diff options
Diffstat (limited to 'compiler/optimizing')
-rw-r--r-- | compiler/optimizing/induction_var_analysis.cc | 176 | ||||
-rw-r--r-- | compiler/optimizing/induction_var_analysis.h | 32 | ||||
-rw-r--r-- | compiler/optimizing/induction_var_analysis_test.cc | 175 | ||||
-rw-r--r-- | compiler/optimizing/induction_var_range.cc | 111 | ||||
-rw-r--r-- | compiler/optimizing/induction_var_range_test.cc | 17 | ||||
-rw-r--r-- | compiler/optimizing/optimizing_unit_test.h | 1 |
6 files changed, 401 insertions, 111 deletions
diff --git a/compiler/optimizing/induction_var_analysis.cc b/compiler/optimizing/induction_var_analysis.cc index 82a898a9f1..266cb10ab3 100644 --- a/compiler/optimizing/induction_var_analysis.cc +++ b/compiler/optimizing/induction_var_analysis.cc @@ -53,6 +53,32 @@ static void RotateEntryPhiFirst(HLoopInformation* loop, } } +/** + * Returns true if the from/to types denote a narrowing, integral conversion (precision loss). + */ +static bool IsNarrowingIntegralConversion(Primitive::Type from, Primitive::Type to) { + switch (from) { + case Primitive::kPrimLong: + return to == Primitive::kPrimByte || to == Primitive::kPrimShort + || to == Primitive::kPrimChar || to == Primitive::kPrimInt; + case Primitive::kPrimInt: + return to == Primitive::kPrimByte || to == Primitive::kPrimShort + || to == Primitive::kPrimChar; + case Primitive::kPrimChar: + case Primitive::kPrimShort: + return to == Primitive::kPrimByte; + default: + return false; + } +} + +/** + * Returns narrowest data type. + */ +static Primitive::Type Narrowest(Primitive::Type type1, Primitive::Type type2) { + return Primitive::ComponentSize(type1) <= Primitive::ComponentSize(type2) ? type1 : type2; +} + // // Class methods. // @@ -148,6 +174,9 @@ void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* inst } } + // Type of induction. + type_ = scc_[0]->GetType(); + // Classify the SCC. if (scc_.size() == 1 && !scc_[0]->IsLoopHeaderPhi()) { ClassifyTrivial(loop, scc_[0]); @@ -197,14 +226,13 @@ void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction instruction->InputAt(0)->GetType()); } else if (instruction->IsNeg()) { info = TransferNeg(LookupInfo(loop, instruction->InputAt(0))); + } else if (instruction->IsTypeConversion()) { + info = TransferCnv(LookupInfo(loop, instruction->InputAt(0)), + instruction->AsTypeConversion()->GetInputType(), + instruction->AsTypeConversion()->GetResultType()); + } else if (instruction->IsBoundsCheck()) { info = LookupInfo(loop, instruction->InputAt(0)); // Pass-through. - } else if (instruction->IsTypeConversion()) { - HTypeConversion* conversion = instruction->AsTypeConversion(); - // TODO: accept different conversion scenarios. - if (conversion->GetResultType() == conversion->GetInputType()) { - info = LookupInfo(loop, conversion->GetInput()); - } } // Successfully classified? @@ -239,7 +267,7 @@ void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) { if (size == 1) { InductionInfo* update = TransferPhi(loop, phi, /* input_index */ 1); if (update != nullptr) { - AssignInfo(loop, phi, CreateInduction(kWrapAround, initial, update)); + AssignInfo(loop, phi, CreateInduction(kWrapAround, initial, update, type_)); } return; } @@ -257,6 +285,8 @@ void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) { } else if (instruction->IsSub()) { update = SolveAddSub( loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true); + } else if (instruction->IsTypeConversion()) { + update = SolveCnv(instruction->AsTypeConversion()); } if (update == nullptr) { return; @@ -271,7 +301,7 @@ void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) { case kInvariant: // Classify first phi and then the rest of the cycle "on-demand". // Statements are scanned in order. - AssignInfo(loop, phi, CreateInduction(kLinear, induction, initial)); + AssignInfo(loop, phi, CreateInduction(kLinear, induction, initial, type_)); for (size_t i = 1; i < size; i++) { ClassifyTrivial(loop, scc_[i]); } @@ -301,9 +331,10 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduc // (b, c, d, e, a) // in preparation of assigning this to the previous variable in the sequence. if (induction->induction_class == kInvariant) { - return CreateInduction(kPeriodic, induction, last); + return CreateInduction(kPeriodic, induction, last, type_); } - return CreateInduction(kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last)); + return CreateInduction( + kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last), type_); } HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(HLoopInformation* loop, @@ -332,8 +363,10 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(Indu if (a->induction_class == kInvariant && b->induction_class == kInvariant) { return CreateInvariantOp(op, a, b); } else if (a->induction_class == kLinear && b->induction_class == kLinear) { - return CreateInduction( - kLinear, TransferAddSub(a->op_a, b->op_a, op), TransferAddSub(a->op_b, b->op_b, op)); + return CreateInduction(kLinear, + TransferAddSub(a->op_a, b->op_a, op), + TransferAddSub(a->op_b, b->op_b, op), + type_); } else if (a->induction_class == kInvariant) { InductionInfo* new_a = b->op_a; InductionInfo* new_b = TransferAddSub(a, b->op_b, op); @@ -343,7 +376,7 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(Indu } else if (op == kSub) { // Negation required. new_a = TransferNeg(new_a); } - return CreateInduction(b->induction_class, new_a, new_b); + return CreateInduction(b->induction_class, new_a, new_b, type_); } else if (b->induction_class == kInvariant) { InductionInfo* new_a = a->op_a; InductionInfo* new_b = TransferAddSub(a->op_b, b, op); @@ -351,7 +384,7 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(Indu DCHECK(a->induction_class == kWrapAround || a->induction_class == kPeriodic); new_a = TransferAddSub(new_a, b, op); } - return CreateInduction(a->induction_class, new_a, new_b); + return CreateInduction(a->induction_class, new_a, new_b, type_); } } return nullptr; @@ -366,9 +399,15 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(Inducti if (a->induction_class == kInvariant && b->induction_class == kInvariant) { return CreateInvariantOp(kMul, a, b); } else if (a->induction_class == kInvariant) { - return CreateInduction(b->induction_class, TransferMul(a, b->op_a), TransferMul(a, b->op_b)); + return CreateInduction(b->induction_class, + TransferMul(a, b->op_a), + TransferMul(a, b->op_b), + type_); } else if (b->induction_class == kInvariant) { - return CreateInduction(a->induction_class, TransferMul(a->op_a, b), TransferMul(a->op_b, b)); + return CreateInduction(a->induction_class, + TransferMul(a->op_a, b), + TransferMul(a->op_b, b), + type_); } } return nullptr; @@ -400,7 +439,24 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(Inducti if (a->induction_class == kInvariant) { return CreateInvariantOp(kNeg, nullptr, a); } - return CreateInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b)); + return CreateInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b), type_); + } + return nullptr; +} + +HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCnv(InductionInfo* a, + Primitive::Type from, + Primitive::Type to) { + if (a != nullptr) { + // Allow narrowing conversion in certain cases. + if (IsNarrowingIntegralConversion(from, to)) { + if (a->induction_class == kLinear) { + if (a->type == to || (a->type == from && IsNarrowingIntegralConversion(from, to))) { + return CreateInduction(kLinear, a->op_a, a->op_b, to); + } + } + // TODO: other cases useful too? + } } return nullptr; } @@ -442,11 +498,11 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhiAllInputs( if (a != nullptr && a->induction_class == kInvariant) { if (phi->InputAt(1) == entry_phi) { InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0)); - return CreateInduction(kPeriodic, a, initial); + return CreateInduction(kPeriodic, a, initial, type_); } InductionInfo* b = SolvePhi(phi, /* input_index */ 1); if (b != nullptr && b->induction_class == kPeriodic) { - return CreateInduction(kPeriodic, a, b); + return CreateInduction(kPeriodic, a, b, type_); } } } @@ -489,7 +545,7 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopIn InductionInfo* a = LookupInfo(loop, x); if (a != nullptr && a->induction_class == kInvariant) { InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0)); - return CreateInduction(kPeriodic, CreateInvariantOp(kSub, a, initial), initial); + return CreateInduction(kPeriodic, CreateInvariantOp(kSub, a, initial), initial, type_); } } } @@ -497,6 +553,21 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopIn return nullptr; } +HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveCnv(HTypeConversion* conversion) { + Primitive::Type from = conversion->GetInputType(); + Primitive::Type to = conversion->GetResultType(); + // A narrowing conversion is allowed within the cycle of a linear induction, provided that the + // narrowest encountered type is recorded with the induction to account for the precision loss. + if (IsNarrowingIntegralConversion(from, to)) { + auto it = cycle_.find(conversion->GetInput()); + if (it != cycle_.end() && it->second->induction_class == kInvariant) { + type_ = Narrowest(type_, to); + return it->second; + } + } + return nullptr; +} + void HInductionVarAnalysis::VisitControl(HLoopInformation* loop) { HInstruction* control = loop->GetHeader()->GetLastInstruction(); if (control->IsIf()) { @@ -512,12 +583,10 @@ void HInductionVarAnalysis::VisitControl(HLoopInformation* loop) { InductionInfo* a = LookupInfo(loop, condition->InputAt(0)); InductionInfo* b = LookupInfo(loop, condition->InputAt(1)); Primitive::Type type = condition->InputAt(0)->GetType(); - // Determine if the loop control uses integral arithmetic and an if-exit (X outside) or an - // if-iterate (X inside), always expressed as if-iterate when passing into VisitCondition(). - if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) { - // Loop control is not 32/64-bit integral. - } else if (a == nullptr || b == nullptr) { - // Loop control is not a sequence. + // Determine if the loop control uses a known sequence on an if-exit (X outside) or on + // an if-iterate (X inside), expressed as if-iterate when passed into VisitCondition(). + if (a == nullptr || b == nullptr) { + return; // Loop control is not a sequence. } else if (if_true->GetLoopInformation() != loop && if_false->GetLoopInformation() == loop) { VisitCondition(loop, a, b, type, condition->GetOppositeCondition()); } else if (if_true->GetLoopInformation() == loop && if_false->GetLoopInformation() != loop) { @@ -559,6 +628,14 @@ void HInductionVarAnalysis::VisitCondition(HLoopInformation* loop, (stride_value == -1 && IsTaken(lower_expr, upper_expr, kCondGE)))) { cmp = stride_value > 0 ? kCondLT : kCondGT; } + // Only accept integral condition. A mismatch between the type of condition and the induction + // is only allowed if the, necessarily narrower, induction range fits the narrower control. + if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) { + return; // not integral + } else if (type != a->type && + !FitsNarrowerControl(lower_expr, upper_expr, stride_value, a->type, cmp)) { + return; // mismatched type + } // Normalize a linear loop control with a nonzero stride: // stride > 0, either i < U or i <= U // stride < 0, either i > U or i >= U @@ -640,7 +717,7 @@ void HInductionVarAnalysis::VisitTripCount(HLoopInformation* loop, InductionInfo* taken_test = CreateInvariantOp(op, lower_expr, upper_expr); AssignInfo(loop, loop->GetHeader()->GetLastInstruction(), - CreateTripCount(tcKind, trip_count, taken_test)); + CreateTripCount(tcKind, trip_count, taken_test, type)); } bool HInductionVarAnalysis::IsTaken(InductionInfo* lower_expr, @@ -675,10 +752,8 @@ bool HInductionVarAnalysis::IsFinite(InductionInfo* upper_expr, int64_t stride_value, Primitive::Type type, IfCondition cmp) { - const int64_t min = type == Primitive::kPrimInt ? std::numeric_limits<int32_t>::min() - : std::numeric_limits<int64_t>::min(); - const int64_t max = type == Primitive::kPrimInt ? std::numeric_limits<int32_t>::max() - : std::numeric_limits<int64_t>::max(); + const int64_t min = Primitive::MinValueOfIntegralType(type); + const int64_t max = Primitive::MaxValueOfIntegralType(type); // Some rules under which it is certain at compile-time that the loop is finite. int64_t value; switch (cmp) { @@ -698,6 +773,31 @@ bool HInductionVarAnalysis::IsFinite(InductionInfo* upper_expr, return false; // not certain, may be infinite } +bool HInductionVarAnalysis::FitsNarrowerControl(InductionInfo* lower_expr, + InductionInfo* upper_expr, + int64_t stride_value, + Primitive::Type type, + IfCondition cmp) { + int64_t min = Primitive::MinValueOfIntegralType(type); + int64_t max = Primitive::MaxValueOfIntegralType(type); + // Inclusive test need one extra. + if (stride_value != 1 && stride_value != -1) { + return false; // non-unit stride + } else if (cmp == kCondLE) { + max--; + } else if (cmp == kCondGE) { + min++; + } + // Do both bounds fit the range? + // Note: The `value` is initialized to please valgrind - the compiler can reorder + // the return value check with the `value` check, b/27651442 . + int64_t value = 0; + return IsAtLeast(lower_expr, &value) && value >= min && + IsAtMost(lower_expr, &value) && value <= max && + IsAtLeast(upper_expr, &value) && value >= min && + IsAtMost(upper_expr, &value) && value <= max; +} + void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop, HInstruction* instruction, InductionInfo* info) { @@ -794,7 +894,7 @@ HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInv return CreateSimplifiedInvariant(kSub, b->op_b, b->op_a); } } - return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr); + return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr, b->type); } bool HInductionVarAnalysis::IsExact(InductionInfo* info, int64_t* value) { @@ -856,18 +956,22 @@ std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) { case kTripCountInBodyUnsafe: inv += " (TC-body-unsafe) "; break; } inv += InductionToString(info->op_b); - return inv + ")"; + inv += ")"; + return inv; } else { DCHECK(info->operation == kNop); if (info->induction_class == kLinear) { return "(" + InductionToString(info->op_a) + " * i + " + - InductionToString(info->op_b) + ")"; + InductionToString(info->op_b) + "):" + + Primitive::PrettyDescriptor(info->type); } else if (info->induction_class == kWrapAround) { return "wrap(" + InductionToString(info->op_a) + ", " + - InductionToString(info->op_b) + ")"; + InductionToString(info->op_b) + "):" + + Primitive::PrettyDescriptor(info->type); } else if (info->induction_class == kPeriodic) { return "periodic(" + InductionToString(info->op_a) + ", " + - InductionToString(info->op_b) + ")"; + InductionToString(info->op_b) + "):" + + Primitive::PrettyDescriptor(info->type); } } } diff --git a/compiler/optimizing/induction_var_analysis.h b/compiler/optimizing/induction_var_analysis.h index 94d2646aec..f1965f07b2 100644 --- a/compiler/optimizing/induction_var_analysis.h +++ b/compiler/optimizing/induction_var_analysis.h @@ -97,17 +97,20 @@ class HInductionVarAnalysis : public HOptimization { InductionOp op, InductionInfo* a, InductionInfo* b, - HInstruction* f) + HInstruction* f, + Primitive::Type t) : induction_class(ic), operation(op), op_a(a), op_b(b), - fetch(f) {} + fetch(f), + type(t) {} InductionClass induction_class; InductionOp operation; InductionInfo* op_a; InductionInfo* op_b; HInstruction* fetch; + Primitive::Type type; // precision of induction }; bool IsVisitedNode(HInstruction* instruction) const { @@ -121,17 +124,24 @@ class HInductionVarAnalysis : public HOptimization { InductionInfo* CreateInvariantFetch(HInstruction* f) { DCHECK(f != nullptr); - return new (graph_->GetArena()) InductionInfo(kInvariant, kFetch, nullptr, nullptr, f); + return new (graph_->GetArena()) + InductionInfo(kInvariant, kFetch, nullptr, nullptr, f, f->GetType()); } - InductionInfo* CreateTripCount(InductionOp op, InductionInfo* a, InductionInfo* b) { + InductionInfo* CreateTripCount(InductionOp op, + InductionInfo* a, + InductionInfo* b, + Primitive::Type type) { DCHECK(a != nullptr); - return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr); + return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr, type); } - InductionInfo* CreateInduction(InductionClass ic, InductionInfo* a, InductionInfo* b) { + InductionInfo* CreateInduction(InductionClass ic, + InductionInfo* a, + InductionInfo* b, + Primitive::Type type) { DCHECK(a != nullptr && b != nullptr); - return new (graph_->GetArena()) InductionInfo(ic, kNop, a, b, nullptr); + return new (graph_->GetArena()) InductionInfo(ic, kNop, a, b, nullptr, type); } // Methods for analysis. @@ -148,6 +158,7 @@ class HInductionVarAnalysis : public HOptimization { InductionInfo* TransferMul(InductionInfo* a, InductionInfo* b); InductionInfo* TransferShl(InductionInfo* a, InductionInfo* b, Primitive::Type type); InductionInfo* TransferNeg(InductionInfo* a); + InductionInfo* TransferCnv(InductionInfo* a, Primitive::Type from, Primitive::Type to); // Solvers. InductionInfo* SolvePhi(HInstruction* phi, size_t input_index); @@ -161,6 +172,7 @@ class HInductionVarAnalysis : public HOptimization { HInstruction* y, InductionOp op, bool is_first_call); + InductionInfo* SolveCnv(HTypeConversion* conversion); // Trip count information. void VisitControl(HLoopInformation* loop); @@ -181,6 +193,11 @@ class HInductionVarAnalysis : public HOptimization { int64_t stride_value, Primitive::Type type, IfCondition cmp); + bool FitsNarrowerControl(InductionInfo* lower_expr, + InductionInfo* upper_expr, + int64_t stride_value, + Primitive::Type type, + IfCondition cmp); // Assign and lookup. void AssignInfo(HLoopInformation* loop, HInstruction* instruction, InductionInfo* info); @@ -205,6 +222,7 @@ class HInductionVarAnalysis : public HOptimization { ArenaVector<HInstruction*> scc_; ArenaSafeMap<HInstruction*, NodeInfo> map_; ArenaSafeMap<HInstruction*, InductionInfo*> cycle_; + Primitive::Type type_; /** * Maintains the results of the analysis as a mapping from loops to a mapping from instructions diff --git a/compiler/optimizing/induction_var_analysis_test.cc b/compiler/optimizing/induction_var_analysis_test.cc index 89e4690de2..0fbb67d0d9 100644 --- a/compiler/optimizing/induction_var_analysis_test.cc +++ b/compiler/optimizing/induction_var_analysis_test.cc @@ -202,6 +202,7 @@ TEST_F(InductionVarAnalysisTest, ProperLoopSetup) { // } BuildLoopNest(10); graph_->BuildDominatorTree(); + ASSERT_EQ(entry_->GetLoopInformation(), nullptr); for (int d = 0; d < 1; d++) { ASSERT_EQ(loop_preheader_[d]->GetLoopInformation(), @@ -224,8 +225,8 @@ TEST_F(InductionVarAnalysisTest, FindBasicInduction) { HInstruction* store = InsertArrayStore(basic_[0], 0); PerformInductionVarAnalysis(); - EXPECT_STREQ("((1) * i + (0))", GetInductionInfo(store->InputAt(1), 0).c_str()); - EXPECT_STREQ("((1) * i + (1))", GetInductionInfo(increment_[0], 0).c_str()); + EXPECT_STREQ("((1) * i + (0)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); + EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(increment_[0], 0).c_str()); // Trip-count. EXPECT_STREQ("((100) (TC-loop) ((0) < (100)))", @@ -254,11 +255,11 @@ TEST_F(InductionVarAnalysisTest, FindDerivedInduction) { new (&allocator_) HNeg(Primitive::kPrimInt, basic_[0]), 0); PerformInductionVarAnalysis(); - EXPECT_STREQ("((1) * i + (100))", GetInductionInfo(add, 0).c_str()); - EXPECT_STREQ("(( - (1)) * i + (100))", GetInductionInfo(sub, 0).c_str()); - EXPECT_STREQ("((100) * i + (0))", GetInductionInfo(mul, 0).c_str()); - EXPECT_STREQ("((2) * i + (0))", GetInductionInfo(shl, 0).c_str()); - EXPECT_STREQ("(( - (1)) * i + (0))", GetInductionInfo(neg, 0).c_str()); + EXPECT_STREQ("((1) * i + (100)):PrimInt", GetInductionInfo(add, 0).c_str()); + EXPECT_STREQ("(( - (1)) * i + (100)):PrimInt", GetInductionInfo(sub, 0).c_str()); + EXPECT_STREQ("((100) * i + (0)):PrimInt", GetInductionInfo(mul, 0).c_str()); + EXPECT_STREQ("((2) * i + (0)):PrimInt", GetInductionInfo(shl, 0).c_str()); + EXPECT_STREQ("(( - (1)) * i + (0)):PrimInt", GetInductionInfo(neg, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindChainInduction) { @@ -283,9 +284,9 @@ TEST_F(InductionVarAnalysisTest, FindChainInduction) { k->AddInput(sub); PerformInductionVarAnalysis(); - EXPECT_STREQ("(((100) - (1)) * i + (100))", + EXPECT_STREQ("(((100) - (1)) * i + (100)):PrimInt", GetInductionInfo(store1->InputAt(1), 0).c_str()); - EXPECT_STREQ("(((100) - (1)) * i + ((100) - (1)))", + EXPECT_STREQ("(((100) - (1)) * i + ((100) - (1))):PrimInt", GetInductionInfo(store2->InputAt(1), 0).c_str()); } @@ -318,7 +319,7 @@ TEST_F(InductionVarAnalysisTest, FindTwoWayBasicInduction) { k_header->AddInput(k_body); PerformInductionVarAnalysis(); - EXPECT_STREQ("((1) * i + (1))", GetInductionInfo(store->InputAt(1), 0).c_str()); + EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindTwoWayDerivedInduction) { @@ -345,7 +346,7 @@ TEST_F(InductionVarAnalysisTest, FindTwoWayDerivedInduction) { HInstruction* store = InsertArrayStore(k, 0); PerformInductionVarAnalysis(); - EXPECT_STREQ("((1) * i + (1))", GetInductionInfo(store->InputAt(1), 0).c_str()); + EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindFirstOrderWrapAroundInduction) { @@ -365,7 +366,7 @@ TEST_F(InductionVarAnalysisTest, FindFirstOrderWrapAroundInduction) { k->AddInput(sub); PerformInductionVarAnalysis(); - EXPECT_STREQ("wrap((0), (( - (1)) * i + (100)))", + EXPECT_STREQ("wrap((0), (( - (1)) * i + (100)):PrimInt):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); } @@ -391,7 +392,7 @@ TEST_F(InductionVarAnalysisTest, FindSecondOrderWrapAroundInduction) { t->AddInput(sub); PerformInductionVarAnalysis(); - EXPECT_STREQ("wrap((0), wrap((100), (( - (1)) * i + (100))))", + EXPECT_STREQ("wrap((0), wrap((100), (( - (1)) * i + (100)):PrimInt):PrimInt):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); } @@ -424,11 +425,16 @@ TEST_F(InductionVarAnalysisTest, FindWrapAroundDerivedInduction) { InsertInstruction(new (&allocator_) HShl(Primitive::kPrimInt, basic_[0], constant1_), 0)); PerformInductionVarAnalysis(); - EXPECT_STREQ("wrap((100), ((2) * i + (100)))", GetInductionInfo(add, 0).c_str()); - EXPECT_STREQ("wrap(((0) - (100)), ((2) * i + ((0) - (100))))", GetInductionInfo(sub, 0).c_str()); - EXPECT_STREQ("wrap((0), (((2) * (100)) * i + (0)))", GetInductionInfo(mul, 0).c_str()); - EXPECT_STREQ("wrap((0), (((2) * (2)) * i + (0)))", GetInductionInfo(shl, 0).c_str()); - EXPECT_STREQ("wrap((0), (( - (2)) * i + (0)))", GetInductionInfo(neg, 0).c_str()); + EXPECT_STREQ("wrap((100), ((2) * i + (100)):PrimInt):PrimInt", + GetInductionInfo(add, 0).c_str()); + EXPECT_STREQ("wrap(((0) - (100)), ((2) * i + ((0) - (100))):PrimInt):PrimInt", + GetInductionInfo(sub, 0).c_str()); + EXPECT_STREQ("wrap((0), (((2) * (100)) * i + (0)):PrimInt):PrimInt", + GetInductionInfo(mul, 0).c_str()); + EXPECT_STREQ("wrap((0), (((2) * (2)) * i + (0)):PrimInt):PrimInt", + GetInductionInfo(shl, 0).c_str()); + EXPECT_STREQ("wrap((0), (( - (2)) * i + (0)):PrimInt):PrimInt", + GetInductionInfo(neg, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindPeriodicInduction) { @@ -455,8 +461,8 @@ TEST_F(InductionVarAnalysisTest, FindPeriodicInduction) { t->AddInput(k); PerformInductionVarAnalysis(); - EXPECT_STREQ("periodic((0), (100))", GetInductionInfo(store1->InputAt(1), 0).c_str()); - EXPECT_STREQ("periodic((100), (0))", GetInductionInfo(store2->InputAt(1), 0).c_str()); + EXPECT_STREQ("periodic((0), (100)):PrimInt", GetInductionInfo(store1->InputAt(1), 0).c_str()); + EXPECT_STREQ("periodic((100), (0)):PrimInt", GetInductionInfo(store2->InputAt(1), 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindIdiomaticPeriodicInduction) { @@ -476,8 +482,8 @@ TEST_F(InductionVarAnalysisTest, FindIdiomaticPeriodicInduction) { k->AddInput(sub); PerformInductionVarAnalysis(); - EXPECT_STREQ("periodic((0), (1))", GetInductionInfo(store->InputAt(1), 0).c_str()); - EXPECT_STREQ("periodic((1), (0))", GetInductionInfo(sub, 0).c_str()); + EXPECT_STREQ("periodic((0), (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); + EXPECT_STREQ("periodic((1), (0)):PrimInt", GetInductionInfo(sub, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindDerivedPeriodicInduction) { @@ -512,11 +518,11 @@ TEST_F(InductionVarAnalysisTest, FindDerivedPeriodicInduction) { new (&allocator_) HNeg(Primitive::kPrimInt, k_body), 0); PerformInductionVarAnalysis(); - EXPECT_STREQ("periodic(((1) + (100)), (100))", GetInductionInfo(add, 0).c_str()); - EXPECT_STREQ("periodic(((1) - (100)), ((0) - (100)))", GetInductionInfo(sub, 0).c_str()); - EXPECT_STREQ("periodic((100), (0))", GetInductionInfo(mul, 0).c_str()); - EXPECT_STREQ("periodic((2), (0))", GetInductionInfo(shl, 0).c_str()); - EXPECT_STREQ("periodic(( - (1)), (0))", GetInductionInfo(neg, 0).c_str()); + EXPECT_STREQ("periodic(((1) + (100)), (100)):PrimInt", GetInductionInfo(add, 0).c_str()); + EXPECT_STREQ("periodic(((1) - (100)), ((0) - (100))):PrimInt", GetInductionInfo(sub, 0).c_str()); + EXPECT_STREQ("periodic((100), (0)):PrimInt", GetInductionInfo(mul, 0).c_str()); + EXPECT_STREQ("periodic((2), (0)):PrimInt", GetInductionInfo(shl, 0).c_str()); + EXPECT_STREQ("periodic(( - (1)), (0)):PrimInt", GetInductionInfo(neg, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindDeepLoopInduction) { @@ -549,7 +555,7 @@ TEST_F(InductionVarAnalysisTest, FindDeepLoopInduction) { // Avoid exact phi number, since that depends on the SSA building phase. std::regex r("\\(\\(1\\) \\* i \\+ " - "\\(\\(1\\) \\+ \\(\\d+:Phi\\)\\)\\)"); + "\\(\\(1\\) \\+ \\(\\d+:Phi\\)\\)\\):PrimInt"); for (int d = 0; d < 10; d++) { if (d == 9) { @@ -557,11 +563,122 @@ TEST_F(InductionVarAnalysisTest, FindDeepLoopInduction) { } else { EXPECT_STREQ("", GetInductionInfo(store->InputAt(1), d).c_str()); } - EXPECT_STREQ("((1) * i + (1))", GetInductionInfo(increment_[d], d).c_str()); + EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(increment_[d], d).c_str()); // Trip-count. EXPECT_STREQ("((100) (TC-loop) ((0) < (100)))", GetInductionInfo(loop_header_[d]->GetLastInstruction(), d).c_str()); } } +TEST_F(InductionVarAnalysisTest, ByteLoopControl1) { + // Setup: + // for (byte i = -128; i < 127; i++) { // just fits! + // } + BuildLoopNest(1); + basic_[0]->ReplaceInput(graph_->GetIntConstant(-128), 0); + HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); + ifs->ReplaceInput(graph_->GetIntConstant(127), 1); + HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimByte, increment_[0], -1); + loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); + basic_[0]->ReplaceInput(conv, 1); + PerformInductionVarAnalysis(); + + EXPECT_STREQ("((1) * i + ((-128) + (1))):PrimByte", GetInductionInfo(increment_[0], 0).c_str()); + // Trip-count. + EXPECT_STREQ("(((127) - (-128)) (TC-loop) ((-128) < (127)))", + GetInductionInfo(loop_header_[0]->GetLastInstruction(), 0).c_str()); +} + +TEST_F(InductionVarAnalysisTest, ByteLoopControl2) { + // Setup: + // for (byte i = -128; i < 128; i++) { // infinite loop! + // } + BuildLoopNest(1); + basic_[0]->ReplaceInput(graph_->GetIntConstant(-128), 0); + HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); + ifs->ReplaceInput(graph_->GetIntConstant(128), 1); + HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimByte, increment_[0], -1); + loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); + basic_[0]->ReplaceInput(conv, 1); + PerformInductionVarAnalysis(); + + EXPECT_STREQ("((1) * i + ((-128) + (1))):PrimByte", GetInductionInfo(increment_[0], 0).c_str()); + // Trip-count undefined. + EXPECT_STREQ("", GetInductionInfo(loop_header_[0]->GetLastInstruction(), 0).c_str()); +} + +TEST_F(InductionVarAnalysisTest, ShortLoopControl1) { + // Setup: + // for (short i = -32768; i < 32767; i++) { // just fits! + // } + BuildLoopNest(1); + basic_[0]->ReplaceInput(graph_->GetIntConstant(-32768), 0); + HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); + ifs->ReplaceInput(graph_->GetIntConstant(32767), 1); + HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimShort, increment_[0], -1); + loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); + basic_[0]->ReplaceInput(conv, 1); + PerformInductionVarAnalysis(); + + EXPECT_STREQ("((1) * i + ((-32768) + (1))):PrimShort", + GetInductionInfo(increment_[0], 0).c_str()); + // Trip-count. + EXPECT_STREQ("(((32767) - (-32768)) (TC-loop) ((-32768) < (32767)))", + GetInductionInfo(loop_header_[0]->GetLastInstruction(), 0).c_str()); +} + +TEST_F(InductionVarAnalysisTest, ShortLoopControl2) { + // Setup: + // for (short i = -32768; i < 32768; i++) { // infinite loop! + // } + BuildLoopNest(1); + basic_[0]->ReplaceInput(graph_->GetIntConstant(-32768), 0); + HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); + ifs->ReplaceInput(graph_->GetIntConstant(32768), 1); + HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimShort, increment_[0], -1); + loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); + basic_[0]->ReplaceInput(conv, 1); + PerformInductionVarAnalysis(); + + EXPECT_STREQ("((1) * i + ((-32768) + (1))):PrimShort", + GetInductionInfo(increment_[0], 0).c_str()); + // Trip-count undefined. + EXPECT_STREQ("", GetInductionInfo(loop_header_[0]->GetLastInstruction(), 0).c_str()); +} + +TEST_F(InductionVarAnalysisTest, CharLoopControl1) { + // Setup: + // for (char i = 0; i < 65535; i++) { // just fits! + // } + BuildLoopNest(1); + HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); + ifs->ReplaceInput(graph_->GetIntConstant(65535), 1); + HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimChar, increment_[0], -1); + loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); + basic_[0]->ReplaceInput(conv, 1); + PerformInductionVarAnalysis(); + + EXPECT_STREQ("((1) * i + (1)):PrimChar", GetInductionInfo(increment_[0], 0).c_str()); + // Trip-count. + EXPECT_STREQ("((65535) (TC-loop) ((0) < (65535)))", + GetInductionInfo(loop_header_[0]->GetLastInstruction(), 0).c_str()); +} + +TEST_F(InductionVarAnalysisTest, CharLoopControl2) { + // Setup: + // for (char i = 0; i < 65536; i++) { // infinite loop! + // } + BuildLoopNest(1); + HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); + ifs->ReplaceInput(graph_->GetIntConstant(65536), 1); + HInstruction* conv = new(&allocator_) HTypeConversion(Primitive::kPrimChar, increment_[0], -1); + loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); + basic_[0]->ReplaceInput(conv, 1); + PerformInductionVarAnalysis(); + + EXPECT_STREQ("((1) * i + (1)):PrimChar", GetInductionInfo(increment_[0], 0).c_str()); + // Trip-count undefined. + EXPECT_STREQ("", GetInductionInfo(loop_header_[0]->GetLastInstruction(), 0).c_str()); +} + } // namespace art diff --git a/compiler/optimizing/induction_var_range.cc b/compiler/optimizing/induction_var_range.cc index f9b6910acd..bc920d96b5 100644 --- a/compiler/optimizing/induction_var_range.cc +++ b/compiler/optimizing/induction_var_range.cc @@ -58,13 +58,13 @@ static bool IsIntAndGet(HInstruction* instruction, int64_t* value) { } /** - * An upper bound a * (length / a) + b, where a > 0, can be conservatively rewritten as length + b + * An upper bound a * (length / a) + b, where a >= 1, can be conservatively rewritten as length + b * because length >= 0 is true. This makes it more likely the bound is useful to clients. */ static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v) { int64_t value; if (v.is_known && - v.a_constant > 1 && + v.a_constant >= 1 && v.instruction->IsDiv() && v.instruction->InputAt(0)->IsArrayLength() && IsIntAndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) { @@ -73,6 +73,28 @@ static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v) { return v; } +/** + * Corrects a value for type to account for arithmetic wrap-around in lower precision. + */ +static InductionVarRange::Value CorrectForType(InductionVarRange::Value v, Primitive::Type type) { + switch (type) { + case Primitive::kPrimShort: + case Primitive::kPrimChar: + case Primitive::kPrimByte: { + // Constants within range only. + // TODO: maybe some room for improvement, like allowing widening conversions + const int32_t min = Primitive::MinValueOfIntegralType(type); + const int32_t max = Primitive::MaxValueOfIntegralType(type); + return (v.is_known && v.a_constant == 0 && min <= v.b_constant && v.b_constant <= max) + ? v + : InductionVarRange::Value(); + } + default: + // At int or higher. + return v; + } +} + /** Helper method to test for a constant value. */ static bool IsConstantValue(InductionVarRange::Value v) { return v.is_known && v.a_constant == 0; @@ -114,6 +136,18 @@ bool InductionVarRange::GetInductionRange(HInstruction* context, if (info == nullptr) { return false; // no induction information } + // Type int or lower (this is not too restrictive since intended clients, like + // bounds check elimination, will have truncated higher precision induction + // at their use point already). + switch (info->type) { + case Primitive::kPrimInt: + case Primitive::kPrimShort: + case Primitive::kPrimChar: + case Primitive::kPrimByte: + break; + default: + return false; + } // Set up loop information. HBasicBlock* header = loop->GetHeader(); bool in_body = context->GetBlock() != header; @@ -128,25 +162,27 @@ bool InductionVarRange::GetInductionRange(HInstruction* context, bool InductionVarRange::RefineOuter(/*in-out*/ Value* min_val, /*in-out*/ Value* max_val) const { - Value v1_min = RefineOuter(*min_val, /* is_min */ true); - Value v2_max = RefineOuter(*max_val, /* is_min */ false); - // The refined range is safe if both sides refine the same instruction. Otherwise, since two - // different ranges are combined, the new refined range is safe to pass back to the client if - // the extremes of the computed ranges ensure no arithmetic wrap-around anomalies occur. - if (min_val->instruction != max_val->instruction) { - Value v1_max = RefineOuter(*min_val, /* is_min */ false); - Value v2_min = RefineOuter(*max_val, /* is_min */ true); - if (!IsConstantValue(v1_max) || - !IsConstantValue(v2_min) || - v1_max.b_constant > v2_min.b_constant) { - return false; + if (min_val->instruction != nullptr || max_val->instruction != nullptr) { + Value v1_min = RefineOuter(*min_val, /* is_min */ true); + Value v2_max = RefineOuter(*max_val, /* is_min */ false); + // The refined range is safe if both sides refine the same instruction. Otherwise, since two + // different ranges are combined, the new refined range is safe to pass back to the client if + // the extremes of the computed ranges ensure no arithmetic wrap-around anomalies occur. + if (min_val->instruction != max_val->instruction) { + Value v1_max = RefineOuter(*min_val, /* is_min */ false); + Value v2_min = RefineOuter(*max_val, /* is_min */ true); + if (!IsConstantValue(v1_max) || + !IsConstantValue(v2_min) || + v1_max.b_constant > v2_min.b_constant) { + return false; + } + } + // Did something change? + if (v1_min.instruction != min_val->instruction || v2_max.instruction != max_val->instruction) { + *min_val = v1_min; + *max_val = v2_max; + return true; } - } - // Did something change? - if (v1_min.instruction != min_val->instruction || v2_max.instruction != max_val->instruction) { - *min_val = v1_min; - *max_val = v2_max; - return true; } return false; } @@ -277,7 +313,12 @@ InductionVarRange::Value InductionVarRange::GetLinear(HInductionVarAnalysis::Ind if (HInductionVarAnalysis::InductionEqual(trip_expr->op_b, info->op_b)) { // Analyze cancelled trip with just the positive operand (trip_expr->op_a). HInductionVarAnalysis::InductionInfo cancelled_trip( - trip->induction_class, trip->operation, trip_expr->op_a, trip->op_b, nullptr); + trip->induction_class, + trip->operation, + trip_expr->op_a, + trip->op_b, + nullptr, + trip->type); return GetVal(&cancelled_trip, trip, in_body, is_min); } } else if (is_min && stride_value == -1) { @@ -289,9 +330,10 @@ InductionVarRange::Value InductionVarRange::GetLinear(HInductionVarAnalysis::Ind HInductionVarAnalysis::kNeg, nullptr, trip_expr->op_b, - nullptr); + nullptr, + trip->type); HInductionVarAnalysis::InductionInfo cancelled_trip( - trip->induction_class, trip->operation, &neg, trip->op_b, nullptr); + trip->induction_class, trip->operation, &neg, trip->op_b, nullptr, trip->type); return SubValue(Value(0), GetVal(&cancelled_trip, trip, in_body, !is_min)); } } @@ -322,6 +364,12 @@ InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction, } } else if (instruction->IsArrayLength() && instruction->InputAt(0)->IsNewArray()) { return GetFetch(instruction->InputAt(0)->InputAt(0), trip, in_body, is_min); + } else if (instruction->IsTypeConversion()) { + // Since analysis is 32-bit (or narrower) we allow a widening along the path. + if (instruction->AsTypeConversion()->GetInputType() == Primitive::kPrimInt && + instruction->AsTypeConversion()->GetResultType() == Primitive::kPrimLong) { + return GetFetch(instruction->InputAt(0), trip, in_body, is_min); + } } else if (is_min) { // Special case for finding minimum: minimum of trip-count in loop-body is 1. if (trip != nullptr && in_body && instruction == trip->op_a->fetch) { @@ -374,7 +422,7 @@ InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::Induct } break; case HInductionVarAnalysis::kLinear: { - return GetLinear(info, trip, in_body, is_min); + return CorrectForType(GetLinear(info, trip, in_body, is_min), info->type); } case HInductionVarAnalysis::kWrapAround: case HInductionVarAnalysis::kPeriodic: @@ -613,8 +661,12 @@ bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info, bool in_body, bool is_min) const { if (info != nullptr) { - // Handle current operation. + // Verify type safety. Primitive::Type type = Primitive::kPrimInt; + if (info->type != type) { + return false; + } + // Handle current operation. HInstruction* opa = nullptr; HInstruction* opb = nullptr; switch (info->induction_class) { @@ -667,13 +719,10 @@ bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info, } break; case HInductionVarAnalysis::kFetch: - if (info->fetch->GetType() == type) { - if (graph != nullptr) { - *result = info->fetch; // already in HIR - } - return true; + if (graph != nullptr) { + *result = info->fetch; // already in HIR } - break; + return true; case HInductionVarAnalysis::kTripCountInLoop: case HInductionVarAnalysis::kTripCountInLoopUnsafe: if (!in_body && !is_min) { // one extra! diff --git a/compiler/optimizing/induction_var_range_test.cc b/compiler/optimizing/induction_var_range_test.cc index c5c33bd9bc..dc04dc2c49 100644 --- a/compiler/optimizing/induction_var_range_test.cc +++ b/compiler/optimizing/induction_var_range_test.cc @@ -139,37 +139,40 @@ class InductionVarRangeTest : public CommonCompilerTest { /** Constructs a trip-count. */ HInductionVarAnalysis::InductionInfo* CreateTripCount(int32_t tc, bool in_loop, bool safe) { + Primitive::Type type = Primitive::kPrimInt; if (in_loop && safe) { return iva_->CreateTripCount( - HInductionVarAnalysis::kTripCountInLoop, CreateConst(tc), nullptr); + HInductionVarAnalysis::kTripCountInLoop, CreateConst(tc), nullptr, type); } else if (in_loop) { return iva_->CreateTripCount( - HInductionVarAnalysis::kTripCountInLoopUnsafe, CreateConst(tc), nullptr); + HInductionVarAnalysis::kTripCountInLoopUnsafe, CreateConst(tc), nullptr, type); } else if (safe) { return iva_->CreateTripCount( - HInductionVarAnalysis::kTripCountInBody, CreateConst(tc), nullptr); + HInductionVarAnalysis::kTripCountInBody, CreateConst(tc), nullptr, type); } else { return iva_->CreateTripCount( - HInductionVarAnalysis::kTripCountInBodyUnsafe, CreateConst(tc), nullptr); + HInductionVarAnalysis::kTripCountInBodyUnsafe, CreateConst(tc), nullptr, type); } } /** Constructs a linear a * i + b induction. */ HInductionVarAnalysis::InductionInfo* CreateLinear(int32_t a, int32_t b) { - return iva_->CreateInduction(HInductionVarAnalysis::kLinear, CreateConst(a), CreateConst(b)); + return iva_->CreateInduction( + HInductionVarAnalysis::kLinear, CreateConst(a), CreateConst(b), Primitive::kPrimInt); } /** Constructs a range [lo, hi] using a periodic induction. */ HInductionVarAnalysis::InductionInfo* CreateRange(int32_t lo, int32_t hi) { return iva_->CreateInduction( - HInductionVarAnalysis::kPeriodic, CreateConst(lo), CreateConst(hi)); + HInductionVarAnalysis::kPeriodic, CreateConst(lo), CreateConst(hi), Primitive::kPrimInt); } /** Constructs a wrap-around induction consisting of a constant, followed info */ HInductionVarAnalysis::InductionInfo* CreateWrapAround( int32_t initial, HInductionVarAnalysis::InductionInfo* info) { - return iva_->CreateInduction(HInductionVarAnalysis::kWrapAround, CreateConst(initial), info); + return iva_->CreateInduction( + HInductionVarAnalysis::kWrapAround, CreateConst(initial), info, Primitive::kPrimInt); } /** Constructs a wrap-around induction consisting of a constant, followed by a range. */ diff --git a/compiler/optimizing/optimizing_unit_test.h b/compiler/optimizing/optimizing_unit_test.h index 0c7648edc2..0ca7305d13 100644 --- a/compiler/optimizing/optimizing_unit_test.h +++ b/compiler/optimizing/optimizing_unit_test.h @@ -20,7 +20,6 @@ #include "nodes.h" #include "builder.h" #include "common_compiler_test.h" -#include "compiler/dex/pass_manager.h" #include "dex_file.h" #include "dex_instruction.h" #include "handle_scope-inl.h" |