diff options
Diffstat (limited to 'compiler/optimizing/instruction_builder.cc')
| -rw-r--r-- | compiler/optimizing/instruction_builder.cc | 2681 | 
1 files changed, 2681 insertions, 0 deletions
| diff --git a/compiler/optimizing/instruction_builder.cc b/compiler/optimizing/instruction_builder.cc new file mode 100644 index 0000000000..c5f2342027 --- /dev/null +++ b/compiler/optimizing/instruction_builder.cc @@ -0,0 +1,2681 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + *      http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "instruction_builder.h" + +#include "bytecode_utils.h" +#include "class_linker.h" +#include "driver/compiler_options.h" +#include "scoped_thread_state_change.h" + +namespace art { + +void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) { +  if (compilation_stats_ != nullptr) { +    compilation_stats_->RecordStat(compilation_stat); +  } +} + +HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const { +  return block_builder_->GetBlockAt(dex_pc); +} + +ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) { +  ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; +  const size_t vregs = graph_->GetNumberOfVRegs(); +  if (locals->size() != vregs) { +    locals->resize(vregs, nullptr); + +    if (block->IsCatchBlock()) { +      // We record incoming inputs of catch phis at throwing instructions and +      // must therefore eagerly create the phis. Phis for undefined vregs will +      // be deleted when the first throwing instruction with the vreg undefined +      // is encountered. Unused phis will be removed by dead phi analysis. +      for (size_t i = 0; i < vregs; ++i) { +        // No point in creating the catch phi if it is already undefined at +        // the first throwing instruction. +        HInstruction* current_local_value = (*current_locals_)[i]; +        if (current_local_value != nullptr) { +          HPhi* phi = new (arena_) HPhi( +              arena_, +              i, +              0, +              current_local_value->GetType()); +          block->AddPhi(phi); +          (*locals)[i] = phi; +        } +      } +    } +  } +  return locals; +} + +HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) { +  ArenaVector<HInstruction*>* locals = GetLocalsFor(block); +  return (*locals)[local]; +} + +void HInstructionBuilder::InitializeBlockLocals() { +  current_locals_ = GetLocalsFor(current_block_); + +  if (current_block_->IsCatchBlock()) { +    // Catch phis were already created and inputs collected from throwing sites. +    if (kIsDebugBuild) { +      // Make sure there was at least one throwing instruction which initialized +      // locals (guaranteed by HGraphBuilder) and that all try blocks have been +      // visited already (from HTryBoundary scoping and reverse post order). +      bool catch_block_visited = false; +      for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { +        HBasicBlock* current = it.Current(); +        if (current == current_block_) { +          catch_block_visited = true; +        } else if (current->IsTryBlock()) { +          const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry(); +          if (try_entry.HasExceptionHandler(*current_block_)) { +            DCHECK(!catch_block_visited) << "Catch block visited before its try block."; +          } +        } +      } +      DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs()) +          << "No instructions throwing into a live catch block."; +    } +  } else if (current_block_->IsLoopHeader()) { +    // If the block is a loop header, we know we only have visited the pre header +    // because we are visiting in reverse post order. We create phis for all initialized +    // locals from the pre header. Their inputs will be populated at the end of +    // the analysis. +    for (size_t local = 0; local < current_locals_->size(); ++local) { +      HInstruction* incoming = +          ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local); +      if (incoming != nullptr) { +        HPhi* phi = new (arena_) HPhi( +            arena_, +            local, +            0, +            incoming->GetType()); +        current_block_->AddPhi(phi); +        (*current_locals_)[local] = phi; +      } +    } + +    // Save the loop header so that the last phase of the analysis knows which +    // blocks need to be updated. +    loop_headers_.push_back(current_block_); +  } else if (current_block_->GetPredecessors().size() > 0) { +    // All predecessors have already been visited because we are visiting in reverse post order. +    // We merge the values of all locals, creating phis if those values differ. +    for (size_t local = 0; local < current_locals_->size(); ++local) { +      bool one_predecessor_has_no_value = false; +      bool is_different = false; +      HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); + +      for (HBasicBlock* predecessor : current_block_->GetPredecessors()) { +        HInstruction* current = ValueOfLocalAt(predecessor, local); +        if (current == nullptr) { +          one_predecessor_has_no_value = true; +          break; +        } else if (current != value) { +          is_different = true; +        } +      } + +      if (one_predecessor_has_no_value) { +        // If one predecessor has no value for this local, we trust the verifier has +        // successfully checked that there is a store dominating any read after this block. +        continue; +      } + +      if (is_different) { +        HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); +        HPhi* phi = new (arena_) HPhi( +            arena_, +            local, +            current_block_->GetPredecessors().size(), +            first_input->GetType()); +        for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) { +          HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local); +          phi->SetRawInputAt(i, pred_value); +        } +        current_block_->AddPhi(phi); +        value = phi; +      } +      (*current_locals_)[local] = value; +    } +  } +} + +void HInstructionBuilder::PropagateLocalsToCatchBlocks() { +  const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry(); +  for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { +    ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); +    DCHECK_EQ(handler_locals->size(), current_locals_->size()); +    for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { +      HInstruction* handler_value = (*handler_locals)[vreg]; +      if (handler_value == nullptr) { +        // Vreg was undefined at a previously encountered throwing instruction +        // and the catch phi was deleted. Do not record the local value. +        continue; +      } +      DCHECK(handler_value->IsPhi()); + +      HInstruction* local_value = (*current_locals_)[vreg]; +      if (local_value == nullptr) { +        // This is the first instruction throwing into `catch_block` where +        // `vreg` is undefined. Delete the catch phi. +        catch_block->RemovePhi(handler_value->AsPhi()); +        (*handler_locals)[vreg] = nullptr; +      } else { +        // Vreg has been defined at all instructions throwing into `catch_block` +        // encountered so far. Record the local value in the catch phi. +        handler_value->AsPhi()->AddInput(local_value); +      } +    } +  } +} + +void HInstructionBuilder::AppendInstruction(HInstruction* instruction) { +  current_block_->AddInstruction(instruction); +  InitializeInstruction(instruction); +} + +void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) { +  if (current_block_->GetInstructions().IsEmpty()) { +    current_block_->AddInstruction(instruction); +  } else { +    current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction()); +  } +  InitializeInstruction(instruction); +} + +void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) { +  if (instruction->NeedsEnvironment()) { +    HEnvironment* environment = new (arena_) HEnvironment( +        arena_, +        current_locals_->size(), +        graph_->GetDexFile(), +        graph_->GetMethodIdx(), +        instruction->GetDexPc(), +        graph_->GetInvokeType(), +        instruction); +    environment->CopyFrom(*current_locals_); +    instruction->SetRawEnvironment(environment); +  } +} + +void HInstructionBuilder::SetLoopHeaderPhiInputs() { +  for (size_t i = loop_headers_.size(); i > 0; --i) { +    HBasicBlock* block = loop_headers_[i - 1]; +    for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { +      HPhi* phi = it.Current()->AsPhi(); +      size_t vreg = phi->GetRegNumber(); +      for (HBasicBlock* predecessor : block->GetPredecessors()) { +        HInstruction* value = ValueOfLocalAt(predecessor, vreg); +        if (value == nullptr) { +          // Vreg is undefined at this predecessor. Mark it dead and leave with +          // fewer inputs than predecessors. SsaChecker will fail if not removed. +          phi->SetDead(); +          break; +        } else { +          phi->AddInput(value); +        } +      } +    } +  } +} + +static bool IsBlockPopulated(HBasicBlock* block) { +  if (block->IsLoopHeader()) { +    // Suspend checks were inserted into loop headers during building of dominator tree. +    DCHECK(block->GetFirstInstruction()->IsSuspendCheck()); +    return block->GetFirstInstruction() != block->GetLastInstruction(); +  } else { +    return !block->GetInstructions().IsEmpty(); +  } +} + +bool HInstructionBuilder::Build() { +  locals_for_.resize(graph_->GetBlocks().size(), +                     ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder))); + +  // Find locations where we want to generate extra stackmaps for native debugging. +  // This allows us to generate the info only at interesting points (for example, +  // at start of java statement) rather than before every dex instruction. +  const bool native_debuggable = compiler_driver_ != nullptr && +                                 compiler_driver_->GetCompilerOptions().GetNativeDebuggable(); +  ArenaBitVector* native_debug_info_locations = nullptr; +  if (native_debuggable) { +    const uint32_t num_instructions = code_item_.insns_size_in_code_units_; +    native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false); +    FindNativeDebugInfoLocations(native_debug_info_locations); +  } + +  for (HReversePostOrderIterator block_it(*graph_); !block_it.Done(); block_it.Advance()) { +    current_block_ = block_it.Current(); +    uint32_t block_dex_pc = current_block_->GetDexPc(); + +    InitializeBlockLocals(); + +    if (current_block_->IsEntryBlock()) { +      InitializeParameters(); +      AppendInstruction(new (arena_) HSuspendCheck(0u)); +      AppendInstruction(new (arena_) HGoto(0u)); +      continue; +    } else if (current_block_->IsExitBlock()) { +      AppendInstruction(new (arena_) HExit()); +      continue; +    } else if (current_block_->IsLoopHeader()) { +      HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc()); +      current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check); +      // This is slightly odd because the loop header might not be empty (TryBoundary). +      // But we're still creating the environment with locals from the top of the block. +      InsertInstructionAtTop(suspend_check); +    } + +    if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) { +      // Synthetic block that does not need to be populated. +      DCHECK(IsBlockPopulated(current_block_)); +      continue; +    } + +    DCHECK(!IsBlockPopulated(current_block_)); + +    for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) { +      if (current_block_ == nullptr) { +        // The previous instruction ended this block. +        break; +      } + +      uint32_t dex_pc = it.CurrentDexPc(); +      if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) { +        // This dex_pc starts a new basic block. +        break; +      } + +      if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) { +        PropagateLocalsToCatchBlocks(); +      } + +      if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { +        AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc)); +      } + +      if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) { +        return false; +      } +    } + +    if (current_block_ != nullptr) { +      // Branching instructions clear current_block, so we know the last +      // instruction of the current block is not a branching instruction. +      // We add an unconditional Goto to the next block. +      DCHECK_EQ(current_block_->GetSuccessors().size(), 1u); +      AppendInstruction(new (arena_) HGoto()); +    } +  } + +  SetLoopHeaderPhiInputs(); + +  return true; +} + +void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) { +  // The callback gets called when the line number changes. +  // In other words, it marks the start of new java statement. +  struct Callback { +    static bool Position(void* ctx, const DexFile::PositionInfo& entry) { +      static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_); +      return false; +    } +  }; +  dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations); +  // Instruction-specific tweaks. +  const Instruction* const begin = Instruction::At(code_item_.insns_); +  const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_); +  for (const Instruction* inst = begin; inst < end; inst = inst->Next()) { +    switch (inst->Opcode()) { +      case Instruction::MOVE_EXCEPTION: { +        // Stop in native debugger after the exception has been moved. +        // The compiler also expects the move at the start of basic block so +        // we do not want to interfere by inserting native-debug-info before it. +        locations->ClearBit(inst->GetDexPc(code_item_.insns_)); +        const Instruction* next = inst->Next(); +        if (next < end) { +          locations->SetBit(next->GetDexPc(code_item_.insns_)); +        } +        break; +      } +      default: +        break; +    } +  } +} + +HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const { +  HInstruction* value = (*current_locals_)[reg_number]; +  DCHECK(value != nullptr); + +  // If the operation requests a specific type, we make sure its input is of that type. +  if (type != value->GetType()) { +    if (Primitive::IsFloatingPointType(type)) { +      return ssa_builder_->GetFloatOrDoubleEquivalent(value, type); +    } else if (type == Primitive::kPrimNot) { +      return ssa_builder_->GetReferenceTypeEquivalent(value); +    } +  } + +  return value; +} + +void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) { +  Primitive::Type stored_type = stored_value->GetType(); +  DCHECK_NE(stored_type, Primitive::kPrimVoid); + +  // Storing into vreg `reg_number` may implicitly invalidate the surrounding +  // registers. Consider the following cases: +  // (1) Storing a wide value must overwrite previous values in both `reg_number` +  //     and `reg_number+1`. We store `nullptr` in `reg_number+1`. +  // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` +  //     must invalidate it. We store `nullptr` in `reg_number-1`. +  // Consequently, storing a wide value into the high vreg of another wide value +  // will invalidate both `reg_number-1` and `reg_number+1`. + +  if (reg_number != 0) { +    HInstruction* local_low = (*current_locals_)[reg_number - 1]; +    if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) { +      // The vreg we are storing into was previously the high vreg of a pair. +      // We need to invalidate its low vreg. +      DCHECK((*current_locals_)[reg_number] == nullptr); +      (*current_locals_)[reg_number - 1] = nullptr; +    } +  } + +  (*current_locals_)[reg_number] = stored_value; +  if (Primitive::Is64BitType(stored_type)) { +    // We are storing a pair. Invalidate the instruction in the high vreg. +    (*current_locals_)[reg_number + 1] = nullptr; +  } +} + +void HInstructionBuilder::InitializeParameters() { +  DCHECK(current_block_->IsEntryBlock()); + +  // dex_compilation_unit_ is null only when unit testing. +  if (dex_compilation_unit_ == nullptr) { +    return; +  } + +  const char* shorty = dex_compilation_unit_->GetShorty(); +  uint16_t number_of_parameters = graph_->GetNumberOfInVRegs(); +  uint16_t locals_index = graph_->GetNumberOfLocalVRegs(); +  uint16_t parameter_index = 0; + +  const DexFile::MethodId& referrer_method_id = +      dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); +  if (!dex_compilation_unit_->IsStatic()) { +    // Add the implicit 'this' argument, not expressed in the signature. +    HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_, +                                                              referrer_method_id.class_idx_, +                                                              parameter_index++, +                                                              Primitive::kPrimNot, +                                                              true); +    AppendInstruction(parameter); +    UpdateLocal(locals_index++, parameter); +    number_of_parameters--; +  } + +  const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); +  const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto); +  for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { +    HParameterValue* parameter = new (arena_) HParameterValue( +        *dex_file_, +        arg_types->GetTypeItem(shorty_pos - 1).type_idx_, +        parameter_index++, +        Primitive::GetType(shorty[shorty_pos]), +        false); +    ++shorty_pos; +    AppendInstruction(parameter); +    // Store the parameter value in the local that the dex code will use +    // to reference that parameter. +    UpdateLocal(locals_index++, parameter); +    if (Primitive::Is64BitType(parameter->GetType())) { +      i++; +      locals_index++; +      parameter_index++; +    } +  } +} + +template<typename T> +void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); +  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); +  T* comparison = new (arena_) T(first, second, dex_pc); +  AppendInstruction(comparison); +  AppendInstruction(new (arena_) HIf(comparison, dex_pc)); +  current_block_ = nullptr; +} + +template<typename T> +void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { +  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); +  T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); +  AppendInstruction(comparison); +  AppendInstruction(new (arena_) HIf(comparison, dex_pc)); +  current_block_ = nullptr; +} + +template<typename T> +void HInstructionBuilder::Unop_12x(const Instruction& instruction, +                                   Primitive::Type type, +                                   uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegB(), type); +  AppendInstruction(new (arena_) T(type, first, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +void HInstructionBuilder::Conversion_12x(const Instruction& instruction, +                                         Primitive::Type input_type, +                                         Primitive::Type result_type, +                                         uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegB(), input_type); +  AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_23x(const Instruction& instruction, +                                    Primitive::Type type, +                                    uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegB(), type); +  HInstruction* second = LoadLocal(instruction.VRegC(), type); +  AppendInstruction(new (arena_) T(type, first, second, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction, +                                          Primitive::Type type, +                                          uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegB(), type); +  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt); +  AppendInstruction(new (arena_) T(type, first, second, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction, +                                        Primitive::Type type, +                                        ComparisonBias bias, +                                        uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegB(), type); +  HInstruction* second = LoadLocal(instruction.VRegC(), type); +  AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction, +                                          Primitive::Type type, +                                          uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegA(), type); +  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); +  AppendInstruction(new (arena_) T(type, first, second, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_12x(const Instruction& instruction, +                                    Primitive::Type type, +                                    uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegA(), type); +  HInstruction* second = LoadLocal(instruction.VRegB(), type); +  AppendInstruction(new (arena_) T(type, first, second, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); +  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); +  if (reverse) { +    std::swap(first, second); +  } +  AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { +  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); +  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); +  if (reverse) { +    std::swap(first, second); +  } +  AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); +  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) { +  Thread* self = Thread::Current(); +  return cu->IsConstructor() +      && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex()); +} + +// Returns true if `block` has only one successor which starts at the next +// dex_pc after `instruction` at `dex_pc`. +static bool IsFallthroughInstruction(const Instruction& instruction, +                                     uint32_t dex_pc, +                                     HBasicBlock* block) { +  uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits(); +  return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc; +} + +void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) { +  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); +  DexSwitchTable table(instruction, dex_pc); + +  if (table.GetNumEntries() == 0) { +    // Empty Switch. Code falls through to the next block. +    DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_)); +    AppendInstruction(new (arena_) HGoto(dex_pc)); +  } else if (table.ShouldBuildDecisionTree()) { +    for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) { +      HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc); +      HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc); +      AppendInstruction(comparison); +      AppendInstruction(new (arena_) HIf(comparison, dex_pc)); + +      if (!it.IsLast()) { +        current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex()); +      } +    } +  } else { +    AppendInstruction( +        new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc)); +  } + +  current_block_ = nullptr; +} + +void HInstructionBuilder::BuildReturn(const Instruction& instruction, +                                      Primitive::Type type, +                                      uint32_t dex_pc) { +  if (type == Primitive::kPrimVoid) { +    if (graph_->ShouldGenerateConstructorBarrier()) { +      // The compilation unit is null during testing. +      if (dex_compilation_unit_ != nullptr) { +        DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_)) +          << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier."; +      } +      AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc)); +    } +    AppendInstruction(new (arena_) HReturnVoid(dex_pc)); +  } else { +    HInstruction* value = LoadLocal(instruction.VRegA(), type); +    AppendInstruction(new (arena_) HReturn(value, dex_pc)); +  } +  current_block_ = nullptr; +} + +static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { +  switch (opcode) { +    case Instruction::INVOKE_STATIC: +    case Instruction::INVOKE_STATIC_RANGE: +      return kStatic; +    case Instruction::INVOKE_DIRECT: +    case Instruction::INVOKE_DIRECT_RANGE: +      return kDirect; +    case Instruction::INVOKE_VIRTUAL: +    case Instruction::INVOKE_VIRTUAL_QUICK: +    case Instruction::INVOKE_VIRTUAL_RANGE: +    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: +      return kVirtual; +    case Instruction::INVOKE_INTERFACE: +    case Instruction::INVOKE_INTERFACE_RANGE: +      return kInterface; +    case Instruction::INVOKE_SUPER_RANGE: +    case Instruction::INVOKE_SUPER: +      return kSuper; +    default: +      LOG(FATAL) << "Unexpected invoke opcode: " << opcode; +      UNREACHABLE(); +  } +} + +ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) { +  ScopedObjectAccess soa(Thread::Current()); +  StackHandleScope<3> hs(soa.Self()); + +  ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); +  Handle<mirror::ClassLoader> class_loader(hs.NewHandle( +      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); +  Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass())); + +  ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>( +      *dex_compilation_unit_->GetDexFile(), +      method_idx, +      dex_compilation_unit_->GetDexCache(), +      class_loader, +      /* referrer */ nullptr, +      invoke_type); + +  if (UNLIKELY(resolved_method == nullptr)) { +    // Clean up any exception left by type resolution. +    soa.Self()->ClearException(); +    return nullptr; +  } + +  // Check access. The class linker has a fast path for looking into the dex cache +  // and does not check the access if it hits it. +  if (compiling_class.Get() == nullptr) { +    if (!resolved_method->IsPublic()) { +      return nullptr; +    } +  } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(), +                                                       resolved_method, +                                                       dex_compilation_unit_->GetDexCache().Get(), +                                                       method_idx)) { +    return nullptr; +  } + +  // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. +  // We need to look at the referrer's super class vtable. We need to do this to know if we need to +  // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of +  // which require runtime handling. +  if (invoke_type == kSuper) { +    if (compiling_class.Get() == nullptr) { +      // We could not determine the method's class we need to wait until runtime. +      DCHECK(Runtime::Current()->IsAotCompiler()); +      return nullptr; +    } +    ArtMethod* current_method = graph_->GetArtMethod(); +    DCHECK(current_method != nullptr); +    Handle<mirror::Class> methods_class(hs.NewHandle( +        dex_compilation_unit_->GetClassLinker()->ResolveReferencedClassOfMethod(Thread::Current(), +                                                                                method_idx, +                                                                                current_method))); +    if (methods_class.Get() == nullptr) { +      // Invoking a super method requires knowing the actual super class. If we did not resolve +      // the compiling method's declaring class (which only happens for ahead of time +      // compilation), bail out. +      DCHECK(Runtime::Current()->IsAotCompiler()); +      return nullptr; +    } else { +      ArtMethod* actual_method; +      if (methods_class->IsInterface()) { +        actual_method = methods_class->FindVirtualMethodForInterfaceSuper( +            resolved_method, class_linker->GetImagePointerSize()); +      } else { +        uint16_t vtable_index = resolved_method->GetMethodIndex(); +        actual_method = compiling_class->GetSuperClass()->GetVTableEntry( +            vtable_index, class_linker->GetImagePointerSize()); +      } +      if (actual_method != resolved_method && +          !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { +        // The back-end code generator relies on this check in order to ensure that it will not +        // attempt to read the dex_cache with a dex_method_index that is not from the correct +        // dex_file. If we didn't do this check then the dex_method_index will not be updated in the +        // builder, which means that the code-generator (and compiler driver during sharpening and +        // inliner, maybe) might invoke an incorrect method. +        // TODO: The actual method could still be referenced in the current dex file, so we +        //       could try locating it. +        // TODO: Remove the dex_file restriction. +        return nullptr; +      } +      if (!actual_method->IsInvokable()) { +        // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub +        // could resolve the callee to the wrong method. +        return nullptr; +      } +      resolved_method = actual_method; +    } +  } + +  // Check for incompatible class changes. The class linker has a fast path for +  // looking into the dex cache and does not check incompatible class changes if it hits it. +  if (resolved_method->CheckIncompatibleClassChange(invoke_type)) { +    return nullptr; +  } + +  return resolved_method; +} + +bool HInstructionBuilder::BuildInvoke(const Instruction& instruction, +                                      uint32_t dex_pc, +                                      uint32_t method_idx, +                                      uint32_t number_of_vreg_arguments, +                                      bool is_range, +                                      uint32_t* args, +                                      uint32_t register_index) { +  InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); +  const char* descriptor = dex_file_->GetMethodShorty(method_idx); +  Primitive::Type return_type = Primitive::GetType(descriptor[0]); + +  // Remove the return type from the 'proto'. +  size_t number_of_arguments = strlen(descriptor) - 1; +  if (invoke_type != kStatic) {  // instance call +    // One extra argument for 'this'. +    number_of_arguments++; +  } + +  MethodReference target_method(dex_file_, method_idx); + +  // Special handling for string init. +  int32_t string_init_offset = 0; +  bool is_string_init = compiler_driver_->IsStringInit(method_idx, +                                                       dex_file_, +                                                       &string_init_offset); +  // Replace calls to String.<init> with StringFactory. +  if (is_string_init) { +    HInvokeStaticOrDirect::DispatchInfo dispatch_info = { +        HInvokeStaticOrDirect::MethodLoadKind::kStringInit, +        HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, +        dchecked_integral_cast<uint64_t>(string_init_offset), +        0U +    }; +    HInvoke* invoke = new (arena_) HInvokeStaticOrDirect( +        arena_, +        number_of_arguments - 1, +        Primitive::kPrimNot /*return_type */, +        dex_pc, +        method_idx, +        target_method, +        dispatch_info, +        invoke_type, +        kStatic /* optimized_invoke_type */, +        HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); +    return HandleStringInit(invoke, +                            number_of_vreg_arguments, +                            args, +                            register_index, +                            is_range, +                            descriptor); +  } + +  ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type); + +  if (UNLIKELY(resolved_method == nullptr)) { +    MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod); +    HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_, +                                                     number_of_arguments, +                                                     return_type, +                                                     dex_pc, +                                                     method_idx, +                                                     invoke_type); +    return HandleInvoke(invoke, +                        number_of_vreg_arguments, +                        args, +                        register_index, +                        is_range, +                        descriptor, +                        nullptr /* clinit_check */); +  } + +  // Potential class initialization check, in the case of a static method call. +  HClinitCheck* clinit_check = nullptr; +  HInvoke* invoke = nullptr; +  if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { +    // By default, consider that the called method implicitly requires +    // an initialization check of its declaring method. +    HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement +        = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; +    ScopedObjectAccess soa(Thread::Current()); +    if (invoke_type == kStatic) { +      clinit_check = ProcessClinitCheckForInvoke( +          dex_pc, resolved_method, method_idx, &clinit_check_requirement); +    } else if (invoke_type == kSuper) { +      if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { +        // Update the target method to the one resolved. Note that this may be a no-op if +        // we resolved to the method referenced by the instruction. +        method_idx = resolved_method->GetDexMethodIndex(); +        target_method = MethodReference(dex_file_, method_idx); +      } +    } + +    HInvokeStaticOrDirect::DispatchInfo dispatch_info = { +        HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod, +        HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, +        0u, +        0U +    }; +    invoke = new (arena_) HInvokeStaticOrDirect(arena_, +                                                number_of_arguments, +                                                return_type, +                                                dex_pc, +                                                method_idx, +                                                target_method, +                                                dispatch_info, +                                                invoke_type, +                                                invoke_type, +                                                clinit_check_requirement); +  } else if (invoke_type == kVirtual) { +    ScopedObjectAccess soa(Thread::Current());  // Needed for the method index +    invoke = new (arena_) HInvokeVirtual(arena_, +                                         number_of_arguments, +                                         return_type, +                                         dex_pc, +                                         method_idx, +                                         resolved_method->GetMethodIndex()); +  } else { +    DCHECK_EQ(invoke_type, kInterface); +    ScopedObjectAccess soa(Thread::Current());  // Needed for the method index +    invoke = new (arena_) HInvokeInterface(arena_, +                                           number_of_arguments, +                                           return_type, +                                           dex_pc, +                                           method_idx, +                                           resolved_method->GetDexMethodIndex()); +  } + +  return HandleInvoke(invoke, +                      number_of_vreg_arguments, +                      args, +                      register_index, +                      is_range, +                      descriptor, +                      clinit_check); +} + +bool HInstructionBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) { +  bool finalizable; +  bool can_throw = NeedsAccessCheck(type_index, &finalizable); + +  // Only the non-resolved entrypoint handles the finalizable class case. If we +  // need access checks, then we haven't resolved the method and the class may +  // again be finalizable. +  QuickEntrypointEnum entrypoint = (finalizable || can_throw) +      ? kQuickAllocObject +      : kQuickAllocObjectInitialized; + +  ScopedObjectAccess soa(Thread::Current()); +  StackHandleScope<3> hs(soa.Self()); +  Handle<mirror::DexCache> dex_cache(hs.NewHandle( +      dex_compilation_unit_->GetClassLinker()->FindDexCache( +          soa.Self(), *dex_compilation_unit_->GetDexFile()))); +  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); +  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); +  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( +      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file))); + +  if (outer_dex_cache.Get() != dex_cache.Get()) { +    // We currently do not support inlining allocations across dex files. +    return false; +  } + +  HLoadClass* load_class = new (arena_) HLoadClass( +      graph_->GetCurrentMethod(), +      type_index, +      outer_dex_file, +      IsOutermostCompilingClass(type_index), +      dex_pc, +      /*needs_access_check*/ can_throw, +      compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, type_index)); + +  AppendInstruction(load_class); +  HInstruction* cls = load_class; +  if (!IsInitialized(resolved_class)) { +    cls = new (arena_) HClinitCheck(load_class, dex_pc); +    AppendInstruction(cls); +  } + +  AppendInstruction(new (arena_) HNewInstance( +      cls, +      graph_->GetCurrentMethod(), +      dex_pc, +      type_index, +      *dex_compilation_unit_->GetDexFile(), +      can_throw, +      finalizable, +      entrypoint)); +  return true; +} + +static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class) +    SHARED_REQUIRES(Locks::mutator_lock_) { +  return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); +} + +bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const { +  if (cls.Get() == nullptr) { +    return false; +  } + +  // `CanAssumeClassIsLoaded` will return true if we're JITting, or will +  // check whether the class is in an image for the AOT compilation. +  if (cls->IsInitialized() && +      compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) { +    return true; +  } + +  if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) { +    return true; +  } + +  // TODO: We should walk over the inlined methods, but we don't pass +  //       that information to the builder. +  if (IsSubClass(GetCompilingClass(), cls.Get())) { +    return true; +  } + +  return false; +} + +HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke( +      uint32_t dex_pc, +      ArtMethod* resolved_method, +      uint32_t method_idx, +      HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { +  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); +  Thread* self = Thread::Current(); +  StackHandleScope<4> hs(self); +  Handle<mirror::DexCache> dex_cache(hs.NewHandle( +      dex_compilation_unit_->GetClassLinker()->FindDexCache( +          self, *dex_compilation_unit_->GetDexFile()))); +  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( +      outer_compilation_unit_->GetClassLinker()->FindDexCache( +          self, outer_dex_file))); +  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); +  Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass())); + +  // The index at which the method's class is stored in the DexCache's type array. +  uint32_t storage_index = DexFile::kDexNoIndex; +  bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get()); +  if (is_outer_class) { +    storage_index = outer_class->GetDexTypeIndex(); +  } else if (outer_dex_cache.Get() == dex_cache.Get()) { +    // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer. +    compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(), +                                                               GetCompilingClass(), +                                                               resolved_method, +                                                               method_idx, +                                                               &storage_index); +  } + +  HClinitCheck* clinit_check = nullptr; + +  if (IsInitialized(resolved_method_class)) { +    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; +  } else if (storage_index != DexFile::kDexNoIndex) { +    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; +    HLoadClass* load_class = new (arena_) HLoadClass( +        graph_->GetCurrentMethod(), +        storage_index, +        outer_dex_file, +        is_outer_class, +        dex_pc, +        /*needs_access_check*/ false, +        compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index)); +    AppendInstruction(load_class); +    clinit_check = new (arena_) HClinitCheck(load_class, dex_pc); +    AppendInstruction(clinit_check); +  } +  return clinit_check; +} + +bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke, +                                               uint32_t number_of_vreg_arguments, +                                               uint32_t* args, +                                               uint32_t register_index, +                                               bool is_range, +                                               const char* descriptor, +                                               size_t start_index, +                                               size_t* argument_index) { +  uint32_t descriptor_index = 1;  // Skip the return type. + +  for (size_t i = start_index; +       // Make sure we don't go over the expected arguments or over the number of +       // dex registers given. If the instruction was seen as dead by the verifier, +       // it hasn't been properly checked. +       (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments()); +       i++, (*argument_index)++) { +    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]); +    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); +    if (!is_range +        && is_wide +        && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) { +      // Longs and doubles should be in pairs, that is, sequential registers. The verifier should +      // reject any class where this is violated. However, the verifier only does these checks +      // on non trivially dead instructions, so we just bailout the compilation. +      VLOG(compiler) << "Did not compile " +                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) +                     << " because of non-sequential dex register pair in wide argument"; +      MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); +      return false; +    } +    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type); +    invoke->SetArgumentAt(*argument_index, arg); +    if (is_wide) { +      i++; +    } +  } + +  if (*argument_index != invoke->GetNumberOfArguments()) { +    VLOG(compiler) << "Did not compile " +                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) +                   << " because of wrong number of arguments in invoke instruction"; +    MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); +    return false; +  } + +  if (invoke->IsInvokeStaticOrDirect() && +      HInvokeStaticOrDirect::NeedsCurrentMethodInput( +          invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) { +    invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod()); +    (*argument_index)++; +  } + +  return true; +} + +bool HInstructionBuilder::HandleInvoke(HInvoke* invoke, +                                       uint32_t number_of_vreg_arguments, +                                       uint32_t* args, +                                       uint32_t register_index, +                                       bool is_range, +                                       const char* descriptor, +                                       HClinitCheck* clinit_check) { +  DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit()); + +  size_t start_index = 0; +  size_t argument_index = 0; +  if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) {  // Instance call. +    HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot); +    HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc()); +    AppendInstruction(null_check); +    invoke->SetArgumentAt(0, null_check); +    start_index = 1; +    argument_index = 1; +  } + +  if (!SetupInvokeArguments(invoke, +                            number_of_vreg_arguments, +                            args, +                            register_index, +                            is_range, +                            descriptor, +                            start_index, +                            &argument_index)) { +    return false; +  } + +  if (clinit_check != nullptr) { +    // Add the class initialization check as last input of `invoke`. +    DCHECK(invoke->IsInvokeStaticOrDirect()); +    DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement() +        == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); +    invoke->SetArgumentAt(argument_index, clinit_check); +    argument_index++; +  } + +  AppendInstruction(invoke); +  latest_result_ = invoke; + +  return true; +} + +bool HInstructionBuilder::HandleStringInit(HInvoke* invoke, +                                           uint32_t number_of_vreg_arguments, +                                           uint32_t* args, +                                           uint32_t register_index, +                                           bool is_range, +                                           const char* descriptor) { +  DCHECK(invoke->IsInvokeStaticOrDirect()); +  DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); + +  size_t start_index = 1; +  size_t argument_index = 0; +  if (!SetupInvokeArguments(invoke, +                            number_of_vreg_arguments, +                            args, +                            register_index, +                            is_range, +                            descriptor, +                            start_index, +                            &argument_index)) { +    return false; +  } + +  AppendInstruction(invoke); + +  // This is a StringFactory call, not an actual String constructor. Its result +  // replaces the empty String pre-allocated by NewInstance. +  uint32_t orig_this_reg = is_range ? register_index : args[0]; +  HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot); + +  // Replacing the NewInstance might render it redundant. Keep a list of these +  // to be visited once it is clear whether it is has remaining uses. +  if (arg_this->IsNewInstance()) { +    ssa_builder_->AddUninitializedString(arg_this->AsNewInstance()); +  } else { +    DCHECK(arg_this->IsPhi()); +    // NewInstance is not the direct input of the StringFactory call. It might +    // be redundant but optimizing this case is not worth the effort. +  } + +  // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. +  for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { +    if ((*current_locals_)[vreg] == arg_this) { +      (*current_locals_)[vreg] = invoke; +    } +  } + +  return true; +} + +static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { +  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index); +  const char* type = dex_file.GetFieldTypeDescriptor(field_id); +  return Primitive::GetType(type[0]); +} + +bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction, +                                                   uint32_t dex_pc, +                                                   bool is_put) { +  uint32_t source_or_dest_reg = instruction.VRegA_22c(); +  uint32_t obj_reg = instruction.VRegB_22c(); +  uint16_t field_index; +  if (instruction.IsQuickened()) { +    if (!CanDecodeQuickenedInfo()) { +      return false; +    } +    field_index = LookupQuickenedInfo(dex_pc); +  } else { +    field_index = instruction.VRegC_22c(); +  } + +  ScopedObjectAccess soa(Thread::Current()); +  ArtField* resolved_field = +      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa); + + +  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot); +  HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc); +  AppendInstruction(null_check); + +  Primitive::Type field_type = (resolved_field == nullptr) +      ? GetFieldAccessType(*dex_file_, field_index) +      : resolved_field->GetTypeAsPrimitiveType(); +  if (is_put) { +    HInstruction* value = LoadLocal(source_or_dest_reg, field_type); +    HInstruction* field_set = nullptr; +    if (resolved_field == nullptr) { +      MaybeRecordStat(MethodCompilationStat::kUnresolvedField); +      field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check, +                                                           value, +                                                           field_type, +                                                           field_index, +                                                           dex_pc); +    } else { +      uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); +      field_set = new (arena_) HInstanceFieldSet(null_check, +                                                 value, +                                                 field_type, +                                                 resolved_field->GetOffset(), +                                                 resolved_field->IsVolatile(), +                                                 field_index, +                                                 class_def_index, +                                                 *dex_file_, +                                                 dex_compilation_unit_->GetDexCache(), +                                                 dex_pc); +    } +    AppendInstruction(field_set); +  } else { +    HInstruction* field_get = nullptr; +    if (resolved_field == nullptr) { +      MaybeRecordStat(MethodCompilationStat::kUnresolvedField); +      field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check, +                                                           field_type, +                                                           field_index, +                                                           dex_pc); +    } else { +      uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); +      field_get = new (arena_) HInstanceFieldGet(null_check, +                                                 field_type, +                                                 resolved_field->GetOffset(), +                                                 resolved_field->IsVolatile(), +                                                 field_index, +                                                 class_def_index, +                                                 *dex_file_, +                                                 dex_compilation_unit_->GetDexCache(), +                                                 dex_pc); +    } +    AppendInstruction(field_get); +    UpdateLocal(source_or_dest_reg, field_get); +  } + +  return true; +} + +static mirror::Class* GetClassFrom(CompilerDriver* driver, +                                   const DexCompilationUnit& compilation_unit) { +  ScopedObjectAccess soa(Thread::Current()); +  StackHandleScope<2> hs(soa.Self()); +  const DexFile& dex_file = *compilation_unit.GetDexFile(); +  Handle<mirror::ClassLoader> class_loader(hs.NewHandle( +      soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader()))); +  Handle<mirror::DexCache> dex_cache(hs.NewHandle( +      compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file))); + +  return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit); +} + +mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const { +  return GetClassFrom(compiler_driver_, *outer_compilation_unit_); +} + +mirror::Class* HInstructionBuilder::GetCompilingClass() const { +  return GetClassFrom(compiler_driver_, *dex_compilation_unit_); +} + +bool HInstructionBuilder::IsOutermostCompilingClass(uint16_t type_index) const { +  ScopedObjectAccess soa(Thread::Current()); +  StackHandleScope<4> hs(soa.Self()); +  Handle<mirror::DexCache> dex_cache(hs.NewHandle( +      dex_compilation_unit_->GetClassLinker()->FindDexCache( +          soa.Self(), *dex_compilation_unit_->GetDexFile()))); +  Handle<mirror::ClassLoader> class_loader(hs.NewHandle( +      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); +  Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass( +      soa, dex_cache, class_loader, type_index, dex_compilation_unit_))); +  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); + +  // GetOutermostCompilingClass returns null when the class is unresolved +  // (e.g. if it derives from an unresolved class). This is bogus knowing that +  // we are compiling it. +  // When this happens we cannot establish a direct relation between the current +  // class and the outer class, so we return false. +  // (Note that this is only used for optimizing invokes and field accesses) +  return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get()); +} + +void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, +                                                     uint32_t dex_pc, +                                                     bool is_put, +                                                     Primitive::Type field_type) { +  uint32_t source_or_dest_reg = instruction.VRegA_21c(); +  uint16_t field_index = instruction.VRegB_21c(); + +  if (is_put) { +    HInstruction* value = LoadLocal(source_or_dest_reg, field_type); +    AppendInstruction( +        new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); +  } else { +    AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); +    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); +  } +} + +bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction, +                                                 uint32_t dex_pc, +                                                 bool is_put) { +  uint32_t source_or_dest_reg = instruction.VRegA_21c(); +  uint16_t field_index = instruction.VRegB_21c(); + +  ScopedObjectAccess soa(Thread::Current()); +  StackHandleScope<5> hs(soa.Self()); +  Handle<mirror::DexCache> dex_cache(hs.NewHandle( +      dex_compilation_unit_->GetClassLinker()->FindDexCache( +          soa.Self(), *dex_compilation_unit_->GetDexFile()))); +  Handle<mirror::ClassLoader> class_loader(hs.NewHandle( +      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); +  ArtField* resolved_field = compiler_driver_->ResolveField( +      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true); + +  if (resolved_field == nullptr) { +    MaybeRecordStat(MethodCompilationStat::kUnresolvedField); +    Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index); +    BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); +    return true; +  } + +  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); +  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); +  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( +      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file))); +  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); + +  // The index at which the field's class is stored in the DexCache's type array. +  uint32_t storage_index; +  bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass()); +  if (is_outer_class) { +    storage_index = outer_class->GetDexTypeIndex(); +  } else if (outer_dex_cache.Get() != dex_cache.Get()) { +    // The compiler driver cannot currently understand multiple dex caches involved. Just bailout. +    return false; +  } else { +    // TODO: This is rather expensive. Perf it and cache the results if needed. +    std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField( +        outer_dex_cache.Get(), +        GetCompilingClass(), +        resolved_field, +        field_index, +        &storage_index); +    bool can_easily_access = is_put ? pair.second : pair.first; +    if (!can_easily_access) { +      MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess); +      BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); +      return true; +    } +  } + +  bool is_in_cache = +      compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index); +  HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(), +                                                 storage_index, +                                                 outer_dex_file, +                                                 is_outer_class, +                                                 dex_pc, +                                                 /*needs_access_check*/ false, +                                                 is_in_cache); +  AppendInstruction(constant); + +  HInstruction* cls = constant; + +  Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass())); +  if (!IsInitialized(klass)) { +    cls = new (arena_) HClinitCheck(constant, dex_pc); +    AppendInstruction(cls); +  } + +  uint16_t class_def_index = klass->GetDexClassDefIndex(); +  if (is_put) { +    // We need to keep the class alive before loading the value. +    HInstruction* value = LoadLocal(source_or_dest_reg, field_type); +    DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type)); +    AppendInstruction(new (arena_) HStaticFieldSet(cls, +                                                   value, +                                                   field_type, +                                                   resolved_field->GetOffset(), +                                                   resolved_field->IsVolatile(), +                                                   field_index, +                                                   class_def_index, +                                                   *dex_file_, +                                                   dex_cache_, +                                                   dex_pc)); +  } else { +    AppendInstruction(new (arena_) HStaticFieldGet(cls, +                                                   field_type, +                                                   resolved_field->GetOffset(), +                                                   resolved_field->IsVolatile(), +                                                   field_index, +                                                   class_def_index, +                                                   *dex_file_, +                                                   dex_cache_, +                                                   dex_pc)); +    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); +  } +  return true; +} + +void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg, +                                       uint16_t first_vreg, +                                       int64_t second_vreg_or_constant, +                                       uint32_t dex_pc, +                                       Primitive::Type type, +                                       bool second_is_constant, +                                       bool isDiv) { +  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); + +  HInstruction* first = LoadLocal(first_vreg, type); +  HInstruction* second = nullptr; +  if (second_is_constant) { +    if (type == Primitive::kPrimInt) { +      second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); +    } else { +      second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); +    } +  } else { +    second = LoadLocal(second_vreg_or_constant, type); +  } + +  if (!second_is_constant +      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0) +      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) { +    second = new (arena_) HDivZeroCheck(second, dex_pc); +    AppendInstruction(second); +  } + +  if (isDiv) { +    AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc)); +  } else { +    AppendInstruction(new (arena_) HRem(type, first, second, dex_pc)); +  } +  UpdateLocal(out_vreg, current_block_->GetLastInstruction()); +} + +void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction, +                                           uint32_t dex_pc, +                                           bool is_put, +                                           Primitive::Type anticipated_type) { +  uint8_t source_or_dest_reg = instruction.VRegA_23x(); +  uint8_t array_reg = instruction.VRegB_23x(); +  uint8_t index_reg = instruction.VRegC_23x(); + +  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot); +  object = new (arena_) HNullCheck(object, dex_pc); +  AppendInstruction(object); + +  HInstruction* length = new (arena_) HArrayLength(object, dex_pc); +  AppendInstruction(length); +  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt); +  index = new (arena_) HBoundsCheck(index, length, dex_pc); +  AppendInstruction(index); +  if (is_put) { +    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); +    // TODO: Insert a type check node if the type is Object. +    HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc); +    ssa_builder_->MaybeAddAmbiguousArraySet(aset); +    AppendInstruction(aset); +  } else { +    HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc); +    ssa_builder_->MaybeAddAmbiguousArrayGet(aget); +    AppendInstruction(aget); +    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); +  } +  graph_->SetHasBoundsChecks(true); +} + +void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc, +                                              uint32_t type_index, +                                              uint32_t number_of_vreg_arguments, +                                              bool is_range, +                                              uint32_t* args, +                                              uint32_t register_index) { +  HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc); +  bool finalizable; +  QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) +      ? kQuickAllocArrayWithAccessCheck +      : kQuickAllocArray; +  HInstruction* object = new (arena_) HNewArray(length, +                                                graph_->GetCurrentMethod(), +                                                dex_pc, +                                                type_index, +                                                *dex_compilation_unit_->GetDexFile(), +                                                entrypoint); +  AppendInstruction(object); + +  const char* descriptor = dex_file_->StringByTypeIdx(type_index); +  DCHECK_EQ(descriptor[0], '[') << descriptor; +  char primitive = descriptor[1]; +  DCHECK(primitive == 'I' +      || primitive == 'L' +      || primitive == '[') << descriptor; +  bool is_reference_array = (primitive == 'L') || (primitive == '['); +  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt; + +  for (size_t i = 0; i < number_of_vreg_arguments; ++i) { +    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type); +    HInstruction* index = graph_->GetIntConstant(i, dex_pc); +    HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc); +    ssa_builder_->MaybeAddAmbiguousArraySet(aset); +    AppendInstruction(aset); +  } +  latest_result_ = object; +} + +template <typename T> +void HInstructionBuilder::BuildFillArrayData(HInstruction* object, +                                             const T* data, +                                             uint32_t element_count, +                                             Primitive::Type anticipated_type, +                                             uint32_t dex_pc) { +  for (uint32_t i = 0; i < element_count; ++i) { +    HInstruction* index = graph_->GetIntConstant(i, dex_pc); +    HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); +    HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc); +    ssa_builder_->MaybeAddAmbiguousArraySet(aset); +    AppendInstruction(aset); +  } +} + +void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { +  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot); +  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc); +  AppendInstruction(null_check); + +  HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc); +  AppendInstruction(length); + +  int32_t payload_offset = instruction.VRegB_31t() + dex_pc; +  const Instruction::ArrayDataPayload* payload = +      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset); +  const uint8_t* data = payload->data; +  uint32_t element_count = payload->element_count; + +  // Implementation of this DEX instruction seems to be that the bounds check is +  // done before doing any stores. +  HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); +  AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc)); + +  switch (payload->element_width) { +    case 1: +      BuildFillArrayData(null_check, +                         reinterpret_cast<const int8_t*>(data), +                         element_count, +                         Primitive::kPrimByte, +                         dex_pc); +      break; +    case 2: +      BuildFillArrayData(null_check, +                         reinterpret_cast<const int16_t*>(data), +                         element_count, +                         Primitive::kPrimShort, +                         dex_pc); +      break; +    case 4: +      BuildFillArrayData(null_check, +                         reinterpret_cast<const int32_t*>(data), +                         element_count, +                         Primitive::kPrimInt, +                         dex_pc); +      break; +    case 8: +      BuildFillWideArrayData(null_check, +                             reinterpret_cast<const int64_t*>(data), +                             element_count, +                             dex_pc); +      break; +    default: +      LOG(FATAL) << "Unknown element width for " << payload->element_width; +  } +  graph_->SetHasBoundsChecks(true); +} + +void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object, +                                                 const int64_t* data, +                                                 uint32_t element_count, +                                                 uint32_t dex_pc) { +  for (uint32_t i = 0; i < element_count; ++i) { +    HInstruction* index = graph_->GetIntConstant(i, dex_pc); +    HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); +    HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc); +    ssa_builder_->MaybeAddAmbiguousArraySet(aset); +    AppendInstruction(aset); +  } +} + +static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls) +    SHARED_REQUIRES(Locks::mutator_lock_) { +  if (cls.Get() == nullptr) { +    return TypeCheckKind::kUnresolvedCheck; +  } else if (cls->IsInterface()) { +    return TypeCheckKind::kInterfaceCheck; +  } else if (cls->IsArrayClass()) { +    if (cls->GetComponentType()->IsObjectClass()) { +      return TypeCheckKind::kArrayObjectCheck; +    } else if (cls->CannotBeAssignedFromOtherTypes()) { +      return TypeCheckKind::kExactCheck; +    } else { +      return TypeCheckKind::kArrayCheck; +    } +  } else if (cls->IsFinal()) { +    return TypeCheckKind::kExactCheck; +  } else if (cls->IsAbstract()) { +    return TypeCheckKind::kAbstractClassCheck; +  } else { +    return TypeCheckKind::kClassHierarchyCheck; +  } +} + +void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction, +                                         uint8_t destination, +                                         uint8_t reference, +                                         uint16_t type_index, +                                         uint32_t dex_pc) { +  bool type_known_final, type_known_abstract, use_declaring_class; +  bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( +      dex_compilation_unit_->GetDexMethodIndex(), +      *dex_compilation_unit_->GetDexFile(), +      type_index, +      &type_known_final, +      &type_known_abstract, +      &use_declaring_class); + +  ScopedObjectAccess soa(Thread::Current()); +  StackHandleScope<2> hs(soa.Self()); +  const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); +  Handle<mirror::DexCache> dex_cache(hs.NewHandle( +      dex_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), dex_file))); +  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); + +  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot); +  HLoadClass* cls = new (arena_) HLoadClass( +      graph_->GetCurrentMethod(), +      type_index, +      dex_file, +      IsOutermostCompilingClass(type_index), +      dex_pc, +      !can_access, +      compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_file, type_index)); +  AppendInstruction(cls); + +  TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class); +  if (instruction.Opcode() == Instruction::INSTANCE_OF) { +    AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc)); +    UpdateLocal(destination, current_block_->GetLastInstruction()); +  } else { +    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); +    // We emit a CheckCast followed by a BoundType. CheckCast is a statement +    // which may throw. If it succeeds BoundType sets the new type of `object` +    // for all subsequent uses. +    AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc)); +    AppendInstruction(new (arena_) HBoundType(object, dex_pc)); +    UpdateLocal(reference, current_block_->GetLastInstruction()); +  } +} + +bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const { +  return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks( +      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, finalizable); +} + +bool HInstructionBuilder::CanDecodeQuickenedInfo() const { +  return interpreter_metadata_ != nullptr; +} + +uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) { +  DCHECK(interpreter_metadata_ != nullptr); +  uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_); +  DCHECK_EQ(dex_pc, dex_pc_in_map); +  return DecodeUnsignedLeb128(&interpreter_metadata_); +} + +bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) { +  switch (instruction.Opcode()) { +    case Instruction::CONST_4: { +      int32_t register_index = instruction.VRegA(); +      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); +      UpdateLocal(register_index, constant); +      break; +    } + +    case Instruction::CONST_16: { +      int32_t register_index = instruction.VRegA(); +      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); +      UpdateLocal(register_index, constant); +      break; +    } + +    case Instruction::CONST: { +      int32_t register_index = instruction.VRegA(); +      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); +      UpdateLocal(register_index, constant); +      break; +    } + +    case Instruction::CONST_HIGH16: { +      int32_t register_index = instruction.VRegA(); +      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); +      UpdateLocal(register_index, constant); +      break; +    } + +    case Instruction::CONST_WIDE_16: { +      int32_t register_index = instruction.VRegA(); +      // Get 16 bits of constant value, sign extended to 64 bits. +      int64_t value = instruction.VRegB_21s(); +      value <<= 48; +      value >>= 48; +      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); +      UpdateLocal(register_index, constant); +      break; +    } + +    case Instruction::CONST_WIDE_32: { +      int32_t register_index = instruction.VRegA(); +      // Get 32 bits of constant value, sign extended to 64 bits. +      int64_t value = instruction.VRegB_31i(); +      value <<= 32; +      value >>= 32; +      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); +      UpdateLocal(register_index, constant); +      break; +    } + +    case Instruction::CONST_WIDE: { +      int32_t register_index = instruction.VRegA(); +      HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); +      UpdateLocal(register_index, constant); +      break; +    } + +    case Instruction::CONST_WIDE_HIGH16: { +      int32_t register_index = instruction.VRegA(); +      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; +      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); +      UpdateLocal(register_index, constant); +      break; +    } + +    // Note that the SSA building will refine the types. +    case Instruction::MOVE: +    case Instruction::MOVE_FROM16: +    case Instruction::MOVE_16: { +      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); +      UpdateLocal(instruction.VRegA(), value); +      break; +    } + +    // Note that the SSA building will refine the types. +    case Instruction::MOVE_WIDE: +    case Instruction::MOVE_WIDE_FROM16: +    case Instruction::MOVE_WIDE_16: { +      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong); +      UpdateLocal(instruction.VRegA(), value); +      break; +    } + +    case Instruction::MOVE_OBJECT: +    case Instruction::MOVE_OBJECT_16: +    case Instruction::MOVE_OBJECT_FROM16: { +      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot); +      UpdateLocal(instruction.VRegA(), value); +      break; +    } + +    case Instruction::RETURN_VOID_NO_BARRIER: +    case Instruction::RETURN_VOID: { +      BuildReturn(instruction, Primitive::kPrimVoid, dex_pc); +      break; +    } + +#define IF_XX(comparison, cond) \ +    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ +    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break + +    IF_XX(HEqual, EQ); +    IF_XX(HNotEqual, NE); +    IF_XX(HLessThan, LT); +    IF_XX(HLessThanOrEqual, LE); +    IF_XX(HGreaterThan, GT); +    IF_XX(HGreaterThanOrEqual, GE); + +    case Instruction::GOTO: +    case Instruction::GOTO_16: +    case Instruction::GOTO_32: { +      AppendInstruction(new (arena_) HGoto(dex_pc)); +      current_block_ = nullptr; +      break; +    } + +    case Instruction::RETURN: { +      BuildReturn(instruction, return_type_, dex_pc); +      break; +    } + +    case Instruction::RETURN_OBJECT: { +      BuildReturn(instruction, return_type_, dex_pc); +      break; +    } + +    case Instruction::RETURN_WIDE: { +      BuildReturn(instruction, return_type_, dex_pc); +      break; +    } + +    case Instruction::INVOKE_DIRECT: +    case Instruction::INVOKE_INTERFACE: +    case Instruction::INVOKE_STATIC: +    case Instruction::INVOKE_SUPER: +    case Instruction::INVOKE_VIRTUAL: +    case Instruction::INVOKE_VIRTUAL_QUICK: { +      uint16_t method_idx; +      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) { +        if (!CanDecodeQuickenedInfo()) { +          return false; +        } +        method_idx = LookupQuickenedInfo(dex_pc); +      } else { +        method_idx = instruction.VRegB_35c(); +      } +      uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); +      uint32_t args[5]; +      instruction.GetVarArgs(args); +      if (!BuildInvoke(instruction, dex_pc, method_idx, +                       number_of_vreg_arguments, false, args, -1)) { +        return false; +      } +      break; +    } + +    case Instruction::INVOKE_DIRECT_RANGE: +    case Instruction::INVOKE_INTERFACE_RANGE: +    case Instruction::INVOKE_STATIC_RANGE: +    case Instruction::INVOKE_SUPER_RANGE: +    case Instruction::INVOKE_VIRTUAL_RANGE: +    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { +      uint16_t method_idx; +      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) { +        if (!CanDecodeQuickenedInfo()) { +          return false; +        } +        method_idx = LookupQuickenedInfo(dex_pc); +      } else { +        method_idx = instruction.VRegB_3rc(); +      } +      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); +      uint32_t register_index = instruction.VRegC(); +      if (!BuildInvoke(instruction, dex_pc, method_idx, +                       number_of_vreg_arguments, true, nullptr, register_index)) { +        return false; +      } +      break; +    } + +    case Instruction::NEG_INT: { +      Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::NEG_LONG: { +      Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::NEG_FLOAT: { +      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::NEG_DOUBLE: { +      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::NOT_INT: { +      Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::NOT_LONG: { +      Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::INT_TO_LONG: { +      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::INT_TO_FLOAT: { +      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::INT_TO_DOUBLE: { +      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::LONG_TO_INT: { +      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::LONG_TO_FLOAT: { +      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::LONG_TO_DOUBLE: { +      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::FLOAT_TO_INT: { +      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::FLOAT_TO_LONG: { +      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::FLOAT_TO_DOUBLE: { +      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::DOUBLE_TO_INT: { +      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::DOUBLE_TO_LONG: { +      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::DOUBLE_TO_FLOAT: { +      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::INT_TO_BYTE: { +      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc); +      break; +    } + +    case Instruction::INT_TO_SHORT: { +      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc); +      break; +    } + +    case Instruction::INT_TO_CHAR: { +      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc); +      break; +    } + +    case Instruction::ADD_INT: { +      Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::ADD_LONG: { +      Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::ADD_DOUBLE: { +      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::ADD_FLOAT: { +      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::SUB_INT: { +      Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::SUB_LONG: { +      Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::SUB_FLOAT: { +      Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::SUB_DOUBLE: { +      Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::ADD_INT_2ADDR: { +      Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::MUL_INT: { +      Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::MUL_LONG: { +      Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::MUL_FLOAT: { +      Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::MUL_DOUBLE: { +      Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::DIV_INT: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), +                         dex_pc, Primitive::kPrimInt, false, true); +      break; +    } + +    case Instruction::DIV_LONG: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), +                         dex_pc, Primitive::kPrimLong, false, true); +      break; +    } + +    case Instruction::DIV_FLOAT: { +      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::DIV_DOUBLE: { +      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::REM_INT: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), +                         dex_pc, Primitive::kPrimInt, false, false); +      break; +    } + +    case Instruction::REM_LONG: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), +                         dex_pc, Primitive::kPrimLong, false, false); +      break; +    } + +    case Instruction::REM_FLOAT: { +      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::REM_DOUBLE: { +      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::AND_INT: { +      Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::AND_LONG: { +      Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::SHL_INT: { +      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::SHL_LONG: { +      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::SHR_INT: { +      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::SHR_LONG: { +      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::USHR_INT: { +      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::USHR_LONG: { +      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::OR_INT: { +      Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::OR_LONG: { +      Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::XOR_INT: { +      Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::XOR_LONG: { +      Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::ADD_LONG_2ADDR: { +      Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::ADD_DOUBLE_2ADDR: { +      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::ADD_FLOAT_2ADDR: { +      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::SUB_INT_2ADDR: { +      Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::SUB_LONG_2ADDR: { +      Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::SUB_FLOAT_2ADDR: { +      Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::SUB_DOUBLE_2ADDR: { +      Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::MUL_INT_2ADDR: { +      Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::MUL_LONG_2ADDR: { +      Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::MUL_FLOAT_2ADDR: { +      Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::MUL_DOUBLE_2ADDR: { +      Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::DIV_INT_2ADDR: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), +                         dex_pc, Primitive::kPrimInt, false, true); +      break; +    } + +    case Instruction::DIV_LONG_2ADDR: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), +                         dex_pc, Primitive::kPrimLong, false, true); +      break; +    } + +    case Instruction::REM_INT_2ADDR: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), +                         dex_pc, Primitive::kPrimInt, false, false); +      break; +    } + +    case Instruction::REM_LONG_2ADDR: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), +                         dex_pc, Primitive::kPrimLong, false, false); +      break; +    } + +    case Instruction::REM_FLOAT_2ADDR: { +      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::REM_DOUBLE_2ADDR: { +      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::SHL_INT_2ADDR: { +      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::SHL_LONG_2ADDR: { +      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::SHR_INT_2ADDR: { +      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::SHR_LONG_2ADDR: { +      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::USHR_INT_2ADDR: { +      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::USHR_LONG_2ADDR: { +      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::DIV_FLOAT_2ADDR: { +      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); +      break; +    } + +    case Instruction::DIV_DOUBLE_2ADDR: { +      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); +      break; +    } + +    case Instruction::AND_INT_2ADDR: { +      Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::AND_LONG_2ADDR: { +      Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::OR_INT_2ADDR: { +      Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::OR_LONG_2ADDR: { +      Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::XOR_INT_2ADDR: { +      Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc); +      break; +    } + +    case Instruction::XOR_LONG_2ADDR: { +      Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc); +      break; +    } + +    case Instruction::ADD_INT_LIT16: { +      Binop_22s<HAdd>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::AND_INT_LIT16: { +      Binop_22s<HAnd>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::OR_INT_LIT16: { +      Binop_22s<HOr>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::XOR_INT_LIT16: { +      Binop_22s<HXor>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::RSUB_INT: { +      Binop_22s<HSub>(instruction, true, dex_pc); +      break; +    } + +    case Instruction::MUL_INT_LIT16: { +      Binop_22s<HMul>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::ADD_INT_LIT8: { +      Binop_22b<HAdd>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::AND_INT_LIT8: { +      Binop_22b<HAnd>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::OR_INT_LIT8: { +      Binop_22b<HOr>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::XOR_INT_LIT8: { +      Binop_22b<HXor>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::RSUB_INT_LIT8: { +      Binop_22b<HSub>(instruction, true, dex_pc); +      break; +    } + +    case Instruction::MUL_INT_LIT8: { +      Binop_22b<HMul>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::DIV_INT_LIT16: +    case Instruction::DIV_INT_LIT8: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), +                         dex_pc, Primitive::kPrimInt, true, true); +      break; +    } + +    case Instruction::REM_INT_LIT16: +    case Instruction::REM_INT_LIT8: { +      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), +                         dex_pc, Primitive::kPrimInt, true, false); +      break; +    } + +    case Instruction::SHL_INT_LIT8: { +      Binop_22b<HShl>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::SHR_INT_LIT8: { +      Binop_22b<HShr>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::USHR_INT_LIT8: { +      Binop_22b<HUShr>(instruction, false, dex_pc); +      break; +    } + +    case Instruction::NEW_INSTANCE: { +      if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) { +        return false; +      } +      UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +      break; +    } + +    case Instruction::NEW_ARRAY: { +      uint16_t type_index = instruction.VRegC_22c(); +      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt); +      bool finalizable; +      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) +          ? kQuickAllocArrayWithAccessCheck +          : kQuickAllocArray; +      AppendInstruction(new (arena_) HNewArray(length, +                                               graph_->GetCurrentMethod(), +                                               dex_pc, +                                               type_index, +                                               *dex_compilation_unit_->GetDexFile(), +                                               entrypoint)); +      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); +      break; +    } + +    case Instruction::FILLED_NEW_ARRAY: { +      uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); +      uint32_t type_index = instruction.VRegB_35c(); +      uint32_t args[5]; +      instruction.GetVarArgs(args); +      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0); +      break; +    } + +    case Instruction::FILLED_NEW_ARRAY_RANGE: { +      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); +      uint32_t type_index = instruction.VRegB_3rc(); +      uint32_t register_index = instruction.VRegC_3rc(); +      BuildFilledNewArray( +          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index); +      break; +    } + +    case Instruction::FILL_ARRAY_DATA: { +      BuildFillArrayData(instruction, dex_pc); +      break; +    } + +    case Instruction::MOVE_RESULT: +    case Instruction::MOVE_RESULT_WIDE: +    case Instruction::MOVE_RESULT_OBJECT: { +      DCHECK(latest_result_ != nullptr); +      UpdateLocal(instruction.VRegA(), latest_result_); +      latest_result_ = nullptr; +      break; +    } + +    case Instruction::CMP_LONG: { +      Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc); +      break; +    } + +    case Instruction::CMPG_FLOAT: { +      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc); +      break; +    } + +    case Instruction::CMPG_DOUBLE: { +      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc); +      break; +    } + +    case Instruction::CMPL_FLOAT: { +      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc); +      break; +    } + +    case Instruction::CMPL_DOUBLE: { +      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc); +      break; +    } + +    case Instruction::NOP: +      break; + +    case Instruction::IGET: +    case Instruction::IGET_QUICK: +    case Instruction::IGET_WIDE: +    case Instruction::IGET_WIDE_QUICK: +    case Instruction::IGET_OBJECT: +    case Instruction::IGET_OBJECT_QUICK: +    case Instruction::IGET_BOOLEAN: +    case Instruction::IGET_BOOLEAN_QUICK: +    case Instruction::IGET_BYTE: +    case Instruction::IGET_BYTE_QUICK: +    case Instruction::IGET_CHAR: +    case Instruction::IGET_CHAR_QUICK: +    case Instruction::IGET_SHORT: +    case Instruction::IGET_SHORT_QUICK: { +      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) { +        return false; +      } +      break; +    } + +    case Instruction::IPUT: +    case Instruction::IPUT_QUICK: +    case Instruction::IPUT_WIDE: +    case Instruction::IPUT_WIDE_QUICK: +    case Instruction::IPUT_OBJECT: +    case Instruction::IPUT_OBJECT_QUICK: +    case Instruction::IPUT_BOOLEAN: +    case Instruction::IPUT_BOOLEAN_QUICK: +    case Instruction::IPUT_BYTE: +    case Instruction::IPUT_BYTE_QUICK: +    case Instruction::IPUT_CHAR: +    case Instruction::IPUT_CHAR_QUICK: +    case Instruction::IPUT_SHORT: +    case Instruction::IPUT_SHORT_QUICK: { +      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) { +        return false; +      } +      break; +    } + +    case Instruction::SGET: +    case Instruction::SGET_WIDE: +    case Instruction::SGET_OBJECT: +    case Instruction::SGET_BOOLEAN: +    case Instruction::SGET_BYTE: +    case Instruction::SGET_CHAR: +    case Instruction::SGET_SHORT: { +      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) { +        return false; +      } +      break; +    } + +    case Instruction::SPUT: +    case Instruction::SPUT_WIDE: +    case Instruction::SPUT_OBJECT: +    case Instruction::SPUT_BOOLEAN: +    case Instruction::SPUT_BYTE: +    case Instruction::SPUT_CHAR: +    case Instruction::SPUT_SHORT: { +      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) { +        return false; +      } +      break; +    } + +#define ARRAY_XX(kind, anticipated_type)                                          \ +    case Instruction::AGET##kind: {                                               \ +      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \ +      break;                                                                      \ +    }                                                                             \ +    case Instruction::APUT##kind: {                                               \ +      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \ +      break;                                                                      \ +    } + +    ARRAY_XX(, Primitive::kPrimInt); +    ARRAY_XX(_WIDE, Primitive::kPrimLong); +    ARRAY_XX(_OBJECT, Primitive::kPrimNot); +    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean); +    ARRAY_XX(_BYTE, Primitive::kPrimByte); +    ARRAY_XX(_CHAR, Primitive::kPrimChar); +    ARRAY_XX(_SHORT, Primitive::kPrimShort); + +    case Instruction::ARRAY_LENGTH: { +      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot); +      object = new (arena_) HNullCheck(object, dex_pc); +      AppendInstruction(object); +      AppendInstruction(new (arena_) HArrayLength(object, dex_pc)); +      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); +      break; +    } + +    case Instruction::CONST_STRING: { +      uint32_t string_index = instruction.VRegB_21c(); +      AppendInstruction( +          new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); +      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); +      break; +    } + +    case Instruction::CONST_STRING_JUMBO: { +      uint32_t string_index = instruction.VRegB_31c(); +      AppendInstruction( +          new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); +      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); +      break; +    } + +    case Instruction::CONST_CLASS: { +      uint16_t type_index = instruction.VRegB_21c(); +      bool type_known_final; +      bool type_known_abstract; +      bool dont_use_is_referrers_class; +      // `CanAccessTypeWithoutChecks` will tell whether the method being +      // built is trying to access its own class, so that the generated +      // code can optimize for this case. However, the optimization does not +      // work for inlining, so we use `IsOutermostCompilingClass` instead. +      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( +          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, +          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class); +      AppendInstruction(new (arena_) HLoadClass( +          graph_->GetCurrentMethod(), +          type_index, +          *dex_file_, +          IsOutermostCompilingClass(type_index), +          dex_pc, +          !can_access, +          compiler_driver_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_index))); +      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); +      break; +    } + +    case Instruction::MOVE_EXCEPTION: { +      AppendInstruction(new (arena_) HLoadException(dex_pc)); +      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); +      AppendInstruction(new (arena_) HClearException(dex_pc)); +      break; +    } + +    case Instruction::THROW: { +      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot); +      AppendInstruction(new (arena_) HThrow(exception, dex_pc)); +      // We finished building this block. Set the current block to null to avoid +      // adding dead instructions to it. +      current_block_ = nullptr; +      break; +    } + +    case Instruction::INSTANCE_OF: { +      uint8_t destination = instruction.VRegA_22c(); +      uint8_t reference = instruction.VRegB_22c(); +      uint16_t type_index = instruction.VRegC_22c(); +      BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); +      break; +    } + +    case Instruction::CHECK_CAST: { +      uint8_t reference = instruction.VRegA_21c(); +      uint16_t type_index = instruction.VRegB_21c(); +      BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); +      break; +    } + +    case Instruction::MONITOR_ENTER: { +      AppendInstruction(new (arena_) HMonitorOperation( +          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), +          HMonitorOperation::OperationKind::kEnter, +          dex_pc)); +      break; +    } + +    case Instruction::MONITOR_EXIT: { +      AppendInstruction(new (arena_) HMonitorOperation( +          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), +          HMonitorOperation::OperationKind::kExit, +          dex_pc)); +      break; +    } + +    case Instruction::SPARSE_SWITCH: +    case Instruction::PACKED_SWITCH: { +      BuildSwitch(instruction, dex_pc); +      break; +    } + +    default: +      VLOG(compiler) << "Did not compile " +                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) +                     << " because of unhandled instruction " +                     << instruction.Name(); +      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction); +      return false; +  } +  return true; +}  // NOLINT(readability/fn_size) + +}  // namespace art |