diff options
Diffstat (limited to 'compiler/optimizing/ssa_builder.cc')
-rw-r--r-- | compiler/optimizing/ssa_builder.cc | 695 |
1 files changed, 391 insertions, 304 deletions
diff --git a/compiler/optimizing/ssa_builder.cc b/compiler/optimizing/ssa_builder.cc index 9e6cfbe653..9e869e18e9 100644 --- a/compiler/optimizing/ssa_builder.cc +++ b/compiler/optimizing/ssa_builder.cc @@ -17,214 +17,11 @@ #include "ssa_builder.h" #include "nodes.h" -#include "primitive_type_propagation.h" +#include "reference_type_propagation.h" #include "ssa_phi_elimination.h" namespace art { -// Returns whether this is a loop header phi which was eagerly created but later -// found inconsistent due to the vreg being undefined in one of its predecessors. -// Such phi is marked dead and should be ignored until its removal in SsaPhiElimination. -static bool IsUndefinedLoopHeaderPhi(HPhi* phi) { - return phi->IsLoopHeaderPhi() && phi->InputCount() != phi->GetBlock()->GetPredecessors().size(); -} - -/** - * A debuggable application may require to reviving phis, to ensure their - * associated DEX register is available to a debugger. This class implements - * the logic for statement (c) of the SsaBuilder (see ssa_builder.h). It - * also makes sure that phis with incompatible input types are not revived - * (statement (b) of the SsaBuilder). - * - * This phase must be run after detecting dead phis through the - * DeadPhiElimination phase, and before deleting the dead phis. - */ -class DeadPhiHandling : public ValueObject { - public: - explicit DeadPhiHandling(HGraph* graph) - : graph_(graph), worklist_(graph->GetArena()->Adapter(kArenaAllocSsaBuilder)) { - worklist_.reserve(kDefaultWorklistSize); - } - - void Run(); - - private: - void VisitBasicBlock(HBasicBlock* block); - void ProcessWorklist(); - void AddToWorklist(HPhi* phi); - void AddDependentInstructionsToWorklist(HPhi* phi); - bool UpdateType(HPhi* phi); - - HGraph* const graph_; - ArenaVector<HPhi*> worklist_; - - static constexpr size_t kDefaultWorklistSize = 8; - - DISALLOW_COPY_AND_ASSIGN(DeadPhiHandling); -}; - -static bool HasConflictingEquivalent(HPhi* phi) { - if (phi->GetNext() == nullptr) { - return false; - } - HPhi* next = phi->GetNext()->AsPhi(); - if (next->GetRegNumber() == phi->GetRegNumber()) { - if (next->GetType() == Primitive::kPrimVoid) { - // We only get a void type for an equivalent phi we processed and found out - // it was conflicting. - return true; - } else { - // Go to the next phi, in case it is also an equivalent. - return HasConflictingEquivalent(next); - } - } - return false; -} - -bool DeadPhiHandling::UpdateType(HPhi* phi) { - if (phi->IsDead()) { - // Phi was rendered dead while waiting in the worklist because it was replaced - // with an equivalent. - return false; - } - - Primitive::Type existing = phi->GetType(); - - bool conflict = false; - Primitive::Type new_type = existing; - for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { - HInstruction* input = phi->InputAt(i); - if (input->IsPhi() && input->AsPhi()->IsDead()) { - // We are doing a reverse post order visit of the graph, reviving - // phis that have environment uses and updating their types. If an - // input is a phi, and it is dead (because its input types are - // conflicting), this phi must be marked dead as well. - conflict = true; - break; - } - Primitive::Type input_type = HPhi::ToPhiType(input->GetType()); - - // The only acceptable transitions are: - // - From void to typed: first time we update the type of this phi. - // - From int to reference (or reference to int): the phi has to change - // to reference type. If the integer input cannot be converted to a - // reference input, the phi will remain dead. - if (new_type == Primitive::kPrimVoid) { - new_type = input_type; - } else if (new_type == Primitive::kPrimNot && input_type == Primitive::kPrimInt) { - if (input->IsPhi() && HasConflictingEquivalent(input->AsPhi())) { - // If we already asked for an equivalent of the input phi, but that equivalent - // ended up conflicting, make this phi conflicting too. - conflict = true; - break; - } - HInstruction* equivalent = SsaBuilder::GetReferenceTypeEquivalent(input); - if (equivalent == nullptr) { - conflict = true; - break; - } - phi->ReplaceInput(equivalent, i); - if (equivalent->IsPhi()) { - DCHECK_EQ(equivalent->GetType(), Primitive::kPrimNot); - // We created a new phi, but that phi has the same inputs as the old phi. We - // add it to the worklist to ensure its inputs can also be converted to reference. - // If not, it will remain dead, and the algorithm will make the current phi dead - // as well. - equivalent->AsPhi()->SetLive(); - AddToWorklist(equivalent->AsPhi()); - } - } else if (new_type == Primitive::kPrimInt && input_type == Primitive::kPrimNot) { - new_type = Primitive::kPrimNot; - // Start over, we may request reference equivalents for the inputs of the phi. - i = -1; - } else if (new_type != input_type) { - conflict = true; - break; - } - } - - if (conflict) { - phi->SetType(Primitive::kPrimVoid); - phi->SetDead(); - return true; - } else if (existing == new_type) { - return false; - } - - DCHECK(phi->IsLive()); - phi->SetType(new_type); - - // There might exist a `new_type` equivalent of `phi` already. In that case, - // we replace the equivalent with the, now live, `phi`. - HPhi* equivalent = phi->GetNextEquivalentPhiWithSameType(); - if (equivalent != nullptr) { - // There cannot be more than two equivalents with the same type. - DCHECK(equivalent->GetNextEquivalentPhiWithSameType() == nullptr); - // If doing fix-point iteration, the equivalent might be in `worklist_`. - // Setting it dead will make UpdateType skip it. - equivalent->SetDead(); - equivalent->ReplaceWith(phi); - } - - return true; -} - -void DeadPhiHandling::VisitBasicBlock(HBasicBlock* block) { - for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { - HPhi* phi = it.Current()->AsPhi(); - if (IsUndefinedLoopHeaderPhi(phi)) { - DCHECK(phi->IsDead()); - continue; - } - if (phi->IsDead() && phi->HasEnvironmentUses()) { - phi->SetLive(); - if (block->IsLoopHeader()) { - // Loop phis must have a type to guarantee convergence of the algorithm. - DCHECK_NE(phi->GetType(), Primitive::kPrimVoid); - AddToWorklist(phi); - } else { - // Because we are doing a reverse post order visit, all inputs of - // this phi have been visited and therefore had their (initial) type set. - UpdateType(phi); - } - } - } -} - -void DeadPhiHandling::ProcessWorklist() { - while (!worklist_.empty()) { - HPhi* instruction = worklist_.back(); - worklist_.pop_back(); - // Note that the same equivalent phi can be added multiple times in the work list, if - // used by multiple phis. The first call to `UpdateType` will know whether the phi is - // dead or live. - if (instruction->IsLive() && UpdateType(instruction)) { - AddDependentInstructionsToWorklist(instruction); - } - } -} - -void DeadPhiHandling::AddToWorklist(HPhi* instruction) { - DCHECK(instruction->IsLive()); - worklist_.push_back(instruction); -} - -void DeadPhiHandling::AddDependentInstructionsToWorklist(HPhi* instruction) { - for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) { - HPhi* phi = it.Current()->GetUser()->AsPhi(); - if (phi != nullptr && !phi->IsDead()) { - AddToWorklist(phi); - } - } -} - -void DeadPhiHandling::Run() { - for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { - VisitBasicBlock(it.Current()); - } - ProcessWorklist(); -} - void SsaBuilder::SetLoopHeaderPhiInputs() { for (size_t i = loop_headers_.size(); i > 0; --i) { HBasicBlock* block = loop_headers_[i - 1]; @@ -285,10 +82,11 @@ void SsaBuilder::EquivalentPhisCleanup() { HPhi* phi = it.Current()->AsPhi(); HPhi* next = phi->GetNextEquivalentPhiWithSameType(); if (next != nullptr) { - // Make sure we do not replace a live phi with a dead phi. A live phi has been - // handled by the type propagation phase, unlike a dead phi. + // Make sure we do not replace a live phi with a dead phi. A live phi + // has been handled by the type propagation phase, unlike a dead phi. if (next->IsLive()) { phi->ReplaceWith(next); + phi->SetDead(); } else { next->ReplaceWith(phi); } @@ -300,64 +98,7 @@ void SsaBuilder::EquivalentPhisCleanup() { } } -void SsaBuilder::BuildSsa() { - // 1) Visit in reverse post order. We need to have all predecessors of a block visited - // (with the exception of loops) in order to create the right environment for that - // block. For loops, we create phis whose inputs will be set in 2). - for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { - VisitBasicBlock(it.Current()); - } - - // 2) Set inputs of loop phis. - SetLoopHeaderPhiInputs(); - - // 3) Mark dead phis. This will mark phis that are only used by environments: - // at the DEX level, the type of these phis does not need to be consistent, but - // our code generator will complain if the inputs of a phi do not have the same - // type. The marking allows the type propagation to know which phis it needs - // to handle. We mark but do not eliminate: the elimination will be done in - // step 9). - SsaDeadPhiElimination dead_phis_for_type_propagation(GetGraph()); - dead_phis_for_type_propagation.MarkDeadPhis(); - - // 4) Propagate types of phis. At this point, phis are typed void in the general - // case, or float/double/reference when we created an equivalent phi. So we - // need to propagate the types across phis to give them a correct type. - PrimitiveTypePropagation type_propagation(GetGraph()); - type_propagation.Run(); - - // 5) When creating equivalent phis we copy the inputs of the original phi which - // may be improperly typed. This was fixed during the type propagation in 4) but - // as a result we may end up with two equivalent phis with the same type for - // the same dex register. This pass cleans them up. - EquivalentPhisCleanup(); - - // 6) Mark dead phis again. Step 4) may have introduced new phis. - // Step 5) might enable the death of new phis. - SsaDeadPhiElimination dead_phis(GetGraph()); - dead_phis.MarkDeadPhis(); - - // 7) Now that the graph is correctly typed, we can get rid of redundant phis. - // Note that we cannot do this phase before type propagation, otherwise - // we could get rid of phi equivalents, whose presence is a requirement for the - // type propagation phase. Note that this is to satisfy statement (a) of the - // SsaBuilder (see ssa_builder.h). - SsaRedundantPhiElimination redundant_phi(GetGraph()); - redundant_phi.Run(); - - // 8) Fix the type for null constants which are part of an equality comparison. - // We need to do this after redundant phi elimination, to ensure the only cases - // that we can see are reference comparison against 0. The redundant phi - // elimination ensures we do not see a phi taking two 0 constants in a HEqual - // or HNotEqual. - FixNullConstantType(); - - // 9) Make sure environments use the right phi "equivalent": a phi marked dead - // can have a phi equivalent that is not dead. We must therefore update - // all environment uses of the dead phi to use its equivalent. Note that there - // can be multiple phis for the same Dex register that are live (for example - // when merging constants), in which case it is OK for the environments - // to just reference one. +void SsaBuilder::FixEnvironmentPhis() { for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { HBasicBlock* block = it.Current(); for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) { @@ -378,24 +119,345 @@ void SsaBuilder::BuildSsa() { phi->ReplaceWith(next); } } +} - // 10) Deal with phis to guarantee liveness of phis in case of a debuggable - // application. This is for satisfying statement (c) of the SsaBuilder - // (see ssa_builder.h). - if (GetGraph()->IsDebuggable()) { - DeadPhiHandling dead_phi_handler(GetGraph()); - dead_phi_handler.Run(); +static void AddDependentInstructionsToWorklist(HInstruction* instruction, + ArenaVector<HPhi*>* worklist) { + // If `instruction` is a dead phi, type conflict was just identified. All its + // live phi users, and transitively users of those users, therefore need to be + // marked dead/conflicting too, so we add them to the worklist. Otherwise we + // add users whose type does not match and needs to be updated. + bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead(); + for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) { + HInstruction* user = it.Current()->GetUser(); + if (user->IsPhi() && user->AsPhi()->IsLive()) { + if (add_all_live_phis || user->GetType() != instruction->GetType()) { + worklist->push_back(user->AsPhi()); + } + } } +} + +// Find a candidate primitive type for `phi` by merging the type of its inputs. +// Return false if conflict is identified. +static bool TypePhiFromInputs(HPhi* phi) { + Primitive::Type common_type = phi->GetType(); - // 11) Now that the right phis are used for the environments, and we - // have potentially revive dead phis in case of a debuggable application, - // we can eliminate phis we do not need. Regardless of the debuggable status, - // this phase is necessary for statement (b) of the SsaBuilder (see ssa_builder.h), - // as well as for the code generation, which does not deal with phis of conflicting + for (HInputIterator it(phi); !it.Done(); it.Advance()) { + HInstruction* input = it.Current(); + if (input->IsPhi() && input->AsPhi()->IsDead()) { + // Phis are constructed live so if an input is a dead phi, it must have + // been made dead due to type conflict. Mark this phi conflicting too. + return false; + } + + Primitive::Type input_type = HPhi::ToPhiType(input->GetType()); + if (common_type == input_type) { + // No change in type. + } else if (Primitive::ComponentSize(common_type) != Primitive::ComponentSize(input_type)) { + // Types are of different sizes, e.g. int vs. long. Must be a conflict. + return false; + } else if (Primitive::IsIntegralType(common_type)) { + // Previous inputs were integral, this one is not but is of the same size. + // This does not imply conflict since some bytecode instruction types are + // ambiguous. TypeInputsOfPhi will either type them or detect a conflict. + DCHECK(Primitive::IsFloatingPointType(input_type) || input_type == Primitive::kPrimNot); + common_type = input_type; + } else if (Primitive::IsIntegralType(input_type)) { + // Input is integral, common type is not. Same as in the previous case, if + // there is a conflict, it will be detected during TypeInputsOfPhi. + DCHECK(Primitive::IsFloatingPointType(common_type) || common_type == Primitive::kPrimNot); + } else { + // Combining float and reference types. Clearly a conflict. + DCHECK((common_type == Primitive::kPrimFloat && input_type == Primitive::kPrimNot) || + (common_type == Primitive::kPrimNot && input_type == Primitive::kPrimFloat)); + return false; + } + } + + // We have found a candidate type for the phi. Set it and return true. We may + // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi. + phi->SetType(common_type); + return true; +} + +// Replace inputs of `phi` to match its type. Return false if conflict is identified. +bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ArenaVector<HPhi*>* worklist) { + Primitive::Type common_type = phi->GetType(); + if (common_type == Primitive::kPrimVoid || Primitive::IsIntegralType(common_type)) { + // Phi either contains only other untyped phis (common_type == kPrimVoid), + // or `common_type` is integral and we do not need to retype ambiguous inputs + // because they are always constructed with the integral type candidate. + if (kIsDebugBuild) { + for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { + HInstruction* input = phi->InputAt(i); + if (common_type == Primitive::kPrimVoid) { + DCHECK(input->IsPhi() && input->GetType() == Primitive::kPrimVoid); + } else { + DCHECK((input->IsPhi() && input->GetType() == Primitive::kPrimVoid) || + HPhi::ToPhiType(input->GetType()) == common_type); + } + } + } + // Inputs did not need to be replaced, hence no conflict. Report success. + return true; + } else { + DCHECK(common_type == Primitive::kPrimNot || Primitive::IsFloatingPointType(common_type)); + for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { + HInstruction* input = phi->InputAt(i); + if (input->GetType() != common_type) { + // Input type does not match phi's type. Try to retype the input or + // generate a suitably typed equivalent. + HInstruction* equivalent = (common_type == Primitive::kPrimNot) + ? GetReferenceTypeEquivalent(input) + : GetFloatOrDoubleEquivalent(input, common_type); + if (equivalent == nullptr) { + // Input could not be typed. Report conflict. + return false; + } + // Make sure the input did not change its type and we do not need to + // update its users. + DCHECK_NE(input, equivalent); + + phi->ReplaceInput(equivalent, i); + if (equivalent->IsPhi()) { + worklist->push_back(equivalent->AsPhi()); + } + } + } + // All inputs either matched the type of the phi or we successfully replaced + // them with a suitable equivalent. Report success. + return true; + } +} + +// Attempt to set the primitive type of `phi` to match its inputs. Return whether +// it was changed by the algorithm or not. +bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ArenaVector<HPhi*>* worklist) { + DCHECK(phi->IsLive()); + Primitive::Type original_type = phi->GetType(); + + // Try to type the phi in two stages: + // (1) find a candidate type for the phi by merging types of all its inputs, + // (2) try to type the phi's inputs to that candidate type. + // Either of these stages may detect a type conflict and fail, in which case + // we immediately abort. + if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) { + // Conflict detected. Mark the phi dead and return true because it changed. + phi->SetDead(); + return true; + } + + // Return true if the type of the phi has changed. + return phi->GetType() != original_type; +} + +void SsaBuilder::RunPrimitiveTypePropagation() { + ArenaVector<HPhi*> worklist(GetGraph()->GetArena()->Adapter()); + + for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { + HBasicBlock* block = it.Current(); + if (block->IsLoopHeader()) { + for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { + HPhi* phi = phi_it.Current()->AsPhi(); + if (phi->IsLive()) { + worklist.push_back(phi); + } + } + } else { + for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { + // Eagerly compute the type of the phi, for quicker convergence. Note + // that we don't need to add users to the worklist because we are + // doing a reverse post-order visit, therefore either the phi users are + // non-loop phi and will be visited later in the visit, or are loop-phis, + // and they are already in the work list. + HPhi* phi = phi_it.Current()->AsPhi(); + if (phi->IsLive()) { + UpdatePrimitiveType(phi, &worklist); + } + } + } + } + + ProcessPrimitiveTypePropagationWorklist(&worklist); + EquivalentPhisCleanup(); +} + +void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi*>* worklist) { + // Process worklist + while (!worklist->empty()) { + HPhi* phi = worklist->back(); + worklist->pop_back(); + // The phi could have been made dead as a result of conflicts while in the + // worklist. If it is now dead, there is no point in updating its type. + if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) { + AddDependentInstructionsToWorklist(phi, worklist); + } + } +} + +static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { + Primitive::Type type = aget->GetType(); + DCHECK(Primitive::IsIntOrLongType(type)); + HArrayGet* next = aget->GetNext()->AsArrayGet(); + return (next != nullptr && next->IsEquivalentOf(aget)) ? next : nullptr; +} + +static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { + Primitive::Type type = aget->GetType(); + DCHECK(Primitive::IsIntOrLongType(type)); + DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr); + + HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetArena()) HArrayGet( + aget->GetArray(), + aget->GetIndex(), + type == Primitive::kPrimInt ? Primitive::kPrimFloat : Primitive::kPrimDouble, + aget->GetDexPc()); + aget->GetBlock()->InsertInstructionAfter(equivalent, aget); + return equivalent; +} + +// Returns true if the array input of `aget` is either of type int[] or long[]. +// Should only be called on ArrayGets with ambiguous type (int/float, long/double) +// on arrays which were typed to an array class by RTP. +static bool IsArrayGetOnIntegralArray(HArrayGet* aget) SHARED_REQUIRES(Locks::mutator_lock_) { + ReferenceTypeInfo array_type = aget->GetArray()->GetReferenceTypeInfo(); + DCHECK(array_type.IsPrimitiveArrayClass()); + ReferenceTypeInfo::TypeHandle array_type_handle = array_type.GetTypeHandle(); + + bool is_integral_type; + if (Primitive::Is64BitType(aget->GetType())) { + is_integral_type = array_type_handle->GetComponentType()->IsPrimitiveLong(); + DCHECK(is_integral_type || array_type_handle->GetComponentType()->IsPrimitiveDouble()); + } else { + is_integral_type = array_type_handle->GetComponentType()->IsPrimitiveInt(); + DCHECK(is_integral_type || array_type_handle->GetComponentType()->IsPrimitiveFloat()); + } + return is_integral_type; +} + +bool SsaBuilder::FixAmbiguousArrayGets() { + if (ambiguous_agets_.empty()) { + return true; + } + + // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet + // uses (because they are untyped) and environment uses (if --debuggable). + // After resolving all ambiguous ArrayGets, we will re-run primitive type + // propagation on the Phis which need to be updated. + ArenaVector<HPhi*> worklist(GetGraph()->GetArena()->Adapter()); + + { + ScopedObjectAccess soa(Thread::Current()); + + for (HArrayGet* aget_int : ambiguous_agets_) { + if (!aget_int->GetArray()->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { + // RTP did not type the input array. Bail. + return false; + } + + HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int); + if (IsArrayGetOnIntegralArray(aget_int)) { + if (aget_float != nullptr) { + // There is a float/double equivalent. We must replace it and re-run + // primitive type propagation on all dependent instructions. + aget_float->ReplaceWith(aget_int); + aget_float->GetBlock()->RemoveInstruction(aget_float); + AddDependentInstructionsToWorklist(aget_int, &worklist); + } + } else { + if (aget_float == nullptr) { + // This is a float/double ArrayGet but there were no typed uses which + // would create the typed equivalent. Create it now. + aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int); + } + // Replace the original int/long instruction. Note that it may have phi + // uses, environment uses, as well as real uses (from untyped ArraySets). + // We need to re-run primitive type propagation on its dependent instructions. + aget_int->ReplaceWith(aget_float); + aget_int->GetBlock()->RemoveInstruction(aget_int); + AddDependentInstructionsToWorklist(aget_float, &worklist); + } + } + } + + // Set a flag stating that types of ArrayGets have been resolved. This is used + // by GetFloatOrDoubleEquivalentOfArrayGet to report conflict. + agets_fixed_ = true; + + if (!worklist.empty()) { + ProcessPrimitiveTypePropagationWorklist(&worklist); + EquivalentPhisCleanup(); + } + + return true; +} + +BuildSsaResult SsaBuilder::BuildSsa() { + // 1) Visit in reverse post order. We need to have all predecessors of a block + // visited (with the exception of loops) in order to create the right environment + // for that block. For loops, we create phis whose inputs will be set in 2). + for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { + VisitBasicBlock(it.Current()); + } + + // 2) Set inputs of loop header phis. + SetLoopHeaderPhiInputs(); + + // 3) Propagate types of phis. At this point, phis are typed void in the general + // case, or float/double/reference if we created an equivalent phi. So we need + // to propagate the types across phis to give them a correct type. If a type + // conflict is detected in this stage, the phi is marked dead. + RunPrimitiveTypePropagation(); + + // 4) Now that the correct primitive types have been assigned, we can get rid + // of redundant phis. Note that we cannot do this phase before type propagation, + // otherwise we could get rid of phi equivalents, whose presence is a requirement + // for the type propagation phase. Note that this is to satisfy statement (a) + // of the SsaBuilder (see ssa_builder.h). + SsaRedundantPhiElimination(GetGraph()).Run(); + + // 5) Fix the type for null constants which are part of an equality comparison. + // We need to do this after redundant phi elimination, to ensure the only cases + // that we can see are reference comparison against 0. The redundant phi + // elimination ensures we do not see a phi taking two 0 constants in a HEqual + // or HNotEqual. + FixNullConstantType(); + + // 6) Compute type of reference type instructions. The pass assumes that + // NullConstant has been fixed up. + ReferenceTypePropagation(GetGraph(), handles_).Run(); + + // 7) Step 1) duplicated ArrayGet instructions with ambiguous type (int/float + // or long/double). Now that RTP computed the type of the array input, the + // ambiguity can be resolved and the correct equivalent kept. + if (!FixAmbiguousArrayGets()) { + return kBuildSsaFailAmbiguousArrayGet; + } + + // 8) Mark dead phis. This will mark phis which are not used by instructions + // or other live phis. If compiling as debuggable code, phis will also be kept + // live if they have an environment use. + SsaDeadPhiElimination dead_phi_elimimation(GetGraph()); + dead_phi_elimimation.MarkDeadPhis(); + + // 9) Make sure environments use the right phi equivalent: a phi marked dead + // can have a phi equivalent that is not dead. In that case we have to replace + // it with the live equivalent because deoptimization and try/catch rely on + // environments containing values of all live vregs at that point. Note that + // there can be multiple phis for the same Dex register that are live + // (for example when merging constants), in which case it is okay for the + // environments to just reference one. + FixEnvironmentPhis(); + + // 10) Now that the right phis are used for the environments, we can eliminate + // phis we do not need. Regardless of the debuggable status, this phase is + /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well + // as for the code generation, which does not deal with phis of conflicting // input types. - dead_phis.EliminateDeadPhis(); + dead_phi_elimimation.EliminateDeadPhis(); - // 12) Clear locals. + // 11) Clear locals. for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions()); !it.Done(); it.Advance()) { @@ -404,6 +466,8 @@ void SsaBuilder::BuildSsa() { current->GetBlock()->RemoveInstruction(current); } } + + return kBuildSsaSuccess; } ArenaVector<HInstruction*>* SsaBuilder::GetLocalsFor(HBasicBlock* block) { @@ -591,6 +655,8 @@ HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) { * phi with a floating point / reference type. */ HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) { + DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one."; + // We place the floating point /reference phi next to this phi. HInstruction* next = phi->GetNext(); if (next != nullptr @@ -606,35 +672,50 @@ HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive: ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena(); HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type); for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { - // Copy the inputs. Note that the graph may not be correctly typed by doing this copy, - // but the type propagation phase will fix it. + // Copy the inputs. Note that the graph may not be correctly typed + // by doing this copy, but the type propagation phase will fix it. new_phi->SetRawInputAt(i, phi->InputAt(i)); } phi->GetBlock()->InsertPhiAfter(new_phi, phi); + DCHECK(new_phi->IsLive()); return new_phi; } else { + // An existing equivalent was found. If it is dead, conflict was previously + // identified and we return nullptr instead. HPhi* next_phi = next->AsPhi(); DCHECK_EQ(next_phi->GetType(), type); - if (next_phi->IsDead()) { - // TODO(dbrazdil): Remove this SetLive (we should not need to revive phis) - // once we stop running MarkDeadPhis before PrimitiveTypePropagation. This - // cannot revive undefined loop header phis because they cannot have uses. - DCHECK(!IsUndefinedLoopHeaderPhi(next_phi)); - next_phi->SetLive(); + return next_phi->IsLive() ? next_phi : nullptr; + } +} + +HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { + DCHECK(Primitive::IsIntegralType(aget->GetType())); + + if (!Primitive::IsIntOrLongType(aget->GetType())) { + // Cannot type boolean, char, byte, short to float/double. + return nullptr; + } + + DCHECK(ContainsElement(ambiguous_agets_, aget)); + if (agets_fixed_) { + // This used to be an ambiguous ArrayGet but its type has been resolved to + // int/long. Requesting a float/double equivalent should lead to a conflict. + if (kIsDebugBuild) { + ScopedObjectAccess soa(Thread::Current()); + DCHECK(IsArrayGetOnIntegralArray(aget)); } - return next_phi; + return nullptr; + } else { + // This is an ambiguous ArrayGet which has not been resolved yet. Return an + // equivalent float/double instruction to use until it is resolved. + HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget); + return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent; } } -HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user, - HInstruction* value, - Primitive::Type type) { +HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, Primitive::Type type) { if (value->IsArrayGet()) { - // The verifier has checked that values in arrays cannot be used for both - // floating point and non-floating point operations. It is therefore safe to just - // change the type of the operation. - value->AsArrayGet()->SetType(type); - return value; + return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet()); } else if (value->IsLongConstant()) { return GetDoubleEquivalent(value->AsLongConstant()); } else if (value->IsIntConstant()) { @@ -642,12 +723,7 @@ HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user, } else if (value->IsPhi()) { return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type); } else { - // For other instructions, we assume the verifier has checked that the dex format is correctly - // typed and the value in a dex register will not be used for both floating point and - // non-floating point operations. So the only reason an instruction would want a floating - // point equivalent is for an unused phi that will be removed by the dead phi elimination phase. - DCHECK(user->IsPhi()) << "is actually " << user->DebugName() << " (" << user->GetId() << ")"; - return value; + return nullptr; } } @@ -662,15 +738,17 @@ HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) { } void SsaBuilder::VisitLoadLocal(HLoadLocal* load) { + Primitive::Type load_type = load->GetType(); HInstruction* value = (*current_locals_)[load->GetLocal()->GetRegNumber()]; // If the operation requests a specific type, we make sure its input is of that type. - if (load->GetType() != value->GetType()) { - if (load->GetType() == Primitive::kPrimFloat || load->GetType() == Primitive::kPrimDouble) { - value = GetFloatOrDoubleEquivalent(load, value, load->GetType()); - } else if (load->GetType() == Primitive::kPrimNot) { + if (load_type != value->GetType()) { + if (load_type == Primitive::kPrimFloat || load_type == Primitive::kPrimDouble) { + value = GetFloatOrDoubleEquivalent(value, load_type); + } else if (load_type == Primitive::kPrimNot) { value = GetReferenceTypeEquivalent(value); } } + load->ReplaceWith(value); load->GetBlock()->RemoveInstruction(load); } @@ -760,4 +838,13 @@ void SsaBuilder::VisitTemporary(HTemporary* temp) { temp->GetBlock()->RemoveInstruction(temp); } +void SsaBuilder::VisitArrayGet(HArrayGet* aget) { + Primitive::Type type = aget->GetType(); + DCHECK(!Primitive::IsFloatingPointType(type)); + if (Primitive::IsIntOrLongType(type)) { + ambiguous_agets_.push_back(aget); + } + VisitInstruction(aget); +} + } // namespace art |