out, 1);
+ __ B(&end);
+
+ // Return false and exit the function.
+ __ Bind(&return_false);
+ __ Mov(out, 0);
+ __ Bind(&end);
+}
+
+static void GenerateVisitStringIndexOf(HInvoke* invoke,
+ ArmVIXLAssembler* assembler,
+ CodeGeneratorARMVIXL* codegen,
+ ArenaAllocator* allocator,
+ bool start_at_zero) {
+ LocationSummary* locations = invoke->GetLocations();
+
+ // Note that the null check must have been done earlier.
+ DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
+
+ // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
+ // or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
+ SlowPathCodeARMVIXL* slow_path = nullptr;
+ HInstruction* code_point = invoke->InputAt(1);
+ if (code_point->IsIntConstant()) {
+ if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) >
+ std::numeric_limits<uint16_t>::max()) {
+ // Always needs the slow-path. We could directly dispatch to it, but this case should be
+ // rare, so for simplicity just put the full slow-path down and branch unconditionally.
+ slow_path = new (allocator) IntrinsicSlowPathARMVIXL(invoke);
+ codegen->AddSlowPath(slow_path);
+ __ B(slow_path->GetEntryLabel());
+ __ Bind(slow_path->GetExitLabel());
+ return;
+ }
+ } else if (code_point->GetType() != Primitive::kPrimChar) {
+ vixl32::Register char_reg = InputRegisterAt(invoke, 1);
+ // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`.
+ __ Cmp(char_reg, static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1);
+ slow_path = new (allocator) IntrinsicSlowPathARMVIXL(invoke);
+ codegen->AddSlowPath(slow_path);
+ __ B(hs, slow_path->GetEntryLabel());
+ }
+
+ if (start_at_zero) {
+ vixl32::Register tmp_reg = RegisterFrom(locations->GetTemp(0));
+ DCHECK(tmp_reg.Is(r2));
+ // Start-index = 0.
+ __ Mov(tmp_reg, 0);
+ }
+
+ codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
+ CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
+
+ if (slow_path != nullptr) {
+ __ Bind(slow_path->GetExitLabel());
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainAndSlowPath,
+ kIntrinsified);
+ // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
+ // best to align the inputs accordingly.
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->SetOut(LocationFrom(r0));
+
+ // Need to send start-index=0.
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
+ GenerateVisitStringIndexOf(
+ invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainAndSlowPath,
+ kIntrinsified);
+ // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
+ // best to align the inputs accordingly.
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
+ locations->SetOut(LocationFrom(r0));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
+ GenerateVisitStringIndexOf(
+ invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainAndSlowPath,
+ kIntrinsified);
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
+ locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3)));
+ locations->SetOut(LocationFrom(r0));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ vixl32::Register byte_array = InputRegisterAt(invoke, 0);
+ __ Cmp(byte_array, 0);
+ SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(slow_path);
+ __ B(eq, slow_path->GetEntryLabel());
+
+ codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
+ CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
+ __ Bind(slow_path->GetExitLabel());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainOnly,
+ kIntrinsified);
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
+ locations->SetOut(LocationFrom(r0));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
+ // No need to emit code checking whether `locations->InAt(2)` is a null
+ // pointer, as callers of the native method
+ //
+ // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
+ //
+ // all include a null check on `data` before calling that method.
+ codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
+ CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainAndSlowPath,
+ kIntrinsified);
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetOut(LocationFrom(r0));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ vixl32::Register string_to_copy = InputRegisterAt(invoke, 0);
+ __ Cmp(string_to_copy, 0);
+ SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(slow_path);
+ __ B(eq, slow_path->GetEntryLabel());
+
+ codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
+ CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
+
+ __ Bind(slow_path->GetExitLabel());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
+ // The only read barrier implementation supporting the
+ // SystemArrayCopy intrinsic is the Baker-style read barriers.
+ if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
+ return;
+ }
+
+ CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
+ LocationSummary* locations = invoke->GetLocations();
+ if (locations == nullptr) {
+ return;
+ }
+
+ HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
+ HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
+ HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
+
+ if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) {
+ locations->SetInAt(1, Location::RequiresRegister());
+ }
+ if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) {
+ locations->SetInAt(3, Location::RequiresRegister());
+ }
+ if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) {
+ locations->SetInAt(4, Location::RequiresRegister());
+ }
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // Temporary register IP cannot be used in
+ // ReadBarrierSystemArrayCopySlowPathARM (because that register
+ // is clobbered by ReadBarrierMarkRegX entry points). Get an extra
+ // temporary register from the register allocator.
+ locations->AddTemp(Location::RequiresRegister());
+ }
+}
+
+static void CheckPosition(ArmVIXLAssembler* assembler,
+ Location pos,
+ vixl32::Register input,
+ Location length,
+ SlowPathCodeARMVIXL* slow_path,
+ vixl32::Register temp,
+ bool length_is_input_length = false) {
+ // Where is the length in the Array?
+ const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
+
+ if (pos.IsConstant()) {
+ int32_t pos_const = Int32ConstantFrom(pos);
+ if (pos_const == 0) {
+ if (!length_is_input_length) {
+ // Check that length(input) >= length.
+ __ Ldr(temp, MemOperand(input, length_offset));
+ if (length.IsConstant()) {
+ __ Cmp(temp, Int32ConstantFrom(length));
+ } else {
+ __ Cmp(temp, RegisterFrom(length));
+ }
+ __ B(lt, slow_path->GetEntryLabel());
+ }
+ } else {
+ // Check that length(input) >= pos.
+ __ Ldr(temp, MemOperand(input, length_offset));
+ __ Subs(temp, temp, pos_const);
+ __ B(lt, slow_path->GetEntryLabel());
+
+ // Check that (length(input) - pos) >= length.
+ if (length.IsConstant()) {
+ __ Cmp(temp, Int32ConstantFrom(length));
+ } else {
+ __ Cmp(temp, RegisterFrom(length));
+ }
+ __ B(lt, slow_path->GetEntryLabel());
+ }
+ } else if (length_is_input_length) {
+ // The only way the copy can succeed is if pos is zero.
+ vixl32::Register pos_reg = RegisterFrom(pos);
+ __ Cbnz(pos_reg, slow_path->GetEntryLabel());
+ } else {
+ // Check that pos >= 0.
+ vixl32::Register pos_reg = RegisterFrom(pos);
+ __ Cmp(pos_reg, 0);
+ __ B(lt, slow_path->GetEntryLabel());
+
+ // Check that pos <= length(input).
+ __ Ldr(temp, MemOperand(input, length_offset));
+ __ Subs(temp, temp, pos_reg);
+ __ B(lt, slow_path->GetEntryLabel());
+
+ // Check that (length(input) - pos) >= length.
+ if (length.IsConstant()) {
+ __ Cmp(temp, Int32ConstantFrom(length));
+ } else {
+ __ Cmp(temp, RegisterFrom(length));
+ }
+ __ B(lt, slow_path->GetEntryLabel());
+ }
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
+ // The only read barrier implementation supporting the
+ // SystemArrayCopy intrinsic is the Baker-style read barriers.
+ DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
+
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
+ uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
+ uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
+ uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
+ uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
+
+ vixl32::Register src = InputRegisterAt(invoke, 0);
+ Location src_pos = locations->InAt(1);
+ vixl32::Register dest = InputRegisterAt(invoke, 2);
+ Location dest_pos = locations->InAt(3);
+ Location length = locations->InAt(4);
+ Location temp1_loc = locations->GetTemp(0);
+ vixl32::Register temp1 = RegisterFrom(temp1_loc);
+ Location temp2_loc = locations->GetTemp(1);
+ vixl32::Register temp2 = RegisterFrom(temp2_loc);
+ Location temp3_loc = locations->GetTemp(2);
+ vixl32::Register temp3 = RegisterFrom(temp3_loc);
+
+ SlowPathCodeARMVIXL* intrinsic_slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(intrinsic_slow_path);
+
+ vixl32::Label conditions_on_positions_validated;
+ SystemArrayCopyOptimizations optimizations(invoke);
+
+ // If source and destination are the same, we go to slow path if we need to do
+ // forward copying.
+ if (src_pos.IsConstant()) {
+ int32_t src_pos_constant = Int32ConstantFrom(src_pos);
+ if (dest_pos.IsConstant()) {
+ int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
+ if (optimizations.GetDestinationIsSource()) {
+ // Checked when building locations.
+ DCHECK_GE(src_pos_constant, dest_pos_constant);
+ } else if (src_pos_constant < dest_pos_constant) {
+ __ Cmp(src, dest);
+ __ B(eq, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // Checked when building locations.
+ DCHECK(!optimizations.GetDestinationIsSource()
+ || (src_pos_constant >= Int32ConstantFrom(dest_pos)));
+ } else {
+ if (!optimizations.GetDestinationIsSource()) {
+ __ Cmp(src, dest);
+ __ B(ne, &conditions_on_positions_validated);
+ }
+ __ Cmp(RegisterFrom(dest_pos), src_pos_constant);
+ __ B(gt, intrinsic_slow_path->GetEntryLabel());
+ }
+ } else {
+ if (!optimizations.GetDestinationIsSource()) {
+ __ Cmp(src, dest);
+ __ B(ne, &conditions_on_positions_validated);
+ }
+ if (dest_pos.IsConstant()) {
+ int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
+ __ Cmp(RegisterFrom(src_pos), dest_pos_constant);
+ } else {
+ __ Cmp(RegisterFrom(src_pos), RegisterFrom(dest_pos));
+ }
+ __ B(lt, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ __ Bind(&conditions_on_positions_validated);
+
+ if (!optimizations.GetSourceIsNotNull()) {
+ // Bail out if the source is null.
+ __ Cbz(src, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
+ // Bail out if the destination is null.
+ __ Cbz(dest, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // If the length is negative, bail out.
+ // We have already checked in the LocationsBuilder for the constant case.
+ if (!length.IsConstant() &&
+ !optimizations.GetCountIsSourceLength() &&
+ !optimizations.GetCountIsDestinationLength()) {
+ __ Cmp(RegisterFrom(length), 0);
+ __ B(lt, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // Validity checks: source.
+ CheckPosition(assembler,
+ src_pos,
+ src,
+ length,
+ intrinsic_slow_path,
+ temp1,
+ optimizations.GetCountIsSourceLength());
+
+ // Validity checks: dest.
+ CheckPosition(assembler,
+ dest_pos,
+ dest,
+ length,
+ intrinsic_slow_path,
+ temp1,
+ optimizations.GetCountIsDestinationLength());
+
+ if (!optimizations.GetDoesNotNeedTypeCheck()) {
+ // Check whether all elements of the source array are assignable to the component
+ // type of the destination array. We do two checks: the classes are the same,
+ // or the destination is Object[]. If none of these checks succeed, we go to the
+ // slow path.
+
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ if (!optimizations.GetSourceIsNonPrimitiveArray()) {
+ // /* HeapReference<Class> */ temp1 = src->klass_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
+ // Bail out if the source is not a non primitive array.
+ // /* HeapReference<Class> */ temp1 = temp1->component_type_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
+ __ Cbz(temp1, intrinsic_slow_path->GetEntryLabel());
+ // If heap poisoning is enabled, `temp1` has been unpoisoned
+ // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
+ // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_);
+ __ Ldrh(temp1, MemOperand(temp1, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // /* HeapReference<Class> */ temp1 = dest->klass_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check */ false);
+
+ if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
+ // Bail out if the destination is not a non primitive array.
+ //
+ // Register `temp1` is not trashed by the read barrier emitted
+ // by GenerateFieldLoadWithBakerReadBarrier below, as that
+ // method produces a call to a ReadBarrierMarkRegX entry point,
+ // which saves all potentially live registers, including
+ // temporaries such a `temp1`.
+ // /* HeapReference<Class> */ temp2 = temp1->component_type_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check */ false);
+ __ Cbz(temp2, intrinsic_slow_path->GetEntryLabel());
+ // If heap poisoning is enabled, `temp2` has been unpoisoned
+ // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
+ // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
+ __ Ldrh(temp2, MemOperand(temp2, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // For the same reason given earlier, `temp1` is not trashed by the
+ // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
+ // /* HeapReference<Class> */ temp2 = src->klass_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check */ false);
+ // Note: if heap poisoning is on, we are comparing two unpoisoned references here.
+ __ Cmp(temp1, temp2);
+
+ if (optimizations.GetDestinationIsTypedObjectArray()) {
+ vixl32::Label do_copy;
+ __ B(eq, &do_copy);
+ // /* HeapReference<Class> */ temp1 = temp1->component_type_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
+ // /* HeapReference<Class> */ temp1 = temp1->super_class_
+ // We do not need to emit a read barrier for the following
+ // heap reference load, as `temp1` is only used in a
+ // comparison with null below, and this reference is not
+ // kept afterwards.
+ __ Ldr(temp1, MemOperand(temp1, super_offset));
+ __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
+ __ Bind(&do_copy);
+ } else {
+ __ B(ne, intrinsic_slow_path->GetEntryLabel());
+ }
+ } else {
+ // Non read barrier code.
+
+ // /* HeapReference<Class> */ temp1 = dest->klass_
+ __ Ldr(temp1, MemOperand(dest, class_offset));
+ // /* HeapReference<Class> */ temp2 = src->klass_
+ __ Ldr(temp2, MemOperand(src, class_offset));
+ bool did_unpoison = false;
+ if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
+ !optimizations.GetSourceIsNonPrimitiveArray()) {
+ // One or two of the references need to be unpoisoned. Unpoison them
+ // both to make the identity check valid.
+ assembler->MaybeUnpoisonHeapReference(temp1);
+ assembler->MaybeUnpoisonHeapReference(temp2);
+ did_unpoison = true;
+ }
+
+ if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
+ // Bail out if the destination is not a non primitive array.
+ // /* HeapReference<Class> */ temp3 = temp1->component_type_
+ __ Ldr(temp3, MemOperand(temp1, component_offset));
+ __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
+ assembler->MaybeUnpoisonHeapReference(temp3);
+ // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
+ __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ if (!optimizations.GetSourceIsNonPrimitiveArray()) {
+ // Bail out if the source is not a non primitive array.
+ // /* HeapReference<Class> */ temp3 = temp2->component_type_
+ __ Ldr(temp3, MemOperand(temp2, component_offset));
+ __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
+ assembler->MaybeUnpoisonHeapReference(temp3);
+ // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
+ __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ __ Cmp(temp1, temp2);
+
+ if (optimizations.GetDestinationIsTypedObjectArray()) {
+ vixl32::Label do_copy;
+ __ B(eq, &do_copy);
+ if (!did_unpoison) {
+ assembler->MaybeUnpoisonHeapReference(temp1);
+ }
+ // /* HeapReference<Class> */ temp1 = temp1->component_type_
+ __ Ldr(temp1, MemOperand(temp1, component_offset));
+ assembler->MaybeUnpoisonHeapReference(temp1);
+ // /* HeapReference<Class> */ temp1 = temp1->super_class_
+ __ Ldr(temp1, MemOperand(temp1, super_offset));
+ // No need to unpoison the result, we're comparing against null.
+ __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
+ __ Bind(&do_copy);
+ } else {
+ __ B(ne, intrinsic_slow_path->GetEntryLabel());
+ }
+ }
+ } else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
+ DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
+ // Bail out if the source is not a non primitive array.
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // /* HeapReference<Class> */ temp1 = src->klass_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
+ // /* HeapReference<Class> */ temp3 = temp1->component_type_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
+ __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
+ // If heap poisoning is enabled, `temp3` has been unpoisoned
+ // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
+ } else {
+ // /* HeapReference<Class> */ temp1 = src->klass_
+ __ Ldr(temp1, MemOperand(src, class_offset));
+ assembler->MaybeUnpoisonHeapReference(temp1);
+ // /* HeapReference<Class> */ temp3 = temp1->component_type_
+ __ Ldr(temp3, MemOperand(temp1, component_offset));
+ __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
+ assembler->MaybeUnpoisonHeapReference(temp3);
+ }
+ // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
+ __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ int32_t element_size = Primitive::ComponentSize(Primitive::kPrimNot);
+ uint32_t element_size_shift = Primitive::ComponentSizeShift(Primitive::kPrimNot);
+ uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
+
+ // Compute the base source address in `temp1`.
+ if (src_pos.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(src_pos);
+ __ Add(temp1, src, element_size * constant + offset);
+ } else {
+ __ Add(temp1, src, Operand(RegisterFrom(src_pos), vixl32::LSL, element_size_shift));
+ __ Add(temp1, temp1, offset);
+ }
+
+ // Compute the end source address in `temp3`.
+ if (length.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(length);
+ __ Add(temp3, temp1, element_size * constant);
+ } else {
+ __ Add(temp3, temp1, Operand(RegisterFrom(length), vixl32::LSL, element_size_shift));
+ }
+
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // The base destination address is computed later, as `temp2` is
+ // used for intermediate computations.
+
+ // SystemArrayCopy implementation for Baker read barriers (see
+ // also CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier):
+ //
+ // if (src_ptr != end_ptr) {
+ // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
+ // lfence; // Load fence or artificial data dependency to prevent load-load reordering
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
+ // if (is_gray) {
+ // // Slow-path copy.
+ // do {
+ // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
+ // } while (src_ptr != end_ptr)
+ // } else {
+ // // Fast-path copy.
+ // do {
+ // *dest_ptr++ = *src_ptr++;
+ // } while (src_ptr != end_ptr)
+ // }
+ // }
+
+ vixl32::Label loop, done;
+
+ // Don't enter copy loop if `length == 0`.
+ __ Cmp(temp1, temp3);
+ __ B(eq, &done);
+
+ // /* int32_t */ monitor = src->monitor_
+ __ Ldr(temp2, MemOperand(src, monitor_offset));
+ // /* LockWord */ lock_word = LockWord(monitor)
+ static_assert(sizeof(LockWord) == sizeof(int32_t),
+ "art::LockWord and int32_t have different sizes.");
+
+ // Introduce a dependency on the lock_word including the rb_state,
+ // which shall prevent load-load reordering without using
+ // a memory barrier (which would be more expensive).
+ // `src` is unchanged by this operation, but its value now depends
+ // on `temp2`.
+ __ Add(src, src, Operand(temp2, vixl32::LSR, 32));
+
+ // Slow path used to copy array when `src` is gray.
+ SlowPathCodeARMVIXL* read_barrier_slow_path =
+ new (GetAllocator()) ReadBarrierSystemArrayCopySlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(read_barrier_slow_path);
+
+ // Given the numeric representation, it's enough to check the low bit of the
+ // rb_state. We do that by shifting the bit out of the lock word with LSRS
+ // which can be a 16-bit instruction unlike the TST immediate.
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
+ __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1);
+ // Carry flag is the last bit shifted out by LSRS.
+ __ B(cs, read_barrier_slow_path->GetEntryLabel());
+
+ // Fast-path copy.
+
+ // Compute the base destination address in `temp2`.
+ if (dest_pos.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(dest_pos);
+ __ Add(temp2, dest, element_size * constant + offset);
+ } else {
+ __ Add(temp2, dest, Operand(RegisterFrom(dest_pos), vixl32::LSL, element_size_shift));
+ __ Add(temp2, temp2, offset);
+ }
+
+ // Iterate over the arrays and do a raw copy of the objects. We don't need to
+ // poison/unpoison.
+ __ Bind(&loop);
+
+ {
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ const vixl32::Register temp_reg = temps.Acquire();
+
+ __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
+ __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
+ }
+
+ __ Cmp(temp1, temp3);
+ __ B(ne, &loop);
+
+ __ Bind(read_barrier_slow_path->GetExitLabel());
+ __ Bind(&done);
+ } else {
+ // Non read barrier code.
+
+ // Compute the base destination address in `temp2`.
+ if (dest_pos.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(dest_pos);
+ __ Add(temp2, dest, element_size * constant + offset);
+ } else {
+ __ Add(temp2, dest, Operand(RegisterFrom(dest_pos), vixl32::LSL, element_size_shift));
+ __ Add(temp2, temp2, offset);
+ }
+
+ // Iterate over the arrays and do a raw copy of the objects. We don't need to
+ // poison/unpoison.
+ vixl32::Label loop, done;
+ __ Cmp(temp1, temp3);
+ __ B(eq, &done);
+ __ Bind(&loop);
+
+ {
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ const vixl32::Register temp_reg = temps.Acquire();
+
+ __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
+ __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
+ }
+
+ __ Cmp(temp1, temp3);
+ __ B(ne, &loop);
+ __ Bind(&done);
+ }
+
+ // We only need one card marking on the destination array.
+ codegen_->MarkGCCard(temp1, temp2, dest, NoReg, /* value_can_be_null */ false);
+
+ __ Bind(intrinsic_slow_path->GetExitLabel());
+}
+
+static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ // If the graph is debuggable, all callee-saved floating-point registers are blocked by
+ // the code generator. Furthermore, the register allocator creates fixed live intervals
+ // for all caller-saved registers because we are doing a function call. As a result, if
+ // the input and output locations are unallocated, the register allocator runs out of
+ // registers and fails; however, a debuggable graph is not the common case.
+ if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
+ return;
+ }
+
+ DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
+ DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
+ DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
+
+ LocationSummary* const locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kCallOnMainOnly,
+ kIntrinsified);
+ const InvokeRuntimeCallingConventionARMVIXL calling_convention;
+
+ locations->SetInAt(0, Location::RequiresFpuRegister());
+ locations->SetOut(Location::RequiresFpuRegister());
+ // Native code uses the soft float ABI.
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
+}
+
+static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ // If the graph is debuggable, all callee-saved floating-point registers are blocked by
+ // the code generator. Furthermore, the register allocator creates fixed live intervals
+ // for all caller-saved registers because we are doing a function call. As a result, if
+ // the input and output locations are unallocated, the register allocator runs out of
+ // registers and fails; however, a debuggable graph is not the common case.
+ if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
+ return;
+ }
+
+ DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
+ DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
+ DCHECK_EQ(invoke->InputAt(1)->GetType(), Primitive::kPrimDouble);
+ DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
+
+ LocationSummary* const locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kCallOnMainOnly,
+ kIntrinsified);
+ const InvokeRuntimeCallingConventionARMVIXL calling_convention;
+
+ locations->SetInAt(0, Location::RequiresFpuRegister());
+ locations->SetInAt(1, Location::RequiresFpuRegister());
+ locations->SetOut(Location::RequiresFpuRegister());
+ // Native code uses the soft float ABI.
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(3)));
+}
+
+static void GenFPToFPCall(HInvoke* invoke,
+ ArmVIXLAssembler* assembler,
+ CodeGeneratorARMVIXL* codegen,
+ QuickEntrypointEnum entry) {
+ LocationSummary* const locations = invoke->GetLocations();
+
+ DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
+ DCHECK(locations->WillCall() && locations->Intrinsified());
+
+ // Native code uses the soft float ABI.
+ __ Vmov(RegisterFrom(locations->GetTemp(0)),
+ RegisterFrom(locations->GetTemp(1)),
+ InputDRegisterAt(invoke, 0));
+ codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
+ __ Vmov(OutputDRegister(invoke),
+ RegisterFrom(locations->GetTemp(0)),
+ RegisterFrom(locations->GetTemp(1)));
+}
+
+static void GenFPFPToFPCall(HInvoke* invoke,
+ ArmVIXLAssembler* assembler,
+ CodeGeneratorARMVIXL* codegen,
+ QuickEntrypointEnum entry) {
+ LocationSummary* const locations = invoke->GetLocations();
+
+ DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
+ DCHECK(locations->WillCall() && locations->Intrinsified());
+
+ // Native code uses the soft float ABI.
+ __ Vmov(RegisterFrom(locations->GetTemp(0)),
+ RegisterFrom(locations->GetTemp(1)),
+ InputDRegisterAt(invoke, 0));
+ __ Vmov(RegisterFrom(locations->GetTemp(2)),
+ RegisterFrom(locations->GetTemp(3)),
+ InputDRegisterAt(invoke, 1));
+ codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
+ __ Vmov(OutputDRegister(invoke),
+ RegisterFrom(locations->GetTemp(0)),
+ RegisterFrom(locations->GetTemp(1)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathCos(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathCos(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathSin(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathSin(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAcos(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAcos(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAsin(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAsin(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathCbrt(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathCbrt(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathCosh(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathCosh(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathExp(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathExp(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathExpm1(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathExpm1(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathLog(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathLog(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathLog10(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathLog10(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathSinh(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathSinh(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathTan(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathTan(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathTanh(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathTanh(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan2(HInvoke* invoke) {
+ CreateFPFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan2(HInvoke* invoke) {
+ GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathHypot(HInvoke* invoke) {
+ CreateFPFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathHypot(HInvoke* invoke) {
+ GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
+ CreateFPFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
+ GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Rbit(OutputRegister(invoke), InputRegisterAt(invoke, 0));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongReverse(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongReverse(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
+ vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
+ vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
+ vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
+
+ __ Rbit(out_reg_lo, in_reg_hi);
+ __ Rbit(out_reg_hi, in_reg_lo);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Rev(OutputRegister(invoke), InputRegisterAt(invoke, 0));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
+ vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
+ vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
+ vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
+
+ __ Rev(out_reg_lo, in_reg_hi);
+ __ Rev(out_reg_hi, in_reg_lo);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Revsh(OutputRegister(invoke), InputRegisterAt(invoke, 0));
+}
+
+static void GenBitCount(HInvoke* instr, Primitive::Type type, ArmVIXLAssembler* assembler) {
+ DCHECK(Primitive::IsIntOrLongType(type)) << type;
+ DCHECK_EQ(instr->GetType(), Primitive::kPrimInt);
+ DCHECK_EQ(Primitive::PrimitiveKind(instr->InputAt(0)->GetType()), type);
+
+ bool is_long = type == Primitive::kPrimLong;
+ LocationSummary* locations = instr->GetLocations();
+ Location in = locations->InAt(0);
+ vixl32::Register src_0 = is_long ? LowRegisterFrom(in) : RegisterFrom(in);
+ vixl32::Register src_1 = is_long ? HighRegisterFrom(in) : src_0;
+ vixl32::SRegister tmp_s = LowSRegisterFrom(locations->GetTemp(0));
+ vixl32::DRegister tmp_d = DRegisterFrom(locations->GetTemp(0));
+ vixl32::Register out_r = OutputRegister(instr);
+
+ // Move data from core register(s) to temp D-reg for bit count calculation, then move back.
+ // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg,
+ // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency,
+ // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'.
+ __ Vmov(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0|
+ __ Vcnt(Untyped8, tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c|
+ __ Vpaddl(U8, tmp_d, tmp_d); // Temp DReg |--c|--c|--c|--c|
+ __ Vpaddl(U16, tmp_d, tmp_d); // Temp DReg |------c|------c|
+ if (is_long) {
+ __ Vpaddl(U32, tmp_d, tmp_d); // Temp DReg |--------------c|
+ }
+ __ Vmov(out_r, tmp_s);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+ invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
+ GenBitCount(invoke, Primitive::kPrimInt, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongBitCount(HInvoke* invoke) {
+ VisitIntegerBitCount(invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongBitCount(HInvoke* invoke) {
+ GenBitCount(invoke, Primitive::kPrimLong, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetInAt(2, Location::RequiresRegister());
+ locations->SetInAt(3, Location::RequiresRegister());
+ locations->SetInAt(4, Location::RequiresRegister());
+
+ // Temporary registers to store lengths of strings and for calculations.
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ // Check assumption that sizeof(Char) is 2 (used in scaling below).
+ const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
+ DCHECK_EQ(char_size, 2u);
+
+ // Location of data in char array buffer.
+ const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
+
+ // Location of char array data in string.
+ const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
+
+ // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin);
+ // Since getChars() calls getCharsNoCheck() - we use registers rather than constants.
+ vixl32::Register srcObj = InputRegisterAt(invoke, 0);
+ vixl32::Register srcBegin = InputRegisterAt(invoke, 1);
+ vixl32::Register srcEnd = InputRegisterAt(invoke, 2);
+ vixl32::Register dstObj = InputRegisterAt(invoke, 3);
+ vixl32::Register dstBegin = InputRegisterAt(invoke, 4);
+
+ vixl32::Register num_chr = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register src_ptr = RegisterFrom(locations->GetTemp(1));
+ vixl32::Register dst_ptr = RegisterFrom(locations->GetTemp(2));
+
+ vixl32::Label done, compressed_string_loop;
+ // dst to be copied.
+ __ Add(dst_ptr, dstObj, data_offset);
+ __ Add(dst_ptr, dst_ptr, Operand(dstBegin, vixl32::LSL, 1));
+
+ __ Subs(num_chr, srcEnd, srcBegin);
+ // Early out for valid zero-length retrievals.
+ __ B(eq, &done);
+
+ // src range to copy.
+ __ Add(src_ptr, srcObj, value_offset);
+
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ vixl32::Register temp;
+ vixl32::Label compressed_string_preloop;
+ if (mirror::kUseStringCompression) {
+ // Location of count in string.
+ const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
+ temp = temps.Acquire();
+ // String's length.
+ __ Ldr(temp, MemOperand(srcObj, count_offset));
+ __ Cmp(temp, 0);
+ temps.Release(temp);
+ __ B(lt, &compressed_string_preloop);
+ }
+ __ Add(src_ptr, src_ptr, Operand(srcBegin, vixl32::LSL, 1));
+
+ // Do the copy.
+ vixl32::Label loop, remainder;
+
+ temp = temps.Acquire();
+ // Save repairing the value of num_chr on the < 4 character path.
+ __ Subs(temp, num_chr, 4);
+ __ B(lt, &remainder);
+
+ // Keep the result of the earlier subs, we are going to fetch at least 4 characters.
+ __ Mov(num_chr, temp);
+
+ // Main loop used for longer fetches loads and stores 4x16-bit characters at a time.
+ // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code
+ // to rectify these everywhere this intrinsic applies.)
+ __ Bind(&loop);
+ __ Ldr(temp, MemOperand(src_ptr, char_size * 2));
+ __ Subs(num_chr, num_chr, 4);
+ __ Str(temp, MemOperand(dst_ptr, char_size * 2));
+ __ Ldr(temp, MemOperand(src_ptr, char_size * 4, PostIndex));
+ __ Str(temp, MemOperand(dst_ptr, char_size * 4, PostIndex));
+ temps.Release(temp);
+ __ B(ge, &loop);
+
+ __ Adds(num_chr, num_chr, 4);
+ __ B(eq, &done);
+
+ // Main loop for < 4 character case and remainder handling. Loads and stores one
+ // 16-bit Java character at a time.
+ __ Bind(&remainder);
+ temp = temps.Acquire();
+ __ Ldrh(temp, MemOperand(src_ptr, char_size, PostIndex));
+ __ Subs(num_chr, num_chr, 1);
+ __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
+ temps.Release(temp);
+ __ B(gt, &remainder);
+ __ B(&done);
+
+ if (mirror::kUseStringCompression) {
+ const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
+ DCHECK_EQ(c_char_size, 1u);
+ // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
+ __ Bind(&compressed_string_preloop);
+ __ Add(src_ptr, src_ptr, srcBegin);
+ __ Bind(&compressed_string_loop);
+ temp = temps.Acquire();
+ __ Ldrb(temp, MemOperand(src_ptr, c_char_size, PostIndex));
+ __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
+ temps.Release(temp);
+ __ Subs(num_chr, num_chr, 1);
+ __ B(gt, &compressed_string_loop);
+ }
+
+ __ Bind(&done);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
+ CreateFPToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
+ ArmVIXLAssembler* const assembler = GetAssembler();
+ const vixl32::Register out = OutputRegister(invoke);
+ // Shifting left by 1 bit makes the value encodable as an immediate operand;
+ // we don't care about the sign bit anyway.
+ constexpr uint32_t infinity = kPositiveInfinityFloat << 1U;
+
+ __ Vmov(out, InputSRegisterAt(invoke, 0));
+ // We don't care about the sign bit, so shift left.
+ __ Lsl(out, out, 1);
+ __ Eor(out, out, infinity);
+ // If the result is 0, then it has 32 leading zeros, and less than that otherwise.
+ __ Clz(out, out);
+ // Any number less than 32 logically shifted right by 5 bits results in 0;
+ // the same operation on 32 yields 1.
+ __ Lsr(out, out, 5);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
+ CreateFPToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
+ ArmVIXLAssembler* const assembler = GetAssembler();
+ const vixl32::Register out = OutputRegister(invoke);
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ const vixl32::Register temp = temps.Acquire();
+ // The highest 32 bits of double precision positive infinity separated into
+ // two constants encodable as immediate operands.
+ constexpr uint32_t infinity_high = 0x7f000000U;
+ constexpr uint32_t infinity_high2 = 0x00f00000U;
+
+ static_assert((infinity_high | infinity_high2) ==
+ static_cast<uint32_t>(kPositiveInfinityDouble >> 32U),
+ "The constants do not add up to the high 32 bits of double "
+ "precision positive infinity.");
+ __ Vmov(temp, out, InputDRegisterAt(invoke, 0));
+ __ Eor(out, out, infinity_high);
+ __ Eor(out, out, infinity_high2);
+ // We don't care about the sign bit, so shift left.
+ __ Orr(out, temp, Operand(out, vixl32::LSL, 1));
+ // If the result is 0, then it has 32 leading zeros, and less than that otherwise.
+ __ Clz(out, out);
+ // Any number less than 32 logically shifted right by 5 bits results in 0;
+ // the same operation on 32 yields 1.
+ __ Lsr(out, out, 5);
+}
+
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMinDoubleDouble)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMinFloatFloat)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMaxDoubleDouble)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMaxFloatFloat)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMinLongLong)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMaxLongLong)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathCeil) // Could be done by changing rounding mode, maybe?
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathFloor) // Could be done by changing rounding mode, maybe?
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRint)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundDouble) // Could be done by changing rounding mode, maybe?
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundFloat) // Could be done by changing rounding mode, maybe?
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeCASLong) // High register pressure.
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, SystemArrayCopyChar)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, ReferenceGetReferent)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, IntegerHighestOneBit)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, LongHighestOneBit)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, IntegerLowestOneBit)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, LongLowestOneBit)
+
+// 1.8.
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddInt)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddLong)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetInt)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetLong)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetObject)
+
+UNREACHABLE_INTRINSICS(ARMVIXL)
+
+#undef __
+
+} // namespace arm
+} // namespace art
diff --git a/compiler/optimizing/intrinsics_arm_vixl.h b/compiler/optimizing/intrinsics_arm_vixl.h
new file mode 100644
index 0000000000..6e79cb76a1
--- /dev/null
+++ b/compiler/optimizing/intrinsics_arm_vixl.h
@@ -0,0 +1,81 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_COMPILER_OPTIMIZING_INTRINSICS_ARM_VIXL_H_
+#define ART_COMPILER_OPTIMIZING_INTRINSICS_ARM_VIXL_H_
+
+#include "intrinsics.h"
+#include "utils/arm/assembler_arm_vixl.h"
+
+namespace art {
+
+namespace arm {
+
+class ArmVIXLAssembler;
+class CodeGeneratorARMVIXL;
+
+class IntrinsicLocationsBuilderARMVIXL FINAL : public IntrinsicVisitor {
+ public:
+ explicit IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen);
+
+ // Define visitor methods.
+
+#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions, ...) \
+ void Visit ## Name(HInvoke* invoke) OVERRIDE;
+#include "intrinsics_list.h"
+INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
+#undef INTRINSICS_LIST
+#undef OPTIMIZING_INTRINSICS
+
+ // Check whether an invoke is an intrinsic, and if so, create a location summary. Returns whether
+ // a corresponding LocationSummary with the intrinsified_ flag set was generated and attached to
+ // the invoke.
+ bool TryDispatch(HInvoke* invoke);
+
+ private:
+ ArenaAllocator* arena_;
+ ArmVIXLAssembler* assembler_;
+ const ArmInstructionSetFeatures& features_;
+
+ DISALLOW_COPY_AND_ASSIGN(IntrinsicLocationsBuilderARMVIXL);
+};
+
+class IntrinsicCodeGeneratorARMVIXL FINAL : public IntrinsicVisitor {
+ public:
+ explicit IntrinsicCodeGeneratorARMVIXL(CodeGeneratorARMVIXL* codegen) : codegen_(codegen) {}
+
+ // Define visitor methods.
+
+#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions, ...) \
+ void Visit ## Name(HInvoke* invoke) OVERRIDE;
+#include "intrinsics_list.h"
+INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
+#undef INTRINSICS_LIST
+#undef OPTIMIZING_INTRINSICS
+
+ private:
+ ArenaAllocator* GetAllocator();
+ ArmVIXLAssembler* GetAssembler();
+
+ CodeGeneratorARMVIXL* codegen_;
+
+ DISALLOW_COPY_AND_ASSIGN(IntrinsicCodeGeneratorARMVIXL);
+};
+
+} // namespace arm
+} // namespace art
+
+#endif // ART_COMPILER_OPTIMIZING_INTRINSICS_ARM_VIXL_H_
diff --git a/compiler/optimizing/intrinsics_x86.cc b/compiler/optimizing/intrinsics_x86.cc
index aae3899847..43682c5633 100644
--- a/compiler/optimizing/intrinsics_x86.cc
+++ b/compiler/optimizing/intrinsics_x86.cc
@@ -3200,7 +3200,7 @@ void IntrinsicCodeGeneratorX86::VisitSystemArrayCopy(HInvoke* invoke) {
// if (src_ptr != end_ptr) {
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
- // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// for (size_t i = 0; i != length; ++i) {
@@ -3222,14 +3222,13 @@ void IntrinsicCodeGeneratorX86::VisitSystemArrayCopy(HInvoke* invoke) {
__ j(kEqual, &done);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
- static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
- static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
- static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
- // if (rb_state == ReadBarrier::gray_ptr_)
+ // if (rb_state == ReadBarrier::GrayState())
// goto slow_path;
// At this point, just do the "if" and make sure that flags are preserved until the branch.
__ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value));
diff --git a/compiler/optimizing/intrinsics_x86_64.cc b/compiler/optimizing/intrinsics_x86_64.cc
index cdef22f6de..de2606c327 100644
--- a/compiler/optimizing/intrinsics_x86_64.cc
+++ b/compiler/optimizing/intrinsics_x86_64.cc
@@ -1399,7 +1399,7 @@ void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
// if (src_ptr != end_ptr) {
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
- // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// do {
@@ -1420,14 +1420,13 @@ void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
__ j(kEqual, &done);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
- static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
- static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
- static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
- // if (rb_state == ReadBarrier::gray_ptr_)
+ // if (rb_state == ReadBarrier::GrayState())
// goto slow_path;
// At this point, just do the "if" and make sure that flags are preserved until the branch.
__ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value));
diff --git a/compiler/optimizing/load_store_elimination.cc b/compiler/optimizing/load_store_elimination.cc
index b91e9e6868..5b2cbf783d 100644
--- a/compiler/optimizing/load_store_elimination.cc
+++ b/compiler/optimizing/load_store_elimination.cc
@@ -663,27 +663,59 @@ class LSEVisitor : public HGraphVisitor {
if (predecessors.size() == 0) {
return;
}
+
ArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
- HInstruction* pred0_value = heap_values_for_[predecessors[0]->GetBlockId()][i];
- heap_values[i] = pred0_value;
- if (pred0_value != kUnknownHeapValue) {
- for (size_t j = 1; j < predecessors.size(); j++) {
- HInstruction* pred_value = heap_values_for_[predecessors[j]->GetBlockId()][i];
- if (pred_value != pred0_value) {
- heap_values[i] = kUnknownHeapValue;
- break;
- }
+ HInstruction* merged_value = nullptr;
+ // Whether merged_value is a result that's merged from all predecessors.
+ bool from_all_predecessors = true;
+ ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
+ HInstruction* singleton_ref = nullptr;
+ if (ref_info->IsSingletonAndNotReturned()) {
+ // We do more analysis of liveness when merging heap values for such
+ // cases since stores into such references may potentially be eliminated.
+ singleton_ref = ref_info->GetReference();
+ }
+
+ for (HBasicBlock* predecessor : predecessors) {
+ HInstruction* pred_value = heap_values_for_[predecessor->GetBlockId()][i];
+ if ((singleton_ref != nullptr) &&
+ !singleton_ref->GetBlock()->Dominates(predecessor)) {
+ // singleton_ref is not live in this predecessor. Skip this predecessor since
+ // it does not really have the location.
+ DCHECK_EQ(pred_value, kUnknownHeapValue);
+ from_all_predecessors = false;
+ continue;
+ }
+ if (merged_value == nullptr) {
+ // First seen heap value.
+ merged_value = pred_value;
+ } else if (pred_value != merged_value) {
+ // There are conflicting values.
+ merged_value = kUnknownHeapValue;
+ break;
}
}
- if (heap_values[i] == kUnknownHeapValue) {
+ if (merged_value == kUnknownHeapValue) {
+ // There are conflicting heap values from different predecessors.
// Keep the last store in each predecessor since future loads cannot be eliminated.
- for (size_t j = 0; j < predecessors.size(); j++) {
- ArenaVector<HInstruction*>& pred_values = heap_values_for_[predecessors[j]->GetBlockId()];
+ for (HBasicBlock* predecessor : predecessors) {
+ ArenaVector<HInstruction*>& pred_values = heap_values_for_[predecessor->GetBlockId()];
KeepIfIsStore(pred_values[i]);
}
}
+
+ if ((merged_value == nullptr) || !from_all_predecessors) {
+ DCHECK(singleton_ref != nullptr);
+ DCHECK((singleton_ref->GetBlock() == block) ||
+ !singleton_ref->GetBlock()->Dominates(block));
+ // singleton_ref is not defined before block or defined only in some of its
+ // predecessors, so block doesn't really have the location at its entry.
+ heap_values[i] = kUnknownHeapValue;
+ } else {
+ heap_values[i] = merged_value;
+ }
}
}
diff --git a/compiler/optimizing/locations.cc b/compiler/optimizing/locations.cc
index d157509758..a9fe209063 100644
--- a/compiler/optimizing/locations.cc
+++ b/compiler/optimizing/locations.cc
@@ -16,11 +16,16 @@
#include "locations.h"
+#include <type_traits>
+
#include "nodes.h"
#include "code_generator.h"
namespace art {
+// Verify that Location is trivially copyable.
+static_assert(std::is_trivially_copyable<Location>::value, "Location should be trivially copyable");
+
LocationSummary::LocationSummary(HInstruction* instruction,
CallKind call_kind,
bool intrinsified)
diff --git a/compiler/optimizing/locations.h b/compiler/optimizing/locations.h
index da27928ef2..52747c0cc4 100644
--- a/compiler/optimizing/locations.h
+++ b/compiler/optimizing/locations.h
@@ -91,12 +91,9 @@ class Location : public ValueObject {
DCHECK(!IsValid());
}
- Location(const Location& other) : value_(other.value_) {}
+ Location(const Location& other) = default;
- Location& operator=(const Location& other) {
- value_ = other.value_;
- return *this;
- }
+ Location& operator=(const Location& other) = default;
bool IsConstant() const {
return (value_ & kLocationConstantMask) == kConstant;
@@ -328,7 +325,6 @@ class Location : public ValueObject {
LOG(FATAL) << "Should not use this location kind";
}
UNREACHABLE();
- return "?";
}
// Unallocated locations.
diff --git a/compiler/optimizing/loop_optimization.cc b/compiler/optimizing/loop_optimization.cc
index 51be1d1e91..f4616e39e6 100644
--- a/compiler/optimizing/loop_optimization.cc
+++ b/compiler/optimizing/loop_optimization.cc
@@ -28,6 +28,30 @@ static void RemoveFromCycle(HInstruction* instruction) {
instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
}
+// Detect a goto block and sets succ to the single successor.
+static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
+ if (block->GetPredecessors().size() == 1 &&
+ block->GetSuccessors().size() == 1 &&
+ block->IsSingleGoto()) {
+ *succ = block->GetSingleSuccessor();
+ return true;
+ }
+ return false;
+}
+
+// Detect an early exit loop.
+static bool IsEarlyExit(HLoopInformation* loop_info) {
+ HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
+ for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
+ for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
+ if (!loop_info->Contains(*successor)) {
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
//
// Class methods.
//
@@ -168,7 +192,9 @@ void HLoopOptimization::SimplifyInduction(LoopNode* node) {
int32_t use_count = 0;
if (IsPhiInduction(phi) &&
IsOnlyUsedAfterLoop(node->loop_info, phi, &use_count) &&
- TryReplaceWithLastValue(phi, use_count, preheader)) {
+ // No uses, or no early-exit with proper replacement.
+ (use_count == 0 ||
+ (!IsEarlyExit(node->loop_info) && TryReplaceWithLastValue(phi, preheader)))) {
for (HInstruction* i : *iset_) {
RemoveFromCycle(i);
}
@@ -178,31 +204,57 @@ void HLoopOptimization::SimplifyInduction(LoopNode* node) {
}
void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
- for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
- HBasicBlock* block = it.Current();
- // Remove instructions that are dead.
- for (HBackwardInstructionIterator i(block->GetInstructions()); !i.Done(); i.Advance()) {
- HInstruction* instruction = i.Current();
- if (instruction->IsDeadAndRemovable()) {
- block->RemoveInstruction(instruction);
+ // Repeat the block simplifications until no more changes occur. Note that since
+ // each simplification consists of eliminating code (without introducing new code),
+ // this process is always finite.
+ bool changed;
+ do {
+ changed = false;
+ // Iterate over all basic blocks in the loop-body.
+ for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
+ HBasicBlock* block = it.Current();
+ // Remove dead instructions from the loop-body.
+ for (HBackwardInstructionIterator i(block->GetInstructions()); !i.Done(); i.Advance()) {
+ HInstruction* instruction = i.Current();
+ if (instruction->IsDeadAndRemovable()) {
+ changed = true;
+ block->RemoveInstruction(instruction);
+ }
}
- }
- // Remove trivial control flow blocks from the loop-body.
- if (block->GetPredecessors().size() == 1 &&
- block->GetSuccessors().size() == 1 &&
- block->GetFirstInstruction()->IsGoto()) {
- HBasicBlock* pred = block->GetSinglePredecessor();
- HBasicBlock* succ = block->GetSingleSuccessor();
- if (succ->GetPredecessors().size() == 1) {
+ // Remove trivial control flow blocks from the loop-body.
+ HBasicBlock* succ = nullptr;
+ if (IsGotoBlock(block, &succ) && succ->GetPredecessors().size() == 1) {
+ // Trivial goto block can be removed.
+ HBasicBlock* pred = block->GetSinglePredecessor();
+ changed = true;
pred->ReplaceSuccessor(block, succ);
- block->ClearDominanceInformation();
- block->SetDominator(pred); // needed by next disconnect.
+ block->RemoveDominatedBlock(succ);
block->DisconnectAndDelete();
pred->AddDominatedBlock(succ);
succ->SetDominator(pred);
+ } else if (block->GetSuccessors().size() == 2) {
+ // Trivial if block can be bypassed to either branch.
+ HBasicBlock* succ0 = block->GetSuccessors()[0];
+ HBasicBlock* succ1 = block->GetSuccessors()[1];
+ HBasicBlock* meet0 = nullptr;
+ HBasicBlock* meet1 = nullptr;
+ if (succ0 != succ1 &&
+ IsGotoBlock(succ0, &meet0) &&
+ IsGotoBlock(succ1, &meet1) &&
+ meet0 == meet1 && // meets again
+ meet0 != block && // no self-loop
+ meet0->GetPhis().IsEmpty()) { // not used for merging
+ changed = true;
+ succ0->DisconnectAndDelete();
+ if (block->Dominates(meet0)) {
+ block->RemoveDominatedBlock(meet0);
+ succ1->AddDominatedBlock(meet0);
+ meet0->SetDominator(succ1);
+ }
+ }
}
}
- }
+ } while (changed);
}
void HLoopOptimization::RemoveIfEmptyInnerLoop(LoopNode* node) {
@@ -240,12 +292,12 @@ void HLoopOptimization::RemoveIfEmptyInnerLoop(LoopNode* node) {
if (IsEmptyHeader(header) &&
IsEmptyBody(body) &&
IsOnlyUsedAfterLoop(node->loop_info, header->GetFirstPhi(), &use_count) &&
- TryReplaceWithLastValue(header->GetFirstPhi(), use_count, preheader)) {
+ // No uses, or proper replacement.
+ (use_count == 0 || TryReplaceWithLastValue(header->GetFirstPhi(), preheader))) {
body->DisconnectAndDelete();
exit->RemovePredecessor(header);
header->RemoveSuccessor(exit);
- header->ClearDominanceInformation();
- header->SetDominator(preheader); // needed by next disconnect.
+ header->RemoveDominatedBlock(exit);
header->DisconnectAndDelete();
preheader->AddSuccessor(exit);
preheader->AddInstruction(new (graph_->GetArena()) HGoto()); // global allocator
@@ -259,22 +311,23 @@ void HLoopOptimization::RemoveIfEmptyInnerLoop(LoopNode* node) {
bool HLoopOptimization::IsPhiInduction(HPhi* phi) {
ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
if (set != nullptr) {
+ DCHECK(iset_->empty());
for (HInstruction* i : *set) {
- // Check that, other than phi, instruction are removable with uses contained in the cycle.
- // TODO: investigate what cases are no longer in the graph.
- if (i != phi) {
- if (!i->IsInBlock() || !i->IsRemovable()) {
- return false;
- }
+ // Check that, other than instructions that are no longer in the graph (removed earlier)
+ // each instruction is removable and, other than the phi, uses are contained in the cycle.
+ if (!i->IsInBlock()) {
+ continue;
+ } else if (!i->IsRemovable()) {
+ return false;
+ } else if (i != phi) {
for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
if (set->find(use.GetUser()) == set->end()) {
return false;
}
}
}
+ iset_->insert(i); // copy
}
- DCHECK(iset_->empty());
- iset_->insert(set->begin(), set->end()); // copy
return true;
}
return false;
@@ -358,20 +411,16 @@ void HLoopOptimization::ReplaceAllUses(HInstruction* instruction, HInstruction*
}
}
-bool HLoopOptimization::TryReplaceWithLastValue(HInstruction* instruction,
- int32_t use_count,
- HBasicBlock* block) {
- // If true uses appear after the loop, replace these uses with the last value. Environment
- // uses can consume this value too, since any first true use is outside the loop (although
- // this may imply that de-opting may look "ahead" a bit on the phi value). If there are only
- // environment uses, the value is dropped altogether, since the computations have no effect.
- if (use_count > 0) {
- if (!induction_range_.CanGenerateLastValue(instruction)) {
- return false;
- }
+bool HLoopOptimization::TryReplaceWithLastValue(HInstruction* instruction, HBasicBlock* block) {
+ // Try to replace outside uses with the last value. Environment uses can consume this
+ // value too, since any first true use is outside the loop (although this may imply
+ // that de-opting may look "ahead" a bit on the phi value). If there are only environment
+ // uses, the value is dropped altogether, since the computations have no effect.
+ if (induction_range_.CanGenerateLastValue(instruction)) {
ReplaceAllUses(instruction, induction_range_.GenerateLastValue(instruction, graph_, block));
+ return true;
}
- return true;
+ return false;
}
} // namespace art
diff --git a/compiler/optimizing/loop_optimization.h b/compiler/optimizing/loop_optimization.h
index e18d17531e..3391bef4e9 100644
--- a/compiler/optimizing/loop_optimization.h
+++ b/compiler/optimizing/loop_optimization.h
@@ -72,9 +72,7 @@ class HLoopOptimization : public HOptimization {
HInstruction* instruction,
/*out*/ int32_t* use_count);
void ReplaceAllUses(HInstruction* instruction, HInstruction* replacement);
- bool TryReplaceWithLastValue(HInstruction* instruction,
- int32_t use_count,
- HBasicBlock* block);
+ bool TryReplaceWithLastValue(HInstruction* instruction, HBasicBlock* block);
// Range information based on prior induction variable analysis.
InductionVarRange induction_range_;
diff --git a/compiler/optimizing/register_allocation_resolver.cc b/compiler/optimizing/register_allocation_resolver.cc
index caf66474eb..5991791a15 100644
--- a/compiler/optimizing/register_allocation_resolver.cc
+++ b/compiler/optimizing/register_allocation_resolver.cc
@@ -374,7 +374,9 @@ void RegisterAllocationResolver::ConnectSiblings(LiveInterval* interval) {
if (current->GetType() == Primitive::kPrimNot) {
DCHECK(interval->GetDefinedBy()->IsActualObject())
<< interval->GetDefinedBy()->DebugName()
- << "@" << safepoint_position->GetInstruction()->DebugName();
+ << '(' << interval->GetDefinedBy()->GetId() << ')'
+ << "@" << safepoint_position->GetInstruction()->DebugName()
+ << '(' << safepoint_position->GetInstruction()->GetId() << ')';
LocationSummary* locations = safepoint_position->GetLocations();
if (current->GetParent()->HasSpillSlot()) {
locations->SetStackBit(current->GetParent()->GetSpillSlot() / kVRegSize);