diff options
Diffstat (limited to 'compiler/optimizing')
| -rw-r--r-- | compiler/optimizing/codegen_test.cc | 331 | ||||
| -rw-r--r-- | compiler/optimizing/codegen_test_utils.h | 355 | ||||
| -rw-r--r-- | compiler/optimizing/nodes.cc | 16 | ||||
| -rw-r--r-- | compiler/optimizing/nodes.h | 4 | ||||
| -rw-r--r-- | compiler/optimizing/optimizing_compiler.cc | 6 | ||||
| -rw-r--r-- | compiler/optimizing/optimizing_unit_test.h | 3 | ||||
| -rw-r--r-- | compiler/optimizing/scheduler.cc | 610 | ||||
| -rw-r--r-- | compiler/optimizing/scheduler.h | 487 | ||||
| -rw-r--r-- | compiler/optimizing/scheduler_arm64.cc | 196 | ||||
| -rw-r--r-- | compiler/optimizing/scheduler_arm64.h | 117 | ||||
| -rw-r--r-- | compiler/optimizing/scheduler_test.cc | 238 | 
11 files changed, 2023 insertions, 340 deletions
diff --git a/compiler/optimizing/codegen_test.cc b/compiler/optimizing/codegen_test.cc index 763d6da6f5..f8bbf68c1c 100644 --- a/compiler/optimizing/codegen_test.cc +++ b/compiler/optimizing/codegen_test.cc @@ -17,30 +17,15 @@  #include <functional>  #include <memory> -#include "arch/instruction_set.h" -#include "arch/arm/instruction_set_features_arm.h" -#include "arch/arm/registers_arm.h" -#include "arch/arm64/instruction_set_features_arm64.h" -#include "arch/mips/instruction_set_features_mips.h" -#include "arch/mips/registers_mips.h" -#include "arch/mips64/instruction_set_features_mips64.h" -#include "arch/mips64/registers_mips64.h" -#include "arch/x86/instruction_set_features_x86.h" -#include "arch/x86/registers_x86.h" -#include "arch/x86_64/instruction_set_features_x86_64.h"  #include "base/macros.h"  #include "builder.h" -#include "code_simulator_container.h" -#include "common_compiler_test.h" +#include "codegen_test_utils.h"  #include "dex_file.h"  #include "dex_instruction.h"  #include "driver/compiler_options.h" -#include "graph_checker.h"  #include "nodes.h"  #include "optimizing_unit_test.h" -#include "prepare_for_register_allocation.h"  #include "register_allocator_linear_scan.h" -#include "ssa_liveness_analysis.h"  #include "utils.h"  #include "utils/arm/assembler_arm_vixl.h"  #include "utils/arm/managed_register_arm.h" @@ -48,324 +33,10 @@  #include "utils/mips64/managed_register_mips64.h"  #include "utils/x86/managed_register_x86.h" -#ifdef ART_ENABLE_CODEGEN_arm -#include "code_generator_arm.h" -#include "code_generator_arm_vixl.h" -#endif - -#ifdef ART_ENABLE_CODEGEN_arm64 -#include "code_generator_arm64.h" -#endif - -#ifdef ART_ENABLE_CODEGEN_x86 -#include "code_generator_x86.h" -#endif - -#ifdef ART_ENABLE_CODEGEN_x86_64 -#include "code_generator_x86_64.h" -#endif - -#ifdef ART_ENABLE_CODEGEN_mips -#include "code_generator_mips.h" -#endif - -#ifdef ART_ENABLE_CODEGEN_mips64 -#include "code_generator_mips64.h" -#endif -  #include "gtest/gtest.h"  namespace art { -typedef CodeGenerator* (*CreateCodegenFn)(HGraph*, const CompilerOptions&); - -class CodegenTargetConfig { - public: -  CodegenTargetConfig(InstructionSet isa, CreateCodegenFn create_codegen) -      : isa_(isa), create_codegen_(create_codegen) { -  } -  InstructionSet GetInstructionSet() const { return isa_; } -  CodeGenerator* CreateCodeGenerator(HGraph* graph, const CompilerOptions& compiler_options) { -    return create_codegen_(graph, compiler_options); -  } - - private: -  CodegenTargetConfig() {} -  InstructionSet isa_; -  CreateCodegenFn create_codegen_; -}; - -#ifdef ART_ENABLE_CODEGEN_arm -// Provide our own codegen, that ensures the C calling conventions -// are preserved. Currently, ART and C do not match as R4 is caller-save -// in ART, and callee-save in C. Alternatively, we could use or write -// the stub that saves and restores all registers, but it is easier -// to just overwrite the code generator. -class TestCodeGeneratorARM : public arm::CodeGeneratorARM { - public: -  TestCodeGeneratorARM(HGraph* graph, -                       const ArmInstructionSetFeatures& isa_features, -                       const CompilerOptions& compiler_options) -      : arm::CodeGeneratorARM(graph, isa_features, compiler_options) { -    AddAllocatedRegister(Location::RegisterLocation(arm::R6)); -    AddAllocatedRegister(Location::RegisterLocation(arm::R7)); -  } - -  void SetupBlockedRegisters() const OVERRIDE { -    arm::CodeGeneratorARM::SetupBlockedRegisters(); -    blocked_core_registers_[arm::R4] = true; -    blocked_core_registers_[arm::R6] = false; -    blocked_core_registers_[arm::R7] = false; -  } -}; - -// A way to test the VIXL32-based code generator on ARM. This will replace -// TestCodeGeneratorARM when the VIXL32-based backend replaces the existing one. -class TestCodeGeneratorARMVIXL : public arm::CodeGeneratorARMVIXL { - public: -  TestCodeGeneratorARMVIXL(HGraph* graph, -                           const ArmInstructionSetFeatures& isa_features, -                           const CompilerOptions& compiler_options) -      : arm::CodeGeneratorARMVIXL(graph, isa_features, compiler_options) { -    AddAllocatedRegister(Location::RegisterLocation(arm::R6)); -    AddAllocatedRegister(Location::RegisterLocation(arm::R7)); -  } - -  void SetupBlockedRegisters() const OVERRIDE { -    arm::CodeGeneratorARMVIXL::SetupBlockedRegisters(); -    blocked_core_registers_[arm::R4] = true; -    blocked_core_registers_[arm::R6] = false; -    blocked_core_registers_[arm::R7] = false; -  } -}; -#endif - -#ifdef ART_ENABLE_CODEGEN_x86 -class TestCodeGeneratorX86 : public x86::CodeGeneratorX86 { - public: -  TestCodeGeneratorX86(HGraph* graph, -                       const X86InstructionSetFeatures& isa_features, -                       const CompilerOptions& compiler_options) -      : x86::CodeGeneratorX86(graph, isa_features, compiler_options) { -    // Save edi, we need it for getting enough registers for long multiplication. -    AddAllocatedRegister(Location::RegisterLocation(x86::EDI)); -  } - -  void SetupBlockedRegisters() const OVERRIDE { -    x86::CodeGeneratorX86::SetupBlockedRegisters(); -    // ebx is a callee-save register in C, but caller-save for ART. -    blocked_core_registers_[x86::EBX] = true; - -    // Make edi available. -    blocked_core_registers_[x86::EDI] = false; -  } -}; -#endif - -class InternalCodeAllocator : public CodeAllocator { - public: -  InternalCodeAllocator() : size_(0) { } - -  virtual uint8_t* Allocate(size_t size) { -    size_ = size; -    memory_.reset(new uint8_t[size]); -    return memory_.get(); -  } - -  size_t GetSize() const { return size_; } -  uint8_t* GetMemory() const { return memory_.get(); } - - private: -  size_t size_; -  std::unique_ptr<uint8_t[]> memory_; - -  DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator); -}; - -static bool CanExecuteOnHardware(InstructionSet target_isa) { -  return (target_isa == kRuntimeISA) -      // Handle the special case of ARM, with two instructions sets (ARM32 and Thumb-2). -      || (kRuntimeISA == kArm && target_isa == kThumb2); -} - -static bool CanExecute(InstructionSet target_isa) { -  CodeSimulatorContainer simulator(target_isa); -  return CanExecuteOnHardware(target_isa) || simulator.CanSimulate(); -} - -template <typename Expected> -static Expected SimulatorExecute(CodeSimulator* simulator, Expected (*f)()); - -template <> -bool SimulatorExecute<bool>(CodeSimulator* simulator, bool (*f)()) { -  simulator->RunFrom(reinterpret_cast<intptr_t>(f)); -  return simulator->GetCReturnBool(); -} - -template <> -int32_t SimulatorExecute<int32_t>(CodeSimulator* simulator, int32_t (*f)()) { -  simulator->RunFrom(reinterpret_cast<intptr_t>(f)); -  return simulator->GetCReturnInt32(); -} - -template <> -int64_t SimulatorExecute<int64_t>(CodeSimulator* simulator, int64_t (*f)()) { -  simulator->RunFrom(reinterpret_cast<intptr_t>(f)); -  return simulator->GetCReturnInt64(); -} - -template <typename Expected> -static void VerifyGeneratedCode(InstructionSet target_isa, -                                Expected (*f)(), -                                bool has_result, -                                Expected expected) { -  ASSERT_TRUE(CanExecute(target_isa)) << "Target isa is not executable."; - -  // Verify on simulator. -  CodeSimulatorContainer simulator(target_isa); -  if (simulator.CanSimulate()) { -    Expected result = SimulatorExecute<Expected>(simulator.Get(), f); -    if (has_result) { -      ASSERT_EQ(expected, result); -    } -  } - -  // Verify on hardware. -  if (CanExecuteOnHardware(target_isa)) { -    Expected result = f(); -    if (has_result) { -      ASSERT_EQ(expected, result); -    } -  } -} - -template <typename Expected> -static void Run(const InternalCodeAllocator& allocator, -                const CodeGenerator& codegen, -                bool has_result, -                Expected expected) { -  InstructionSet target_isa = codegen.GetInstructionSet(); - -  typedef Expected (*fptr)(); -  CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize()); -  fptr f = reinterpret_cast<fptr>(allocator.GetMemory()); -  if (target_isa == kThumb2) { -    // For thumb we need the bottom bit set. -    f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1); -  } -  VerifyGeneratedCode(target_isa, f, has_result, expected); -} - -static void ValidateGraph(HGraph* graph) { -  GraphChecker graph_checker(graph); -  graph_checker.Run(); -  if (!graph_checker.IsValid()) { -    for (const auto& error : graph_checker.GetErrors()) { -      std::cout << error << std::endl; -    } -  } -  ASSERT_TRUE(graph_checker.IsValid()); -} - -template <typename Expected> -static void RunCodeNoCheck(CodeGenerator* codegen, -                           HGraph* graph, -                           const std::function<void(HGraph*)>& hook_before_codegen, -                           bool has_result, -                           Expected expected) { -  SsaLivenessAnalysis liveness(graph, codegen); -  PrepareForRegisterAllocation(graph).Run(); -  liveness.Analyze(); -  RegisterAllocator::Create(graph->GetArena(), codegen, liveness)->AllocateRegisters(); -  hook_before_codegen(graph); -  InternalCodeAllocator allocator; -  codegen->Compile(&allocator); -  Run(allocator, *codegen, has_result, expected); -} - -template <typename Expected> -static void RunCode(CodeGenerator* codegen, -                    HGraph* graph, -                    std::function<void(HGraph*)> hook_before_codegen, -                    bool has_result, -                    Expected expected) { -  ValidateGraph(graph); -  RunCodeNoCheck(codegen, graph, hook_before_codegen, has_result, expected); -} - -template <typename Expected> -static void RunCode(CodegenTargetConfig target_config, -                    HGraph* graph, -                    std::function<void(HGraph*)> hook_before_codegen, -                    bool has_result, -                    Expected expected) { -  CompilerOptions compiler_options; -  std::unique_ptr<CodeGenerator> codegen(target_config.CreateCodeGenerator(graph, compiler_options)); -  RunCode(codegen.get(), graph, hook_before_codegen, has_result, expected); -} - -#ifdef ART_ENABLE_CODEGEN_arm -CodeGenerator* create_codegen_arm(HGraph* graph, const CompilerOptions& compiler_options) { -  std::unique_ptr<const ArmInstructionSetFeatures> features_arm( -      ArmInstructionSetFeatures::FromCppDefines()); -  return new (graph->GetArena()) TestCodeGeneratorARM(graph, -                                                      *features_arm.get(), -                                                      compiler_options); -} - -CodeGenerator* create_codegen_arm_vixl32(HGraph* graph, const CompilerOptions& compiler_options) { -  std::unique_ptr<const ArmInstructionSetFeatures> features_arm( -      ArmInstructionSetFeatures::FromCppDefines()); -  return new (graph->GetArena()) -      TestCodeGeneratorARMVIXL(graph, *features_arm.get(), compiler_options); -} -#endif - -#ifdef ART_ENABLE_CODEGEN_arm64 -CodeGenerator* create_codegen_arm64(HGraph* graph, const CompilerOptions& compiler_options) { -  std::unique_ptr<const Arm64InstructionSetFeatures> features_arm64( -      Arm64InstructionSetFeatures::FromCppDefines()); -  return new (graph->GetArena()) arm64::CodeGeneratorARM64(graph, -                                                           *features_arm64.get(), -                                                           compiler_options); -} -#endif - -#ifdef ART_ENABLE_CODEGEN_x86 -CodeGenerator* create_codegen_x86(HGraph* graph, const CompilerOptions& compiler_options) { -  std::unique_ptr<const X86InstructionSetFeatures> features_x86( -      X86InstructionSetFeatures::FromCppDefines()); -  return new (graph->GetArena()) TestCodeGeneratorX86(graph, *features_x86.get(), compiler_options); -} -#endif - -#ifdef ART_ENABLE_CODEGEN_x86_64 -CodeGenerator* create_codegen_x86_64(HGraph* graph, const CompilerOptions& compiler_options) { -  std::unique_ptr<const X86_64InstructionSetFeatures> features_x86_64( -     X86_64InstructionSetFeatures::FromCppDefines()); -  return new (graph->GetArena()) -      x86_64::CodeGeneratorX86_64(graph, *features_x86_64.get(), compiler_options); -} -#endif - -#ifdef ART_ENABLE_CODEGEN_mips -CodeGenerator* create_codegen_mips(HGraph* graph, const CompilerOptions& compiler_options) { -  std::unique_ptr<const MipsInstructionSetFeatures> features_mips( -      MipsInstructionSetFeatures::FromCppDefines()); -  return new (graph->GetArena()) -      mips::CodeGeneratorMIPS(graph, *features_mips.get(), compiler_options); -} -#endif - -#ifdef ART_ENABLE_CODEGEN_mips64 -CodeGenerator* create_codegen_mips64(HGraph* graph, const CompilerOptions& compiler_options) { -  std::unique_ptr<const Mips64InstructionSetFeatures> features_mips64( -      Mips64InstructionSetFeatures::FromCppDefines()); -  return new (graph->GetArena()) -      mips64::CodeGeneratorMIPS64(graph, *features_mips64.get(), compiler_options); -} -#endif -  // Return all combinations of ISA and code generator that are executable on  // hardware, or on simulator, and that we'd like to test.  static ::std::vector<CodegenTargetConfig> GetTargetConfigs() { diff --git a/compiler/optimizing/codegen_test_utils.h b/compiler/optimizing/codegen_test_utils.h new file mode 100644 index 0000000000..cd954043f5 --- /dev/null +++ b/compiler/optimizing/codegen_test_utils.h @@ -0,0 +1,355 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + *      http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef ART_COMPILER_OPTIMIZING_CODEGEN_TEST_UTILS_H_ +#define ART_COMPILER_OPTIMIZING_CODEGEN_TEST_UTILS_H_ + +#include "arch/arm/instruction_set_features_arm.h" +#include "arch/arm/registers_arm.h" +#include "arch/arm64/instruction_set_features_arm64.h" +#include "arch/instruction_set.h" +#include "arch/mips/instruction_set_features_mips.h" +#include "arch/mips/registers_mips.h" +#include "arch/mips64/instruction_set_features_mips64.h" +#include "arch/mips64/registers_mips64.h" +#include "arch/x86/instruction_set_features_x86.h" +#include "arch/x86/registers_x86.h" +#include "arch/x86_64/instruction_set_features_x86_64.h" +#include "code_simulator_container.h" +#include "common_compiler_test.h" +#include "graph_checker.h" +#include "prepare_for_register_allocation.h" +#include "ssa_liveness_analysis.h" + +#ifdef ART_ENABLE_CODEGEN_arm +#include "code_generator_arm.h" +#include "code_generator_arm_vixl.h" +#endif + +#ifdef ART_ENABLE_CODEGEN_arm64 +#include "code_generator_arm64.h" +#endif + +#ifdef ART_ENABLE_CODEGEN_x86 +#include "code_generator_x86.h" +#endif + +#ifdef ART_ENABLE_CODEGEN_x86_64 +#include "code_generator_x86_64.h" +#endif + +#ifdef ART_ENABLE_CODEGEN_mips +#include "code_generator_mips.h" +#endif + +#ifdef ART_ENABLE_CODEGEN_mips64 +#include "code_generator_mips64.h" +#endif + +namespace art { + +typedef CodeGenerator* (*CreateCodegenFn)(HGraph*, const CompilerOptions&); + +class CodegenTargetConfig { + public: +  CodegenTargetConfig(InstructionSet isa, CreateCodegenFn create_codegen) +      : isa_(isa), create_codegen_(create_codegen) { +  } +  InstructionSet GetInstructionSet() const { return isa_; } +  CodeGenerator* CreateCodeGenerator(HGraph* graph, const CompilerOptions& compiler_options) { +    return create_codegen_(graph, compiler_options); +  } + + private: +  CodegenTargetConfig() {} +  InstructionSet isa_; +  CreateCodegenFn create_codegen_; +}; + +#ifdef ART_ENABLE_CODEGEN_arm +// Provide our own codegen, that ensures the C calling conventions +// are preserved. Currently, ART and C do not match as R4 is caller-save +// in ART, and callee-save in C. Alternatively, we could use or write +// the stub that saves and restores all registers, but it is easier +// to just overwrite the code generator. +class TestCodeGeneratorARM : public arm::CodeGeneratorARM { + public: +  TestCodeGeneratorARM(HGraph* graph, +                       const ArmInstructionSetFeatures& isa_features, +                       const CompilerOptions& compiler_options) +      : arm::CodeGeneratorARM(graph, isa_features, compiler_options) { +    AddAllocatedRegister(Location::RegisterLocation(arm::R6)); +    AddAllocatedRegister(Location::RegisterLocation(arm::R7)); +  } + +  void SetupBlockedRegisters() const OVERRIDE { +    arm::CodeGeneratorARM::SetupBlockedRegisters(); +    blocked_core_registers_[arm::R4] = true; +    blocked_core_registers_[arm::R6] = false; +    blocked_core_registers_[arm::R7] = false; +  } +}; + +// A way to test the VIXL32-based code generator on ARM. This will replace +// TestCodeGeneratorARM when the VIXL32-based backend replaces the existing one. +class TestCodeGeneratorARMVIXL : public arm::CodeGeneratorARMVIXL { + public: +  TestCodeGeneratorARMVIXL(HGraph* graph, +                           const ArmInstructionSetFeatures& isa_features, +                           const CompilerOptions& compiler_options) +      : arm::CodeGeneratorARMVIXL(graph, isa_features, compiler_options) { +    AddAllocatedRegister(Location::RegisterLocation(arm::R6)); +    AddAllocatedRegister(Location::RegisterLocation(arm::R7)); +  } + +  void SetupBlockedRegisters() const OVERRIDE { +    arm::CodeGeneratorARMVIXL::SetupBlockedRegisters(); +    blocked_core_registers_[arm::R4] = true; +    blocked_core_registers_[arm::R6] = false; +    blocked_core_registers_[arm::R7] = false; +  } +}; +#endif + +#ifdef ART_ENABLE_CODEGEN_x86 +class TestCodeGeneratorX86 : public x86::CodeGeneratorX86 { + public: +  TestCodeGeneratorX86(HGraph* graph, +                       const X86InstructionSetFeatures& isa_features, +                       const CompilerOptions& compiler_options) +      : x86::CodeGeneratorX86(graph, isa_features, compiler_options) { +    // Save edi, we need it for getting enough registers for long multiplication. +    AddAllocatedRegister(Location::RegisterLocation(x86::EDI)); +  } + +  void SetupBlockedRegisters() const OVERRIDE { +    x86::CodeGeneratorX86::SetupBlockedRegisters(); +    // ebx is a callee-save register in C, but caller-save for ART. +    blocked_core_registers_[x86::EBX] = true; + +    // Make edi available. +    blocked_core_registers_[x86::EDI] = false; +  } +}; +#endif + +class InternalCodeAllocator : public CodeAllocator { + public: +  InternalCodeAllocator() : size_(0) { } + +  virtual uint8_t* Allocate(size_t size) { +    size_ = size; +    memory_.reset(new uint8_t[size]); +    return memory_.get(); +  } + +  size_t GetSize() const { return size_; } +  uint8_t* GetMemory() const { return memory_.get(); } + + private: +  size_t size_; +  std::unique_ptr<uint8_t[]> memory_; + +  DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator); +}; + +static bool CanExecuteOnHardware(InstructionSet target_isa) { +  return (target_isa == kRuntimeISA) +      // Handle the special case of ARM, with two instructions sets (ARM32 and Thumb-2). +      || (kRuntimeISA == kArm && target_isa == kThumb2); +} + +static bool CanExecute(InstructionSet target_isa) { +  CodeSimulatorContainer simulator(target_isa); +  return CanExecuteOnHardware(target_isa) || simulator.CanSimulate(); +} + +template <typename Expected> +inline static Expected SimulatorExecute(CodeSimulator* simulator, Expected (*f)()); + +template <> +inline bool SimulatorExecute<bool>(CodeSimulator* simulator, bool (*f)()) { +  simulator->RunFrom(reinterpret_cast<intptr_t>(f)); +  return simulator->GetCReturnBool(); +} + +template <> +inline int32_t SimulatorExecute<int32_t>(CodeSimulator* simulator, int32_t (*f)()) { +  simulator->RunFrom(reinterpret_cast<intptr_t>(f)); +  return simulator->GetCReturnInt32(); +} + +template <> +inline int64_t SimulatorExecute<int64_t>(CodeSimulator* simulator, int64_t (*f)()) { +  simulator->RunFrom(reinterpret_cast<intptr_t>(f)); +  return simulator->GetCReturnInt64(); +} + +template <typename Expected> +static void VerifyGeneratedCode(InstructionSet target_isa, +                                Expected (*f)(), +                                bool has_result, +                                Expected expected) { +  ASSERT_TRUE(CanExecute(target_isa)) << "Target isa is not executable."; + +  // Verify on simulator. +  CodeSimulatorContainer simulator(target_isa); +  if (simulator.CanSimulate()) { +    Expected result = SimulatorExecute<Expected>(simulator.Get(), f); +    if (has_result) { +      ASSERT_EQ(expected, result); +    } +  } + +  // Verify on hardware. +  if (CanExecuteOnHardware(target_isa)) { +    Expected result = f(); +    if (has_result) { +      ASSERT_EQ(expected, result); +    } +  } +} + +template <typename Expected> +static void Run(const InternalCodeAllocator& allocator, +                const CodeGenerator& codegen, +                bool has_result, +                Expected expected) { +  InstructionSet target_isa = codegen.GetInstructionSet(); + +  typedef Expected (*fptr)(); +  CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize()); +  fptr f = reinterpret_cast<fptr>(allocator.GetMemory()); +  if (target_isa == kThumb2) { +    // For thumb we need the bottom bit set. +    f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1); +  } +  VerifyGeneratedCode(target_isa, f, has_result, expected); +} + +static void ValidateGraph(HGraph* graph) { +  GraphChecker graph_checker(graph); +  graph_checker.Run(); +  if (!graph_checker.IsValid()) { +    for (const auto& error : graph_checker.GetErrors()) { +      std::cout << error << std::endl; +    } +  } +  ASSERT_TRUE(graph_checker.IsValid()); +} + +template <typename Expected> +static void RunCodeNoCheck(CodeGenerator* codegen, +                           HGraph* graph, +                           const std::function<void(HGraph*)>& hook_before_codegen, +                           bool has_result, +                           Expected expected) { +  SsaLivenessAnalysis liveness(graph, codegen); +  PrepareForRegisterAllocation(graph).Run(); +  liveness.Analyze(); +  RegisterAllocator::Create(graph->GetArena(), codegen, liveness)->AllocateRegisters(); +  hook_before_codegen(graph); +  InternalCodeAllocator allocator; +  codegen->Compile(&allocator); +  Run(allocator, *codegen, has_result, expected); +} + +template <typename Expected> +static void RunCode(CodeGenerator* codegen, +                    HGraph* graph, +                    std::function<void(HGraph*)> hook_before_codegen, +                    bool has_result, +                    Expected expected) { +  ValidateGraph(graph); +  RunCodeNoCheck(codegen, graph, hook_before_codegen, has_result, expected); +} + +template <typename Expected> +static void RunCode(CodegenTargetConfig target_config, +                    HGraph* graph, +                    std::function<void(HGraph*)> hook_before_codegen, +                    bool has_result, +                    Expected expected) { +  CompilerOptions compiler_options; +  std::unique_ptr<CodeGenerator> codegen(target_config.CreateCodeGenerator(graph, compiler_options)); +  RunCode(codegen.get(), graph, hook_before_codegen, has_result, expected); +} + +#ifdef ART_ENABLE_CODEGEN_arm +CodeGenerator* create_codegen_arm(HGraph* graph, const CompilerOptions& compiler_options) { +  std::unique_ptr<const ArmInstructionSetFeatures> features_arm( +      ArmInstructionSetFeatures::FromCppDefines()); +  return new (graph->GetArena()) TestCodeGeneratorARM(graph, +                                                      *features_arm.get(), +                                                      compiler_options); +} + +CodeGenerator* create_codegen_arm_vixl32(HGraph* graph, const CompilerOptions& compiler_options) { +  std::unique_ptr<const ArmInstructionSetFeatures> features_arm( +      ArmInstructionSetFeatures::FromCppDefines()); +  return new (graph->GetArena()) +      TestCodeGeneratorARMVIXL(graph, *features_arm.get(), compiler_options); +} +#endif + +#ifdef ART_ENABLE_CODEGEN_arm64 +CodeGenerator* create_codegen_arm64(HGraph* graph, const CompilerOptions& compiler_options) { +  std::unique_ptr<const Arm64InstructionSetFeatures> features_arm64( +      Arm64InstructionSetFeatures::FromCppDefines()); +  return new (graph->GetArena()) arm64::CodeGeneratorARM64(graph, +                                                           *features_arm64.get(), +                                                           compiler_options); +} +#endif + +#ifdef ART_ENABLE_CODEGEN_x86 +CodeGenerator* create_codegen_x86(HGraph* graph, const CompilerOptions& compiler_options) { +  std::unique_ptr<const X86InstructionSetFeatures> features_x86( +      X86InstructionSetFeatures::FromCppDefines()); +  return new (graph->GetArena()) TestCodeGeneratorX86(graph, *features_x86.get(), compiler_options); +} +#endif + +#ifdef ART_ENABLE_CODEGEN_x86_64 +CodeGenerator* create_codegen_x86_64(HGraph* graph, const CompilerOptions& compiler_options) { +  std::unique_ptr<const X86_64InstructionSetFeatures> features_x86_64( +     X86_64InstructionSetFeatures::FromCppDefines()); +  return new (graph->GetArena()) +      x86_64::CodeGeneratorX86_64(graph, *features_x86_64.get(), compiler_options); +} +#endif + +#ifdef ART_ENABLE_CODEGEN_mips +CodeGenerator* create_codegen_mips(HGraph* graph, const CompilerOptions& compiler_options) { +  std::unique_ptr<const MipsInstructionSetFeatures> features_mips( +      MipsInstructionSetFeatures::FromCppDefines()); +  return new (graph->GetArena()) +      mips::CodeGeneratorMIPS(graph, *features_mips.get(), compiler_options); +} +#endif + +#ifdef ART_ENABLE_CODEGEN_mips64 +CodeGenerator* create_codegen_mips64(HGraph* graph, const CompilerOptions& compiler_options) { +  std::unique_ptr<const Mips64InstructionSetFeatures> features_mips64( +      Mips64InstructionSetFeatures::FromCppDefines()); +  return new (graph->GetArena()) +      mips64::CodeGeneratorMIPS64(graph, *features_mips64.get(), compiler_options); +} +#endif + +}  // namespace art + +#endif  // ART_COMPILER_OPTIMIZING_CODEGEN_TEST_UTILS_H_ diff --git a/compiler/optimizing/nodes.cc b/compiler/optimizing/nodes.cc index d15145e673..76900f23a9 100644 --- a/compiler/optimizing/nodes.cc +++ b/compiler/optimizing/nodes.cc @@ -1354,13 +1354,15 @@ std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind&    return os;  } -void HInstruction::MoveBefore(HInstruction* cursor) { -  DCHECK(!IsPhi()); -  DCHECK(!IsControlFlow()); -  DCHECK(CanBeMoved() || -         // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization. -         IsShouldDeoptimizeFlag()); -  DCHECK(!cursor->IsPhi()); +void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) { +  if (do_checks) { +    DCHECK(!IsPhi()); +    DCHECK(!IsControlFlow()); +    DCHECK(CanBeMoved() || +           // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization. +           IsShouldDeoptimizeFlag()); +    DCHECK(!cursor->IsPhi()); +  }    next_->previous_ = previous_;    if (previous_ != nullptr) { diff --git a/compiler/optimizing/nodes.h b/compiler/optimizing/nodes.h index f0ea9e20e6..acf14aa726 100644 --- a/compiler/optimizing/nodes.h +++ b/compiler/optimizing/nodes.h @@ -2065,8 +2065,8 @@ class HInstruction : public ArenaObject<kArenaAllocInstruction> {      other->ReplaceInput(this, use_index);    } -  // Move `this` instruction before `cursor`. -  void MoveBefore(HInstruction* cursor); +  // Move `this` instruction before `cursor` +  void MoveBefore(HInstruction* cursor, bool do_checks = true);    // Move `this` before its first user and out of any loops. If there is no    // out-of-loop user that dominates all other users, move the instruction diff --git a/compiler/optimizing/optimizing_compiler.cc b/compiler/optimizing/optimizing_compiler.cc index 297500b12f..1ab671022b 100644 --- a/compiler/optimizing/optimizing_compiler.cc +++ b/compiler/optimizing/optimizing_compiler.cc @@ -90,6 +90,7 @@  #include "reference_type_propagation.h"  #include "register_allocator_linear_scan.h"  #include "select_generator.h" +#include "scheduler.h"  #include "sharpening.h"  #include "side_effects_analysis.h"  #include "ssa_builder.h" @@ -658,10 +659,13 @@ void OptimizingCompiler::RunArchOptimizations(InstructionSet instruction_set,            new (arena) arm64::InstructionSimplifierArm64(graph, stats);        SideEffectsAnalysis* side_effects = new (arena) SideEffectsAnalysis(graph);        GVNOptimization* gvn = new (arena) GVNOptimization(graph, *side_effects, "GVN$after_arch"); +      HInstructionScheduling* scheduling = +          new (arena) HInstructionScheduling(graph, instruction_set);        HOptimization* arm64_optimizations[] = {          simplifier,          side_effects, -        gvn +        gvn, +        scheduling,        };        RunOptimizations(arm64_optimizations, arraysize(arm64_optimizations), pass_observer);        break; diff --git a/compiler/optimizing/optimizing_unit_test.h b/compiler/optimizing/optimizing_unit_test.h index 58d90176cd..bf963b8996 100644 --- a/compiler/optimizing/optimizing_unit_test.h +++ b/compiler/optimizing/optimizing_unit_test.h @@ -64,6 +64,9 @@ LiveInterval* BuildInterval(const size_t ranges[][2],  void RemoveSuspendChecks(HGraph* graph) {    for (HBasicBlock* block : graph->GetBlocks()) {      if (block != nullptr) { +      if (block->GetLoopInformation() != nullptr) { +        block->GetLoopInformation()->SetSuspendCheck(nullptr); +      }        for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {          HInstruction* current = it.Current();          if (current->IsSuspendCheck()) { diff --git a/compiler/optimizing/scheduler.cc b/compiler/optimizing/scheduler.cc new file mode 100644 index 0000000000..d65d20cf43 --- /dev/null +++ b/compiler/optimizing/scheduler.cc @@ -0,0 +1,610 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + *      http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <string> + +#include "prepare_for_register_allocation.h" +#include "scheduler.h" + +#ifdef ART_ENABLE_CODEGEN_arm64 +#include "scheduler_arm64.h" +#endif + +namespace art { + +void SchedulingGraph::AddDependency(SchedulingNode* node, +                                    SchedulingNode* dependency, +                                    bool is_data_dependency) { +  if (node == nullptr || dependency == nullptr) { +    // A `nullptr` node indicates an instruction out of scheduling range (eg. in +    // an other block), so we do not need to add a dependency edge to the graph. +    return; +  } + +  if (is_data_dependency) { +    if (!HasImmediateDataDependency(node, dependency)) { +      node->AddDataPredecessor(dependency); +    } +  } else if (!HasImmediateOtherDependency(node, dependency)) { +    node->AddOtherPredecessor(dependency); +  } +} + +static bool MayHaveReorderingDependency(SideEffects node, SideEffects other) { +  // Read after write. +  if (node.MayDependOn(other)) { +    return true; +  } + +  // Write after read. +  if (other.MayDependOn(node)) { +    return true; +  } + +  // Memory write after write. +  if (node.DoesAnyWrite() && other.DoesAnyWrite()) { +    return true; +  } + +  return false; +} + + +// Check whether `node` depends on `other`, taking into account `SideEffect` +// information and `CanThrow` information. +static bool HasSideEffectDependency(const HInstruction* node, const HInstruction* other) { +  if (MayHaveReorderingDependency(node->GetSideEffects(), other->GetSideEffects())) { +    return true; +  } + +  if (other->CanThrow() && node->GetSideEffects().DoesAnyWrite()) { +    return true; +  } + +  if (other->GetSideEffects().DoesAnyWrite() && node->CanThrow()) { +    return true; +  } + +  if (other->CanThrow() && node->CanThrow()) { +    return true; +  } + +  // Check side-effect dependency between ArrayGet and BoundsCheck. +  if (node->IsArrayGet() && other->IsBoundsCheck() && node->InputAt(1) == other) { +    return true; +  } + +  return false; +} + +void SchedulingGraph::AddDependencies(HInstruction* instruction, bool is_scheduling_barrier) { +  SchedulingNode* instruction_node = GetNode(instruction); + +  // Define-use dependencies. +  for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { +    AddDataDependency(GetNode(use.GetUser()), instruction_node); +  } + +  // Scheduling barrier dependencies. +  DCHECK(!is_scheduling_barrier || contains_scheduling_barrier_); +  if (contains_scheduling_barrier_) { +    // A barrier depends on instructions after it. And instructions before the +    // barrier depend on it. +    for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) { +      SchedulingNode* other_node = GetNode(other); +      bool other_is_barrier = other_node->IsSchedulingBarrier(); +      if (is_scheduling_barrier || other_is_barrier) { +        AddOtherDependency(other_node, instruction_node); +      } +      if (other_is_barrier) { +        // This other scheduling barrier guarantees ordering of instructions after +        // it, so avoid creating additional useless dependencies in the graph. +        // For example if we have +        //     instr_1 +        //     barrier_2 +        //     instr_3 +        //     barrier_4 +        //     instr_5 +        // we only create the following non-data dependencies +        //     1 -> 2 +        //     2 -> 3 +        //     2 -> 4 +        //     3 -> 4 +        //     4 -> 5 +        // and do not create +        //     1 -> 4 +        //     2 -> 5 +        // Note that in this example we could also avoid creating the dependency +        // `2 -> 4`.  But if we remove `instr_3` that dependency is required to +        // order the barriers. So we generate it to avoid a special case. +        break; +      } +    } +  } + +  // Side effect dependencies. +  if (!instruction->GetSideEffects().DoesNothing() || instruction->CanThrow()) { +    for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) { +      SchedulingNode* other_node = GetNode(other); +      if (other_node->IsSchedulingBarrier()) { +        // We have reached a scheduling barrier so we can stop further +        // processing. +        DCHECK(HasImmediateOtherDependency(other_node, instruction_node)); +        break; +      } +      if (HasSideEffectDependency(other, instruction)) { +        AddOtherDependency(other_node, instruction_node); +      } +    } +  } + +  // Environment dependencies. +  // We do not need to process those if the instruction is a scheduling barrier, +  // since the barrier already has non-data dependencies on all following +  // instructions. +  if (!is_scheduling_barrier) { +    for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) { +      // Note that here we could stop processing if the environment holder is +      // across a scheduling barrier. But checking this would likely require +      // more work than simply iterating through environment uses. +      AddOtherDependency(GetNode(use.GetUser()->GetHolder()), instruction_node); +    } +  } +} + +bool SchedulingGraph::HasImmediateDataDependency(const SchedulingNode* node, +                                                 const SchedulingNode* other) const { +  return ContainsElement(node->GetDataPredecessors(), other); +} + +bool SchedulingGraph::HasImmediateDataDependency(const HInstruction* instruction, +                                                 const HInstruction* other_instruction) const { +  const SchedulingNode* node = GetNode(instruction); +  const SchedulingNode* other = GetNode(other_instruction); +  if (node == nullptr || other == nullptr) { +    // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their +    // corresponding SchedulingNode in the graph, and tell whether there is a dependency. +    // Otherwise there is no dependency from SchedulingGraph's perspective, for example, +    // instruction and other_instruction are in different basic blocks. +    return false; +  } +  return HasImmediateDataDependency(node, other); +} + +bool SchedulingGraph::HasImmediateOtherDependency(const SchedulingNode* node, +                                                  const SchedulingNode* other) const { +  return ContainsElement(node->GetOtherPredecessors(), other); +} + +bool SchedulingGraph::HasImmediateOtherDependency(const HInstruction* instruction, +                                                  const HInstruction* other_instruction) const { +  const SchedulingNode* node = GetNode(instruction); +  const SchedulingNode* other = GetNode(other_instruction); +  if (node == nullptr || other == nullptr) { +    // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their +    // corresponding SchedulingNode in the graph, and tell whether there is a dependency. +    // Otherwise there is no dependency from SchedulingGraph's perspective, for example, +    // instruction and other_instruction are in different basic blocks. +    return false; +  } +  return HasImmediateOtherDependency(node, other); +} + +static const std::string InstructionTypeId(const HInstruction* instruction) { +  std::string id; +  Primitive::Type type = instruction->GetType(); +  if (type == Primitive::kPrimNot) { +    id.append("l"); +  } else { +    id.append(Primitive::Descriptor(instruction->GetType())); +  } +  // Use lower-case to be closer to the `HGraphVisualizer` output. +  id[0] = std::tolower(id[0]); +  id.append(std::to_string(instruction->GetId())); +  return id; +} + +// Ideally we would reuse the graph visualizer code, but it is not available +// from here and it is not worth moving all that code only for our use. +static void DumpAsDotNode(std::ostream& output, const SchedulingNode* node) { +  const HInstruction* instruction = node->GetInstruction(); +  // Use the instruction typed id as the node identifier. +  std::string instruction_id = InstructionTypeId(instruction); +  output << instruction_id << "[shape=record, label=\"" +      << instruction_id << ' ' << instruction->DebugName() << " ["; +  // List the instruction's inputs in its description. When visualizing the +  // graph this helps differentiating data inputs from other dependencies. +  const char* seperator = ""; +  for (const HInstruction* input : instruction->GetInputs()) { +    output << seperator << InstructionTypeId(input); +    seperator = ","; +  } +  output << "]"; +  // Other properties of the node. +  output << "\\ninternal_latency: " << node->GetInternalLatency(); +  output << "\\ncritical_path: " << node->GetCriticalPath(); +  if (node->IsSchedulingBarrier()) { +    output << "\\n(barrier)"; +  } +  output << "\"];\n"; +  // We want program order to go from top to bottom in the graph output, so we +  // reverse the edges and specify `dir=back`. +  for (const SchedulingNode* predecessor : node->GetDataPredecessors()) { +    const HInstruction* predecessor_instruction = predecessor->GetInstruction(); +    output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n " +        << "[label=\"" << predecessor->GetLatency() << "\",dir=back]\n"; +  } +  for (const SchedulingNode* predecessor : node->GetOtherPredecessors()) { +    const HInstruction* predecessor_instruction = predecessor->GetInstruction(); +    output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n " +        << "[dir=back,color=blue]\n"; +  } +} + +void SchedulingGraph::DumpAsDotGraph(const std::string& description, +                                     const ArenaVector<SchedulingNode*>& initial_candidates) { +  // TODO(xueliang): ideally we should move scheduling information into HInstruction, after that +  // we should move this dotty graph dump feature to visualizer, and have a compiler option for it. +  std::ofstream output("scheduling_graphs.dot", std::ofstream::out | std::ofstream::app); +  // Description of this graph, as a comment. +  output << "// " << description << "\n"; +  // Start the dot graph. Use an increasing index for easier differentiation. +  output << "digraph G {\n"; +  for (const auto& entry : nodes_map_) { +    DumpAsDotNode(output, entry.second); +  } +  // Create a fake 'end_of_scheduling' node to help visualization of critical_paths. +  for (auto node : initial_candidates) { +    const HInstruction* instruction = node->GetInstruction(); +    output << InstructionTypeId(instruction) << ":s -> end_of_scheduling:n " +      << "[label=\"" << node->GetLatency() << "\",dir=back]\n"; +  } +  // End of the dot graph. +  output << "}\n"; +  output.close(); +} + +SchedulingNode* CriticalPathSchedulingNodeSelector::SelectMaterializedCondition( +    ArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) const { +  // Schedule condition inputs that can be materialized immediately before their use. +  // In following example, after we've scheduled HSelect, we want LessThan to be scheduled +  // immediately, because it is a materialized condition, and will be emitted right before HSelect +  // in codegen phase. +  // +  // i20 HLessThan [...]                  HLessThan    HAdd      HAdd +  // i21 HAdd [...]                ===>      |          |         | +  // i22 HAdd [...]                          +----------+---------+ +  // i23 HSelect [i21, i22, i20]                     HSelect + +  if (prev_select_ == nullptr) { +    return nullptr; +  } + +  const HInstruction* instruction = prev_select_->GetInstruction(); +  const HCondition* condition = nullptr; +  DCHECK(instruction != nullptr); + +  if (instruction->IsIf()) { +    condition = instruction->AsIf()->InputAt(0)->AsCondition(); +  } else if (instruction->IsSelect()) { +    condition = instruction->AsSelect()->GetCondition()->AsCondition(); +  } + +  SchedulingNode* condition_node = (condition != nullptr) ? graph.GetNode(condition) : nullptr; + +  if ((condition_node != nullptr) && +      condition->HasOnlyOneNonEnvironmentUse() && +      ContainsElement(*nodes, condition_node)) { +    DCHECK(!condition_node->HasUnscheduledSuccessors()); +    // Remove the condition from the list of candidates and schedule it. +    RemoveElement(*nodes, condition_node); +    return condition_node; +  } + +  return nullptr; +} + +SchedulingNode* CriticalPathSchedulingNodeSelector::PopHighestPriorityNode( +    ArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) { +  DCHECK(!nodes->empty()); +  SchedulingNode* select_node = nullptr; + +  // Optimize for materialized condition and its emit before use scenario. +  select_node = SelectMaterializedCondition(nodes, graph); + +  if (select_node == nullptr) { +    // Get highest priority node based on critical path information. +    select_node = (*nodes)[0]; +    size_t select = 0; +    for (size_t i = 1, e = nodes->size(); i < e; i++) { +      SchedulingNode* check = (*nodes)[i]; +      SchedulingNode* candidate = (*nodes)[select]; +      select_node = GetHigherPrioritySchedulingNode(candidate, check); +      if (select_node == check) { +        select = i; +      } +    } +    DeleteNodeAtIndex(nodes, select); +  } + +  prev_select_ = select_node; +  return select_node; +} + +SchedulingNode* CriticalPathSchedulingNodeSelector::GetHigherPrioritySchedulingNode( +    SchedulingNode* candidate, SchedulingNode* check) const { +  uint32_t candidate_path = candidate->GetCriticalPath(); +  uint32_t check_path = check->GetCriticalPath(); +  // First look at the critical_path. +  if (check_path != candidate_path) { +    return check_path < candidate_path ? check : candidate; +  } +  // If both critical paths are equal, schedule instructions with a higher latency +  // first in program order. +  return check->GetLatency() < candidate->GetLatency() ? check : candidate; +} + +void HScheduler::Schedule(HGraph* graph) { +  for (HBasicBlock* block : graph->GetReversePostOrder()) { +    if (IsSchedulable(block)) { +      Schedule(block); +    } +  } +} + +void HScheduler::Schedule(HBasicBlock* block) { +  ArenaVector<SchedulingNode*> scheduling_nodes(arena_->Adapter(kArenaAllocScheduler)); + +  // Build the scheduling graph. +  scheduling_graph_.Clear(); +  for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { +    HInstruction* instruction = it.Current(); +    SchedulingNode* node = scheduling_graph_.AddNode(instruction, IsSchedulingBarrier(instruction)); +    CalculateLatency(node); +    scheduling_nodes.push_back(node); +  } + +  if (scheduling_graph_.Size() <= 1) { +    scheduling_graph_.Clear(); +    return; +  } + +  cursor_ = block->GetLastInstruction(); + +  // Find the initial candidates for scheduling. +  candidates_.clear(); +  for (SchedulingNode* node : scheduling_nodes) { +    if (!node->HasUnscheduledSuccessors()) { +      node->MaybeUpdateCriticalPath(node->GetLatency()); +      candidates_.push_back(node); +    } +  } + +  ArenaVector<SchedulingNode*> initial_candidates(arena_->Adapter(kArenaAllocScheduler)); +  if (kDumpDotSchedulingGraphs) { +    // Remember the list of initial candidates for debug output purposes. +    initial_candidates.assign(candidates_.begin(), candidates_.end()); +  } + +  // Schedule all nodes. +  while (!candidates_.empty()) { +    Schedule(selector_->PopHighestPriorityNode(&candidates_, scheduling_graph_)); +  } + +  if (kDumpDotSchedulingGraphs) { +    // Dump the graph in `dot` format. +    HGraph* graph = block->GetGraph(); +    std::stringstream description; +    description << graph->GetDexFile().PrettyMethod(graph->GetMethodIdx()) +        << " B" << block->GetBlockId(); +    scheduling_graph_.DumpAsDotGraph(description.str(), initial_candidates); +  } +} + +void HScheduler::Schedule(SchedulingNode* scheduling_node) { +  // Check whether any of the node's predecessors will be valid candidates after +  // this node is scheduled. +  uint32_t path_to_node = scheduling_node->GetCriticalPath(); +  for (SchedulingNode* predecessor : scheduling_node->GetDataPredecessors()) { +    predecessor->MaybeUpdateCriticalPath( +        path_to_node + predecessor->GetInternalLatency() + predecessor->GetLatency()); +    predecessor->DecrementNumberOfUnscheduledSuccessors(); +    if (!predecessor->HasUnscheduledSuccessors()) { +      candidates_.push_back(predecessor); +    } +  } +  for (SchedulingNode* predecessor : scheduling_node->GetOtherPredecessors()) { +    // Do not update the critical path. +    // The 'other' (so 'non-data') dependencies (usually) do not represent a +    // 'material' dependency of nodes on others. They exist for program +    // correctness. So we do not use them to compute the critical path. +    predecessor->DecrementNumberOfUnscheduledSuccessors(); +    if (!predecessor->HasUnscheduledSuccessors()) { +      candidates_.push_back(predecessor); +    } +  } + +  Schedule(scheduling_node->GetInstruction()); +} + +// Move an instruction after cursor instruction inside one basic block. +static void MoveAfterInBlock(HInstruction* instruction, HInstruction* cursor) { +  DCHECK_EQ(instruction->GetBlock(), cursor->GetBlock()); +  DCHECK_NE(cursor, cursor->GetBlock()->GetLastInstruction()); +  DCHECK(!instruction->IsControlFlow()); +  DCHECK(!cursor->IsControlFlow()); +  instruction->MoveBefore(cursor->GetNext(), /* do_checks */ false); +} + +void HScheduler::Schedule(HInstruction* instruction) { +  if (instruction == cursor_) { +    cursor_ = cursor_->GetPrevious(); +  } else { +    MoveAfterInBlock(instruction, cursor_); +  } +} + +bool HScheduler::IsSchedulable(const HInstruction* instruction) const { +  // We want to avoid exhaustively listing all instructions, so we first check +  // for instruction categories that we know are safe. +  if (instruction->IsControlFlow() || +      instruction->IsConstant()) { +    return true; +  } +  // Currently all unary and binary operations are safe to schedule, so avoid +  // checking for each of them individually. +  // Since nothing prevents a new scheduling-unsafe HInstruction to subclass +  // HUnaryOperation (or HBinaryOperation), check in debug mode that we have +  // the exhaustive lists here. +  if (instruction->IsUnaryOperation()) { +    DCHECK(instruction->IsBooleanNot() || +           instruction->IsNot() || +           instruction->IsNeg()) << "unexpected instruction " << instruction->DebugName(); +    return true; +  } +  if (instruction->IsBinaryOperation()) { +    DCHECK(instruction->IsAdd() || +           instruction->IsAnd() || +           instruction->IsCompare() || +           instruction->IsCondition() || +           instruction->IsDiv() || +           instruction->IsMul() || +           instruction->IsOr() || +           instruction->IsRem() || +           instruction->IsRor() || +           instruction->IsShl() || +           instruction->IsShr() || +           instruction->IsSub() || +           instruction->IsUShr() || +           instruction->IsXor()) << "unexpected instruction " << instruction->DebugName(); +    return true; +  } +  // The scheduler should not see any of these. +  DCHECK(!instruction->IsParallelMove()) << "unexpected instruction " << instruction->DebugName(); +  // List of instructions explicitly excluded: +  //    HClearException +  //    HClinitCheck +  //    HDeoptimize +  //    HLoadClass +  //    HLoadException +  //    HMemoryBarrier +  //    HMonitorOperation +  //    HNativeDebugInfo +  //    HThrow +  //    HTryBoundary +  // TODO: Some of the instructions above may be safe to schedule (maybe as +  // scheduling barriers). +  return instruction->IsArrayGet() || +      instruction->IsArraySet() || +      instruction->IsArrayLength() || +      instruction->IsBoundType() || +      instruction->IsBoundsCheck() || +      instruction->IsCheckCast() || +      instruction->IsClassTableGet() || +      instruction->IsCurrentMethod() || +      instruction->IsDivZeroCheck() || +      instruction->IsInstanceFieldGet() || +      instruction->IsInstanceFieldSet() || +      instruction->IsInstanceOf() || +      instruction->IsInvokeInterface() || +      instruction->IsInvokeStaticOrDirect() || +      instruction->IsInvokeUnresolved() || +      instruction->IsInvokeVirtual() || +      instruction->IsLoadString() || +      instruction->IsNewArray() || +      instruction->IsNewInstance() || +      instruction->IsNullCheck() || +      instruction->IsPackedSwitch() || +      instruction->IsParameterValue() || +      instruction->IsPhi() || +      instruction->IsReturn() || +      instruction->IsReturnVoid() || +      instruction->IsSelect() || +      instruction->IsStaticFieldGet() || +      instruction->IsStaticFieldSet() || +      instruction->IsSuspendCheck() || +      instruction->IsTypeConversion() || +      instruction->IsUnresolvedInstanceFieldGet() || +      instruction->IsUnresolvedInstanceFieldSet() || +      instruction->IsUnresolvedStaticFieldGet() || +      instruction->IsUnresolvedStaticFieldSet(); +} + +bool HScheduler::IsSchedulable(const HBasicBlock* block) const { +  // We may be only interested in loop blocks. +  if (only_optimize_loop_blocks_ && !block->IsInLoop()) { +    return false; +  } +  if (block->GetTryCatchInformation() != nullptr) { +    // Do not schedule blocks that are part of try-catch. +    // Because scheduler cannot see if catch block has assumptions on the instruction order in +    // the try block. In following example, if we enable scheduler for the try block, +    // MulitiplyAccumulate may be scheduled before DivZeroCheck, +    // which can result in an incorrect value in the catch block. +    //   try { +    //     a = a/b;    // DivZeroCheck +    //                 // Div +    //     c = c*d+e;  // MulitiplyAccumulate +    //   } catch {System.out.print(c); } +    return false; +  } +  // Check whether all instructions in this block are schedulable. +  for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { +    if (!IsSchedulable(it.Current())) { +      return false; +    } +  } +  return true; +} + +bool HScheduler::IsSchedulingBarrier(const HInstruction* instr) const { +  return instr->IsControlFlow() || +      // Don't break calling convention. +      instr->IsParameterValue() || +      // Code generation of goto relies on SuspendCheck's position. +      instr->IsSuspendCheck(); +} + +void HInstructionScheduling::Run(bool only_optimize_loop_blocks, +                                 bool schedule_randomly) { +  // Avoid compilation error when compiling for unsupported instruction set. +  UNUSED(only_optimize_loop_blocks); +  UNUSED(schedule_randomly); +  switch (instruction_set_) { +#ifdef ART_ENABLE_CODEGEN_arm64 +    case kArm64: { +      // Phase-local allocator that allocates scheduler internal data structures like +      // scheduling nodes, internel nodes map, dependencies, etc. +      ArenaAllocator arena_allocator(graph_->GetArena()->GetArenaPool()); + +      CriticalPathSchedulingNodeSelector critical_path_selector; +      RandomSchedulingNodeSelector random_selector; +      SchedulingNodeSelector* selector = schedule_randomly +          ? static_cast<SchedulingNodeSelector*>(&random_selector) +          : static_cast<SchedulingNodeSelector*>(&critical_path_selector); + +      arm64::HSchedulerARM64 scheduler(&arena_allocator, selector); +      scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks); +      scheduler.Schedule(graph_); +      break; +    } +#endif +    default: +      break; +  } +} + +}  // namespace art diff --git a/compiler/optimizing/scheduler.h b/compiler/optimizing/scheduler.h new file mode 100644 index 0000000000..ab0dad4300 --- /dev/null +++ b/compiler/optimizing/scheduler.h @@ -0,0 +1,487 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + *      http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_ +#define ART_COMPILER_OPTIMIZING_SCHEDULER_H_ + +#include <fstream> + +#include "base/time_utils.h" +#include "driver/compiler_driver.h" +#include "nodes.h" +#include "optimization.h" + +namespace art { + +// General description of instruction scheduling. +// +// This pass tries to improve the quality of the generated code by reordering +// instructions in the graph to avoid execution delays caused by execution +// dependencies. +// Currently, scheduling is performed at the block level, so no `HInstruction` +// ever leaves its block in this pass. +// +// The scheduling process iterates through blocks in the graph. For blocks that +// we can and want to schedule: +// 1) Build a dependency graph for instructions. +//    It includes data dependencies (inputs/uses), but also environment +//    dependencies and side-effect dependencies. +// 2) Schedule the dependency graph. +//    This is a topological sort of the dependency graph, using heuristics to +//    decide what node to scheduler first when there are multiple candidates. +// +// A few factors impacting the quality of the scheduling are: +// - The heuristics used to decide what node to schedule in the topological sort +//   when there are multiple valid candidates. There is a wide range of +//   complexity possible here, going from a simple model only considering +//   latencies, to a super detailed CPU pipeline model. +// - Fewer dependencies in the dependency graph give more freedom for the +//   scheduling heuristics. For example de-aliasing can allow possibilities for +//   reordering of memory accesses. +// - The level of abstraction of the IR. It is easier to evaluate scheduling for +//   IRs that translate to a single assembly instruction than for IRs +//   that generate multiple assembly instructions or generate different code +//   depending on properties of the IR. +// - Scheduling is performed before register allocation, it is not aware of the +//   impact of moving instructions on register allocation. +// +// +// The scheduling code uses the terms predecessors, successors, and dependencies. +// This can be confusing at times, so here are clarifications. +// These terms are used from the point of view of the program dependency graph. So +// the inputs of an instruction are part of its dependencies, and hence part its +// predecessors. So the uses of an instruction are (part of) its successors. +// (Side-effect dependencies can yield predecessors or successors that are not +// inputs or uses.) +// +// Here is a trivial example. For the Java code: +// +//    int a = 1 + 2; +// +// we would have the instructions +// +//    i1 HIntConstant 1 +//    i2 HIntConstant 2 +//    i3 HAdd [i1,i2] +// +// `i1` and `i2` are predecessors of `i3`. +// `i3` is a successor of `i1` and a successor of `i2`. +// In a scheduling graph for this code we would have three nodes `n1`, `n2`, +// and `n3` (respectively for instructions `i1`, `i1`, and `i3`). +// Conceptually the program dependency graph for this would contain two edges +// +//    n1 -> n3 +//    n2 -> n3 +// +// Since we schedule backwards (starting from the last instruction in each basic +// block), the implementation of nodes keeps a list of pointers their +// predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`. +// +// Node dependencies are also referred to from the program dependency graph +// point of view: we say that node `B` immediately depends on `A` if there is an +// edge from `A` to `B` in the program dependency graph. `A` is a predecessor of +// `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and +// `n2`. +// Since nodes in the scheduling graph keep a list of their predecessors, node +// `B` will have a pointer to its predecessor `A`. +// As we schedule backwards, `B` will be selected for scheduling before `A` is. +// +// So the scheduling for the example above could happen as follow +// +//    |---------------------------+------------------------| +//    | candidates for scheduling | instructions scheduled | +//    | --------------------------+------------------------| +// +// The only node without successors is `n3`, so it is the only initial +// candidate. +// +//    | n3                        | (none)                 | +// +// We schedule `n3` as the last (and only) instruction. All its predecessors +// that do not have any unscheduled successors become candidate. That is, `n1` +// and `n2` become candidates. +// +//    | n1, n2                    | n3                     | +// +// One of the candidates is selected. In practice this is where scheduling +// heuristics kick in, to decide which of the candidates should be selected. +// In this example, let it be `n1`. It is scheduled before previously scheduled +// nodes (in program order). There are no other nodes to add to the list of +// candidates. +// +//    | n2                        | n1                     | +//    |                           | n3                     | +// +// The only candidate available for scheduling is `n2`. Schedule it before +// (in program order) the previously scheduled nodes. +// +//    | (none)                    | n2                     | +//    |                           | n1                     | +//    |                           | n3                     | +//    |---------------------------+------------------------| +// +// So finally the instructions will be executed in the order `i2`, `i1`, and `i3`. +// In this trivial example, it does not matter which of `i1` and `i2` is +// scheduled first since they are constants. However the same process would +// apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`). + +// Set to true to have instruction scheduling dump scheduling graphs to the file +// `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`. +static constexpr bool kDumpDotSchedulingGraphs = false; + +// Typically used as a default instruction latency. +static constexpr uint32_t kGenericInstructionLatency = 1; + +class HScheduler; + +/** + * A node representing an `HInstruction` in the `SchedulingGraph`. + */ +class SchedulingNode : public ArenaObject<kArenaAllocScheduler> { + public: +  SchedulingNode(HInstruction* instr, ArenaAllocator* arena, bool is_scheduling_barrier) +      : latency_(0), +        internal_latency_(0), +        critical_path_(0), +        instruction_(instr), +        is_scheduling_barrier_(is_scheduling_barrier), +        data_predecessors_(arena->Adapter(kArenaAllocScheduler)), +        other_predecessors_(arena->Adapter(kArenaAllocScheduler)), +        num_unscheduled_successors_(0) { +    data_predecessors_.reserve(kPreallocatedPredecessors); +  } + +  void AddDataPredecessor(SchedulingNode* predecessor) { +    data_predecessors_.push_back(predecessor); +    predecessor->num_unscheduled_successors_++; +  } + +  void AddOtherPredecessor(SchedulingNode* predecessor) { +    other_predecessors_.push_back(predecessor); +    predecessor->num_unscheduled_successors_++; +  } + +  void DecrementNumberOfUnscheduledSuccessors() { +    num_unscheduled_successors_--; +  } + +  void MaybeUpdateCriticalPath(uint32_t other_critical_path) { +    critical_path_ = std::max(critical_path_, other_critical_path); +  } + +  bool HasUnscheduledSuccessors() const { +    return num_unscheduled_successors_ != 0; +  } + +  HInstruction* GetInstruction() const { return instruction_; } +  uint32_t GetLatency() const { return latency_; } +  void SetLatency(uint32_t latency) { latency_ = latency; } +  uint32_t GetInternalLatency() const { return internal_latency_; } +  void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; } +  uint32_t GetCriticalPath() const { return critical_path_; } +  bool IsSchedulingBarrier() const { return is_scheduling_barrier_; } +  const ArenaVector<SchedulingNode*>& GetDataPredecessors() const { return data_predecessors_; } +  const ArenaVector<SchedulingNode*>& GetOtherPredecessors() const { return other_predecessors_; } + + private: +  // The latency of this node. It represents the latency between the moment the +  // last instruction for this node has executed to the moment the result +  // produced by this node is available to users. +  uint32_t latency_; +  // This represents the time spent *within* the generated code for this node. +  // It should be zero for nodes that only generate a single instruction. +  uint32_t internal_latency_; + +  // The critical path from this instruction to the end of scheduling. It is +  // used by the scheduling heuristics to measure the priority of this instruction. +  // It is defined as +  //     critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses) +  // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in +  // `HScheduler::Schedule(SchedulingNode* scheduling_node)`). +  uint32_t critical_path_; + +  // The instruction that this node represents. +  HInstruction* const instruction_; + +  // If a node is scheduling barrier, other nodes cannot be scheduled before it. +  const bool is_scheduling_barrier_; + +  // The lists of predecessors. They cannot be scheduled before this node. Once +  // this node is scheduled, we check whether any of its predecessors has become a +  // valid candidate for scheduling. +  // Predecessors in `data_predecessors_` are data dependencies. Those in +  // `other_predecessors_` contain side-effect dependencies, environment +  // dependencies, and scheduling barrier dependencies. +  ArenaVector<SchedulingNode*> data_predecessors_; +  ArenaVector<SchedulingNode*> other_predecessors_; + +  // The number of unscheduled successors for this node. This number is +  // decremented as successors are scheduled. When it reaches zero this node +  // becomes a valid candidate to schedule. +  uint32_t num_unscheduled_successors_; + +  static constexpr size_t kPreallocatedPredecessors = 4; +}; + +/* + * Directed acyclic graph for scheduling. + */ +class SchedulingGraph : public ValueObject { + public: +  SchedulingGraph(const HScheduler* scheduler, ArenaAllocator* arena) +      : scheduler_(scheduler), +        arena_(arena), +        contains_scheduling_barrier_(false), +        nodes_map_(arena_->Adapter(kArenaAllocScheduler)) {} + +  SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) { +    SchedulingNode* node = new (arena_) SchedulingNode(instr, arena_, is_scheduling_barrier); +    nodes_map_.Insert(std::make_pair(instr, node)); +    contains_scheduling_barrier_ |= is_scheduling_barrier; +    AddDependencies(instr, is_scheduling_barrier); +    return node; +  } + +  void Clear() { +    nodes_map_.Clear(); +    contains_scheduling_barrier_ = false; +  } + +  SchedulingNode* GetNode(const HInstruction* instr) const { +    auto it = nodes_map_.Find(instr); +    if (it == nodes_map_.end()) { +      return nullptr; +    } else { +      return it->second; +    } +  } + +  bool IsSchedulingBarrier(const HInstruction* instruction) const; + +  bool HasImmediateDataDependency(const SchedulingNode* node, const SchedulingNode* other) const; +  bool HasImmediateDataDependency(const HInstruction* node, const HInstruction* other) const; +  bool HasImmediateOtherDependency(const SchedulingNode* node, const SchedulingNode* other) const; +  bool HasImmediateOtherDependency(const HInstruction* node, const HInstruction* other) const; + +  size_t Size() const { +    return nodes_map_.Size(); +  } + +  // Dump the scheduling graph, in dot file format, appending it to the file +  // `scheduling_graphs.dot`. +  void DumpAsDotGraph(const std::string& description, +                      const ArenaVector<SchedulingNode*>& initial_candidates); + + protected: +  void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency); +  void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) { +    AddDependency(node, dependency, /*is_data_dependency*/true); +  } +  void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) { +    AddDependency(node, dependency, /*is_data_dependency*/false); +  } + +  // Add dependencies nodes for the given `HInstruction`: inputs, environments, and side-effects. +  void AddDependencies(HInstruction* instruction, bool is_scheduling_barrier = false); + +  const HScheduler* const scheduler_; + +  ArenaAllocator* const arena_; + +  bool contains_scheduling_barrier_; + +  ArenaHashMap<const HInstruction*, SchedulingNode*> nodes_map_; +}; + +/* + * The visitors derived from this base class are used by schedulers to evaluate + * the latencies of `HInstruction`s. + */ +class SchedulingLatencyVisitor : public HGraphDelegateVisitor { + public: +  // This class and its sub-classes will never be used to drive a visit of an +  // `HGraph` but only to visit `HInstructions` one at a time, so we do not need +  // to pass a valid graph to `HGraphDelegateVisitor()`. +  SchedulingLatencyVisitor() : HGraphDelegateVisitor(nullptr) {} + +  void VisitInstruction(HInstruction* instruction) OVERRIDE { +    LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". " +        "Architecture-specific scheduling latency visitors must handle all instructions" +        " (potentially by overriding the generic `VisitInstruction()`."; +    UNREACHABLE(); +  } + +  void Visit(HInstruction* instruction) { +    instruction->Accept(this); +  } + +  void CalculateLatency(SchedulingNode* node) { +    // By default nodes have no internal latency. +    last_visited_internal_latency_ = 0; +    Visit(node->GetInstruction()); +  } + +  uint32_t GetLastVisitedLatency() const { return last_visited_latency_; } +  uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; } + + protected: +  // The latency of the most recent visited SchedulingNode. +  // This is for reporting the latency value to the user of this visitor. +  uint32_t last_visited_latency_; +  // This represents the time spent *within* the generated code for the most recent visited +  // SchedulingNode. This is for reporting the internal latency value to the user of this visitor. +  uint32_t last_visited_internal_latency_; +}; + +class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> { + public: +  virtual SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, +                                                 const SchedulingGraph& graph) = 0; +  virtual ~SchedulingNodeSelector() {} + protected: +  static void DeleteNodeAtIndex(ArenaVector<SchedulingNode*>* nodes, size_t index) { +    (*nodes)[index] = nodes->back(); +    nodes->pop_back(); +  } +}; + +/* + * Select a `SchedulingNode` at random within the candidates. + */ +class RandomSchedulingNodeSelector : public SchedulingNodeSelector { + public: +  explicit RandomSchedulingNodeSelector() : seed_(0) { +    seed_  = static_cast<uint32_t>(NanoTime()); +    srand(seed_); +  } + +  SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, +                                         const SchedulingGraph& graph) OVERRIDE { +    UNUSED(graph); +    DCHECK(!nodes->empty()); +    size_t select = rand_r(&seed_) % nodes->size(); +    SchedulingNode* select_node = (*nodes)[select]; +    DeleteNodeAtIndex(nodes, select); +    return select_node; +  } + +  uint32_t seed_; +}; + +/* + * Select a `SchedulingNode` according to critical path information, + * with heuristics to favor certain instruction patterns like materialized condition. + */ +class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector { + public: +  CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {} + +  SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes, +                                         const SchedulingGraph& graph) OVERRIDE; + + protected: +  SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate, +                                                  SchedulingNode* check) const; + +  SchedulingNode* SelectMaterializedCondition(ArenaVector<SchedulingNode*>* nodes, +                                               const SchedulingGraph& graph) const; + + private: +  const SchedulingNode* prev_select_; +}; + +class HScheduler { + public: +  HScheduler(ArenaAllocator* arena, +             SchedulingLatencyVisitor* latency_visitor, +             SchedulingNodeSelector* selector) +      : arena_(arena), +        latency_visitor_(latency_visitor), +        selector_(selector), +        only_optimize_loop_blocks_(true), +        scheduling_graph_(this, arena), +        candidates_(arena_->Adapter(kArenaAllocScheduler)) {} +  virtual ~HScheduler() {} + +  void Schedule(HGraph* graph); + +  void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; } + +  // Instructions can not be rescheduled across a scheduling barrier. +  virtual bool IsSchedulingBarrier(const HInstruction* instruction) const; + + protected: +  void Schedule(HBasicBlock* block); +  void Schedule(SchedulingNode* scheduling_node); +  void Schedule(HInstruction* instruction); + +  // Any instruction returning `false` via this method will prevent its +  // containing basic block from being scheduled. +  // This method is used to restrict scheduling to instructions that we know are +  // safe to handle. +  virtual bool IsSchedulable(const HInstruction* instruction) const; +  bool IsSchedulable(const HBasicBlock* block) const; + +  void CalculateLatency(SchedulingNode* node) { +    latency_visitor_->CalculateLatency(node); +    node->SetLatency(latency_visitor_->GetLastVisitedLatency()); +    node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency()); +  } + +  ArenaAllocator* const arena_; +  SchedulingLatencyVisitor* const latency_visitor_; +  SchedulingNodeSelector* const selector_; +  bool only_optimize_loop_blocks_; + +  // We instantiate the members below as part of this class to avoid +  // instantiating them locally for every chunk scheduled. +  SchedulingGraph scheduling_graph_; +  // A pointer indicating where the next instruction to be scheduled will be inserted. +  HInstruction* cursor_; +  // The list of candidates for scheduling. A node becomes a candidate when all +  // its predecessors have been scheduled. +  ArenaVector<SchedulingNode*> candidates_; + + private: +  DISALLOW_COPY_AND_ASSIGN(HScheduler); +}; + +inline bool SchedulingGraph::IsSchedulingBarrier(const HInstruction* instruction) const { +  return scheduler_->IsSchedulingBarrier(instruction); +} + +class HInstructionScheduling : public HOptimization { + public: +  HInstructionScheduling(HGraph* graph, InstructionSet instruction_set) +      : HOptimization(graph, kInstructionScheduling), +        instruction_set_(instruction_set) {} + +  void Run() { +    Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false); +  } +  void Run(bool only_optimize_loop_blocks, bool schedule_randomly); + +  static constexpr const char* kInstructionScheduling = "scheduler"; + +  const InstructionSet instruction_set_; + + private: +  DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling); +}; + +}  // namespace art + +#endif  // ART_COMPILER_OPTIMIZING_SCHEDULER_H_ diff --git a/compiler/optimizing/scheduler_arm64.cc b/compiler/optimizing/scheduler_arm64.cc new file mode 100644 index 0000000000..e3701fbcb1 --- /dev/null +++ b/compiler/optimizing/scheduler_arm64.cc @@ -0,0 +1,196 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + *      http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "scheduler_arm64.h" +#include "code_generator_utils.h" + +namespace art { +namespace arm64 { + +void SchedulingLatencyVisitorARM64::VisitBinaryOperation(HBinaryOperation* instr) { +  last_visited_latency_ = Primitive::IsFloatingPointType(instr->GetResultType()) +      ? kArm64FloatingPointOpLatency +      : kArm64IntegerOpLatency; +} + +void SchedulingLatencyVisitorARM64::VisitBitwiseNegatedRight( +    HBitwiseNegatedRight* ATTRIBUTE_UNUSED) { +  last_visited_latency_ = kArm64IntegerOpLatency; +} + +void SchedulingLatencyVisitorARM64::VisitArm64DataProcWithShifterOp( +    HArm64DataProcWithShifterOp* ATTRIBUTE_UNUSED) { +  last_visited_latency_ = kArm64DataProcWithShifterOpLatency; +} + +void SchedulingLatencyVisitorARM64::VisitIntermediateAddress( +    HIntermediateAddress* ATTRIBUTE_UNUSED) { +  // Although the code generated is a simple `add` instruction, we found through empirical results +  // that spacing it from its use in memory accesses was beneficial. +  last_visited_latency_ = kArm64IntegerOpLatency + 2; +} + +void SchedulingLatencyVisitorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* ATTRIBUTE_UNUSED) { +  last_visited_latency_ = kArm64MulIntegerLatency; +} + +void SchedulingLatencyVisitorARM64::VisitArrayGet(HArrayGet* instruction) { +  if (!instruction->GetArray()->IsIntermediateAddress()) { +    // Take the intermediate address computation into account. +    last_visited_internal_latency_ = kArm64IntegerOpLatency; +  } +  last_visited_latency_ = kArm64MemoryLoadLatency; +} + +void SchedulingLatencyVisitorARM64::VisitArrayLength(HArrayLength* ATTRIBUTE_UNUSED) { +  last_visited_latency_ = kArm64MemoryLoadLatency; +} + +void SchedulingLatencyVisitorARM64::VisitArraySet(HArraySet* ATTRIBUTE_UNUSED) { +  last_visited_latency_ = kArm64MemoryStoreLatency; +} + +void SchedulingLatencyVisitorARM64::VisitBoundsCheck(HBoundsCheck* ATTRIBUTE_UNUSED) { +  last_visited_internal_latency_ = kArm64IntegerOpLatency; +  // Users do not use any data results. +  last_visited_latency_ = 0; +} + +void SchedulingLatencyVisitorARM64::VisitDiv(HDiv* instr) { +  Primitive::Type type = instr->GetResultType(); +  switch (type) { +    case Primitive::kPrimFloat: +      last_visited_latency_ = kArm64DivFloatLatency; +      break; +    case Primitive::kPrimDouble: +      last_visited_latency_ = kArm64DivDoubleLatency; +      break; +    default: +      // Follow the code path used by code generation. +      if (instr->GetRight()->IsConstant()) { +        int64_t imm = Int64FromConstant(instr->GetRight()->AsConstant()); +        if (imm == 0) { +          last_visited_internal_latency_ = 0; +          last_visited_latency_ = 0; +        } else if (imm == 1 || imm == -1) { +          last_visited_internal_latency_ = 0; +          last_visited_latency_ = kArm64IntegerOpLatency; +        } else if (IsPowerOfTwo(AbsOrMin(imm))) { +          last_visited_internal_latency_ = 4 * kArm64IntegerOpLatency; +          last_visited_latency_ = kArm64IntegerOpLatency; +        } else { +          DCHECK(imm <= -2 || imm >= 2); +          last_visited_internal_latency_ = 4 * kArm64IntegerOpLatency; +          last_visited_latency_ = kArm64MulIntegerLatency; +        } +      } else { +        last_visited_latency_ = kArm64DivIntegerLatency; +      } +      break; +  } +} + +void SchedulingLatencyVisitorARM64::VisitInstanceFieldGet(HInstanceFieldGet* ATTRIBUTE_UNUSED) { +  last_visited_latency_ = kArm64MemoryLoadLatency; +} + +void SchedulingLatencyVisitorARM64::VisitInstanceOf(HInstanceOf* ATTRIBUTE_UNUSED) { +  last_visited_internal_latency_ = kArm64CallInternalLatency; +  last_visited_latency_ = kArm64IntegerOpLatency; +} + +void SchedulingLatencyVisitorARM64::VisitInvoke(HInvoke* ATTRIBUTE_UNUSED) { +  last_visited_internal_latency_ = kArm64CallInternalLatency; +  last_visited_latency_ = kArm64CallLatency; +} + +void SchedulingLatencyVisitorARM64::VisitLoadString(HLoadString* ATTRIBUTE_UNUSED) { +  last_visited_internal_latency_ = kArm64LoadStringInternalLatency; +  last_visited_latency_ = kArm64MemoryLoadLatency; +} + +void SchedulingLatencyVisitorARM64::VisitMul(HMul* instr) { +  last_visited_latency_ = Primitive::IsFloatingPointType(instr->GetResultType()) +      ? kArm64MulFloatingPointLatency +      : kArm64MulIntegerLatency; +} + +void SchedulingLatencyVisitorARM64::VisitNewArray(HNewArray* ATTRIBUTE_UNUSED) { +  last_visited_internal_latency_ = kArm64IntegerOpLatency + kArm64CallInternalLatency; +  last_visited_latency_ = kArm64CallLatency; +} + +void SchedulingLatencyVisitorARM64::VisitNewInstance(HNewInstance* instruction) { +  if (instruction->IsStringAlloc()) { +    last_visited_internal_latency_ = 2 + kArm64MemoryLoadLatency + kArm64CallInternalLatency; +  } else { +    last_visited_internal_latency_ = kArm64CallInternalLatency; +  } +  last_visited_latency_ = kArm64CallLatency; +} + +void SchedulingLatencyVisitorARM64::VisitRem(HRem* instruction) { +  if (Primitive::IsFloatingPointType(instruction->GetResultType())) { +    last_visited_internal_latency_ = kArm64CallInternalLatency; +    last_visited_latency_ = kArm64CallLatency; +  } else { +    // Follow the code path used by code generation. +    if (instruction->GetRight()->IsConstant()) { +      int64_t imm = Int64FromConstant(instruction->GetRight()->AsConstant()); +      if (imm == 0) { +        last_visited_internal_latency_ = 0; +        last_visited_latency_ = 0; +      } else if (imm == 1 || imm == -1) { +        last_visited_internal_latency_ = 0; +        last_visited_latency_ = kArm64IntegerOpLatency; +      } else if (IsPowerOfTwo(AbsOrMin(imm))) { +        last_visited_internal_latency_ = 4 * kArm64IntegerOpLatency; +        last_visited_latency_ = kArm64IntegerOpLatency; +      } else { +        DCHECK(imm <= -2 || imm >= 2); +        last_visited_internal_latency_ = 4 * kArm64IntegerOpLatency; +        last_visited_latency_ = kArm64MulIntegerLatency; +      } +    } else { +      last_visited_internal_latency_ = kArm64DivIntegerLatency; +      last_visited_latency_ = kArm64MulIntegerLatency; +    } +  } +} + +void SchedulingLatencyVisitorARM64::VisitStaticFieldGet(HStaticFieldGet* ATTRIBUTE_UNUSED) { +  last_visited_latency_ = kArm64MemoryLoadLatency; +} + +void SchedulingLatencyVisitorARM64::VisitSuspendCheck(HSuspendCheck* instruction) { +  HBasicBlock* block = instruction->GetBlock(); +  DCHECK((block->GetLoopInformation() != nullptr) || +         (block->IsEntryBlock() && instruction->GetNext()->IsGoto())); +  // Users do not use any data results. +  last_visited_latency_ = 0; +} + +void SchedulingLatencyVisitorARM64::VisitTypeConversion(HTypeConversion* instr) { +  if (Primitive::IsFloatingPointType(instr->GetResultType()) || +      Primitive::IsFloatingPointType(instr->GetInputType())) { +    last_visited_latency_ = kArm64TypeConversionFloatingPointIntegerLatency; +  } else { +    last_visited_latency_ = kArm64IntegerOpLatency; +  } +} + +}  // namespace arm64 +}  // namespace art diff --git a/compiler/optimizing/scheduler_arm64.h b/compiler/optimizing/scheduler_arm64.h new file mode 100644 index 0000000000..702027c535 --- /dev/null +++ b/compiler/optimizing/scheduler_arm64.h @@ -0,0 +1,117 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + *      http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_ARM64_H_ +#define ART_COMPILER_OPTIMIZING_SCHEDULER_ARM64_H_ + +#include "scheduler.h" + +namespace art { +namespace arm64 { + +static constexpr uint32_t kArm64MemoryLoadLatency = 5; +static constexpr uint32_t kArm64MemoryStoreLatency = 3; + +static constexpr uint32_t kArm64CallInternalLatency = 10; +static constexpr uint32_t kArm64CallLatency = 5; + +// AArch64 instruction latency. +// We currently assume that all arm64 CPUs share the same instruction latency list. +static constexpr uint32_t kArm64IntegerOpLatency = 2; +static constexpr uint32_t kArm64FloatingPointOpLatency = 5; + + +static constexpr uint32_t kArm64DataProcWithShifterOpLatency = 3; +static constexpr uint32_t kArm64DivDoubleLatency = 30; +static constexpr uint32_t kArm64DivFloatLatency = 15; +static constexpr uint32_t kArm64DivIntegerLatency = 5; +static constexpr uint32_t kArm64LoadStringInternalLatency = 7; +static constexpr uint32_t kArm64MulFloatingPointLatency = 6; +static constexpr uint32_t kArm64MulIntegerLatency = 6; +static constexpr uint32_t kArm64TypeConversionFloatingPointIntegerLatency = 5; + +class SchedulingLatencyVisitorARM64 : public SchedulingLatencyVisitor { + public: +  // Default visitor for instructions not handled specifically below. +  void VisitInstruction(HInstruction* ATTRIBUTE_UNUSED) { +    last_visited_latency_ = kArm64IntegerOpLatency; +  } + +// We add a second unused parameter to be able to use this macro like the others +// defined in `nodes.h`. +#define FOR_EACH_SCHEDULED_COMMON_INSTRUCTION(M) \ +  M(ArrayGet         , unused)                   \ +  M(ArrayLength      , unused)                   \ +  M(ArraySet         , unused)                   \ +  M(BinaryOperation  , unused)                   \ +  M(BoundsCheck      , unused)                   \ +  M(Div              , unused)                   \ +  M(InstanceFieldGet , unused)                   \ +  M(InstanceOf       , unused)                   \ +  M(Invoke           , unused)                   \ +  M(LoadString       , unused)                   \ +  M(Mul              , unused)                   \ +  M(NewArray         , unused)                   \ +  M(NewInstance      , unused)                   \ +  M(Rem              , unused)                   \ +  M(StaticFieldGet   , unused)                   \ +  M(SuspendCheck     , unused)                   \ +  M(TypeConversion   , unused) + +#define FOR_EACH_SCHEDULED_SHARED_INSTRUCTION(M) \ +  M(BitwiseNegatedRight, unused)                 \ +  M(MultiplyAccumulate, unused)                  \ +  M(IntermediateAddress, unused) + +#define DECLARE_VISIT_INSTRUCTION(type, unused)  \ +  void Visit##type(H##type* instruction) OVERRIDE; + +  FOR_EACH_SCHEDULED_COMMON_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) +  FOR_EACH_SCHEDULED_SHARED_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) +  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(DECLARE_VISIT_INSTRUCTION) + +#undef DECLARE_VISIT_INSTRUCTION +}; + +class HSchedulerARM64 : public HScheduler { + public: +  HSchedulerARM64(ArenaAllocator* arena, SchedulingNodeSelector* selector) +      : HScheduler(arena, &arm64_latency_visitor_, selector) {} +  ~HSchedulerARM64() OVERRIDE {} + +  bool IsSchedulable(const HInstruction* instruction) const OVERRIDE { +#define CASE_INSTRUCTION_KIND(type, unused) case \ +  HInstruction::InstructionKind::k##type: +    switch (instruction->GetKind()) { +      FOR_EACH_SCHEDULED_SHARED_INSTRUCTION(CASE_INSTRUCTION_KIND) +        return true; +      FOR_EACH_CONCRETE_INSTRUCTION_ARM64(CASE_INSTRUCTION_KIND) +        return true; +      default: +        return HScheduler::IsSchedulable(instruction); +    } +#undef CASE_INSTRUCTION_KIND +  } + + private: +  SchedulingLatencyVisitorARM64 arm64_latency_visitor_; +  DISALLOW_COPY_AND_ASSIGN(HSchedulerARM64); +}; + +}  // namespace arm64 +}  // namespace art + +#endif  // ART_COMPILER_OPTIMIZING_SCHEDULER_ARM64_H_ diff --git a/compiler/optimizing/scheduler_test.cc b/compiler/optimizing/scheduler_test.cc new file mode 100644 index 0000000000..31d13e2a26 --- /dev/null +++ b/compiler/optimizing/scheduler_test.cc @@ -0,0 +1,238 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + *      http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "base/arena_allocator.h" +#include "builder.h" +#include "codegen_test_utils.h" +#include "common_compiler_test.h" +#include "nodes.h" +#include "optimizing_unit_test.h" +#include "pc_relative_fixups_x86.h" +#include "register_allocator.h" +#include "scheduler.h" + +#ifdef ART_ENABLE_CODEGEN_arm64 +#include "scheduler_arm64.h" +#endif + +namespace art { + +// Return all combinations of ISA and code generator that are executable on +// hardware, or on simulator, and that we'd like to test. +static ::std::vector<CodegenTargetConfig> GetTargetConfigs() { +  ::std::vector<CodegenTargetConfig> v; +  ::std::vector<CodegenTargetConfig> test_config_candidates = { +#ifdef ART_ENABLE_CODEGEN_arm +    CodegenTargetConfig(kArm, create_codegen_arm), +    CodegenTargetConfig(kThumb2, create_codegen_arm), +#endif +#ifdef ART_ENABLE_CODEGEN_arm64 +    CodegenTargetConfig(kArm64, create_codegen_arm64), +#endif +#ifdef ART_ENABLE_CODEGEN_x86 +    CodegenTargetConfig(kX86, create_codegen_x86), +#endif +#ifdef ART_ENABLE_CODEGEN_x86_64 +    CodegenTargetConfig(kX86_64, create_codegen_x86_64), +#endif +#ifdef ART_ENABLE_CODEGEN_mips +    CodegenTargetConfig(kMips, create_codegen_mips), +#endif +#ifdef ART_ENABLE_CODEGEN_mips64 +    CodegenTargetConfig(kMips64, create_codegen_mips64) +#endif +  }; + +  for (auto test_config : test_config_candidates) { +    if (CanExecute(test_config.GetInstructionSet())) { +      v.push_back(test_config); +    } +  } + +  return v; +} + +class SchedulerTest : public CommonCompilerTest {}; + +#ifdef ART_ENABLE_CODEGEN_arm64 +TEST_F(SchedulerTest, DependencyGraph) { +  ArenaPool pool; +  ArenaAllocator allocator(&pool); +  HGraph* graph = CreateGraph(&allocator); +  HBasicBlock* entry = new (&allocator) HBasicBlock(graph); +  HBasicBlock* block1 = new (&allocator) HBasicBlock(graph); +  graph->AddBlock(entry); +  graph->AddBlock(block1); +  graph->SetEntryBlock(entry); + +  // entry: +  // array         ParameterValue +  // c1            IntConstant +  // c2            IntConstant +  // block1: +  // add1          Add [c1, c2] +  // add2          Add [add1, c2] +  // mul           Mul [add1, add2] +  // div_check     DivZeroCheck [add2] (env: add2, mul) +  // div           Div [add1, div_check] +  // array_get1    ArrayGet [array, add1] +  // array_set1    ArraySet [array, add1, add2] +  // array_get2    ArrayGet [array, add1] +  // array_set2    ArraySet [array, add1, add2] + +  HInstruction* array = new (&allocator) HParameterValue(graph->GetDexFile(), +                                                         dex::TypeIndex(0), +                                                         0, +                                                         Primitive::kPrimNot); +  HInstruction* c1 = graph->GetIntConstant(1); +  HInstruction* c2 = graph->GetIntConstant(10); +  HInstruction* add1 = new (&allocator) HAdd(Primitive::kPrimInt, c1, c2); +  HInstruction* add2 = new (&allocator) HAdd(Primitive::kPrimInt, add1, c2); +  HInstruction* mul = new (&allocator) HMul(Primitive::kPrimInt, add1, add2); +  HInstruction* div_check = new (&allocator) HDivZeroCheck(add2, 0); +  HInstruction* div = new (&allocator) HDiv(Primitive::kPrimInt, add1, div_check, 0); +  HInstruction* array_get1 = new (&allocator) HArrayGet(array, add1, Primitive::kPrimInt, 0); +  HInstruction* array_set1 = new (&allocator) HArraySet(array, add1, add2, Primitive::kPrimInt, 0); +  HInstruction* array_get2 = new (&allocator) HArrayGet(array, add1, Primitive::kPrimInt, 0); +  HInstruction* array_set2 = new (&allocator) HArraySet(array, add1, add2, Primitive::kPrimInt, 0); + +  DCHECK(div_check->CanThrow()); + +  entry->AddInstruction(array); + +  HInstruction* block_instructions[] = {add1, +                                        add2, +                                        mul, +                                        div_check, +                                        div, +                                        array_get1, +                                        array_set1, +                                        array_get2, +                                        array_set2}; +  for (auto instr : block_instructions) { +    block1->AddInstruction(instr); +  } + +  HEnvironment* environment = new (&allocator) HEnvironment(&allocator, +                                                            2, +                                                            graph->GetArtMethod(), +                                                            0, +                                                            div_check); +  div_check->SetRawEnvironment(environment); +  environment->SetRawEnvAt(0, add2); +  add2->AddEnvUseAt(div_check->GetEnvironment(), 0); +  environment->SetRawEnvAt(1, mul); +  mul->AddEnvUseAt(div_check->GetEnvironment(), 1); + +  ArenaAllocator* arena = graph->GetArena(); +  CriticalPathSchedulingNodeSelector critical_path_selector; +  arm64::HSchedulerARM64 scheduler(arena, &critical_path_selector); +  SchedulingGraph scheduling_graph(&scheduler, arena); +  // Instructions must be inserted in reverse order into the scheduling graph. +  for (auto instr : ReverseRange(block_instructions)) { +    scheduling_graph.AddNode(instr); +  } + +  // Should not have dependencies cross basic blocks. +  ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, c1)); +  ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add2, c2)); + +  // Define-use dependency. +  ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(add2, add1)); +  ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, add2)); +  ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div_check, add2)); +  ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(div_check, add1)); +  ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div, div_check)); +  ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add1)); +  ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add2)); + +  // Read and write dependencies +  ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, array_get1)); +  ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_get2)); +  ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_get2, array_set1)); +  ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_set1)); + +  // Env dependency. +  ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(div_check, mul)); +  ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(mul, div_check)); + +  // CanThrow. +  ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, div_check)); +} +#endif + +static void CompileWithRandomSchedulerAndRun(const uint16_t* data, +                                             bool has_result, +                                             int expected) { +  for (CodegenTargetConfig target_config : GetTargetConfigs()) { +    ArenaPool pool; +    ArenaAllocator arena(&pool); +    HGraph* graph = CreateCFG(&arena, data); + +    // Schedule the graph randomly. +    HInstructionScheduling scheduling(graph, target_config.GetInstructionSet()); +    scheduling.Run(/*only_optimize_loop_blocks*/ false, /*schedule_randomly*/ true); + +    RunCode(target_config, +            graph, +            [](HGraph* graph_arg) { RemoveSuspendChecks(graph_arg); }, +            has_result, expected); +  } +} + +TEST_F(SchedulerTest, RandomScheduling) { +  // +  // Java source: crafted code to make sure (random) scheduling should get correct result. +  // +  //  int result = 0; +  //  float fr = 10.0f; +  //  for (int i = 1; i < 10; i++) { +  //    fr ++; +  //    int t1 = result >> i; +  //    int t2 = result * i; +  //    result = result + t1 - t2; +  //    fr = fr / i; +  //    result += (int)fr; +  //  } +  //  return result; +  // +  const uint16_t data[] = SIX_REGISTERS_CODE_ITEM( +    Instruction::CONST_4 | 0 << 12 | 2 << 8,          // const/4 v2, #int 0 +    Instruction::CONST_HIGH16 | 0 << 8, 0x4120,       // const/high16 v0, #float 10.0 // #41200000 +    Instruction::CONST_4 | 1 << 12 | 1 << 8,          // const/4 v1, #int 1 +    Instruction::CONST_16 | 5 << 8, 0x000a,           // const/16 v5, #int 10 +    Instruction::IF_GE | 5 << 12 | 1 << 8, 0x0014,    // if-ge v1, v5, 001a // +0014 +    Instruction::CONST_HIGH16 | 5 << 8, 0x3f80,       // const/high16 v5, #float 1.0 // #3f800000 +    Instruction::ADD_FLOAT_2ADDR | 5 << 12 | 0 << 8,  // add-float/2addr v0, v5 +    Instruction::SHR_INT | 3 << 8, 1 << 8 | 2 ,       // shr-int v3, v2, v1 +    Instruction::MUL_INT | 4 << 8, 1 << 8 | 2,        // mul-int v4, v2, v1 +    Instruction::ADD_INT | 5 << 8, 3 << 8 | 2,        // add-int v5, v2, v3 +    Instruction::SUB_INT | 2 << 8, 4 << 8 | 5,        // sub-int v2, v5, v4 +    Instruction::INT_TO_FLOAT | 1 << 12 | 5 << 8,     // int-to-float v5, v1 +    Instruction::DIV_FLOAT_2ADDR | 5 << 12 | 0 << 8,  // div-float/2addr v0, v5 +    Instruction::FLOAT_TO_INT | 0 << 12 | 5 << 8,     // float-to-int v5, v0 +    Instruction::ADD_INT_2ADDR | 5 << 12 | 2 << 8,    // add-int/2addr v2, v5 +    Instruction::ADD_INT_LIT8 | 1 << 8, 1 << 8 | 1,   // add-int/lit8 v1, v1, #int 1 // #01 +    Instruction::GOTO | 0xeb << 8,                    // goto 0004 // -0015 +    Instruction::RETURN | 2 << 8);                    // return v2 + +  constexpr int kNumberOfRuns = 10; +  for (int i = 0; i < kNumberOfRuns; ++i) { +    CompileWithRandomSchedulerAndRun(data, true, 138774); +  } +} + +}  // namespace art  |