diff options
Diffstat (limited to 'compiler/dex/quick/gen_common.cc')
| -rw-r--r-- | compiler/dex/quick/gen_common.cc | 1768 | 
1 files changed, 1768 insertions, 0 deletions
diff --git a/compiler/dex/quick/gen_common.cc b/compiler/dex/quick/gen_common.cc new file mode 100644 index 0000000000..f018c61819 --- /dev/null +++ b/compiler/dex/quick/gen_common.cc @@ -0,0 +1,1768 @@ +/* + * Copyright (C) 2012 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + *      http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dex/compiler_ir.h" +#include "dex/compiler_internals.h" +#include "dex/quick/mir_to_lir-inl.h" +#include "entrypoints/quick/quick_entrypoints.h" +#include "mirror/array.h" +#include "verifier/method_verifier.h" + +namespace art { + +/* + * This source files contains "gen" codegen routines that should + * be applicable to most targets.  Only mid-level support utilities + * and "op" calls may be used here. + */ + +/* + * Generate an kPseudoBarrier marker to indicate the boundary of special + * blocks. + */ +void Mir2Lir::GenBarrier() { +  LIR* barrier = NewLIR0(kPseudoBarrier); +  /* Mark all resources as being clobbered */ +  barrier->def_mask = -1; +} + +// FIXME: need to do some work to split out targets with +// condition codes and those without +LIR* Mir2Lir::GenCheck(ConditionCode c_code, ThrowKind kind) { +  DCHECK_NE(cu_->instruction_set, kMips); +  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_); +  LIR* branch = OpCondBranch(c_code, tgt); +  // Remember branch target - will process later +  throw_launchpads_.Insert(tgt); +  return branch; +} + +LIR* Mir2Lir::GenImmedCheck(ConditionCode c_code, int reg, int imm_val, ThrowKind kind) { +  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg, imm_val); +  LIR* branch; +  if (c_code == kCondAl) { +    branch = OpUnconditionalBranch(tgt); +  } else { +    branch = OpCmpImmBranch(c_code, reg, imm_val, tgt); +  } +  // Remember branch target - will process later +  throw_launchpads_.Insert(tgt); +  return branch; +} + +/* Perform null-check on a register.  */ +LIR* Mir2Lir::GenNullCheck(int s_reg, int m_reg, int opt_flags) { +  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && +    opt_flags & MIR_IGNORE_NULL_CHECK) { +    return NULL; +  } +  return GenImmedCheck(kCondEq, m_reg, 0, kThrowNullPointer); +} + +/* Perform check on two registers */ +LIR* Mir2Lir::GenRegRegCheck(ConditionCode c_code, int reg1, int reg2, +                             ThrowKind kind) { +  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg1, reg2); +  LIR* branch = OpCmpBranch(c_code, reg1, reg2, tgt); +  // Remember branch target - will process later +  throw_launchpads_.Insert(tgt); +  return branch; +} + +void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, +                                  RegLocation rl_src2, LIR* taken, +                                  LIR* fall_through) { +  ConditionCode cond; +  switch (opcode) { +    case Instruction::IF_EQ: +      cond = kCondEq; +      break; +    case Instruction::IF_NE: +      cond = kCondNe; +      break; +    case Instruction::IF_LT: +      cond = kCondLt; +      break; +    case Instruction::IF_GE: +      cond = kCondGe; +      break; +    case Instruction::IF_GT: +      cond = kCondGt; +      break; +    case Instruction::IF_LE: +      cond = kCondLe; +      break; +    default: +      cond = static_cast<ConditionCode>(0); +      LOG(FATAL) << "Unexpected opcode " << opcode; +  } + +  // Normalize such that if either operand is constant, src2 will be constant +  if (rl_src1.is_const) { +    RegLocation rl_temp = rl_src1; +    rl_src1 = rl_src2; +    rl_src2 = rl_temp; +    cond = FlipComparisonOrder(cond); +  } + +  rl_src1 = LoadValue(rl_src1, kCoreReg); +  // Is this really an immediate comparison? +  if (rl_src2.is_const) { +    // If it's already live in a register or not easily materialized, just keep going +    RegLocation rl_temp = UpdateLoc(rl_src2); +    if ((rl_temp.location == kLocDalvikFrame) && +        InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) { +      // OK - convert this to a compare immediate and branch +      OpCmpImmBranch(cond, rl_src1.low_reg, mir_graph_->ConstantValue(rl_src2), taken); +      OpUnconditionalBranch(fall_through); +      return; +    } +  } +  rl_src2 = LoadValue(rl_src2, kCoreReg); +  OpCmpBranch(cond, rl_src1.low_reg, rl_src2.low_reg, taken); +  OpUnconditionalBranch(fall_through); +} + +void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken, +                                      LIR* fall_through) { +  ConditionCode cond; +  rl_src = LoadValue(rl_src, kCoreReg); +  switch (opcode) { +    case Instruction::IF_EQZ: +      cond = kCondEq; +      break; +    case Instruction::IF_NEZ: +      cond = kCondNe; +      break; +    case Instruction::IF_LTZ: +      cond = kCondLt; +      break; +    case Instruction::IF_GEZ: +      cond = kCondGe; +      break; +    case Instruction::IF_GTZ: +      cond = kCondGt; +      break; +    case Instruction::IF_LEZ: +      cond = kCondLe; +      break; +    default: +      cond = static_cast<ConditionCode>(0); +      LOG(FATAL) << "Unexpected opcode " << opcode; +  } +  OpCmpImmBranch(cond, rl_src.low_reg, 0, taken); +  OpUnconditionalBranch(fall_through); +} + +void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) { +  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); +  if (rl_src.location == kLocPhysReg) { +    OpRegCopy(rl_result.low_reg, rl_src.low_reg); +  } else { +    LoadValueDirect(rl_src, rl_result.low_reg); +  } +  OpRegRegImm(kOpAsr, rl_result.high_reg, rl_result.low_reg, 31); +  StoreValueWide(rl_dest, rl_result); +} + +void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, +                              RegLocation rl_src) { +  rl_src = LoadValue(rl_src, kCoreReg); +  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); +  OpKind op = kOpInvalid; +  switch (opcode) { +    case Instruction::INT_TO_BYTE: +      op = kOp2Byte; +      break; +    case Instruction::INT_TO_SHORT: +       op = kOp2Short; +       break; +    case Instruction::INT_TO_CHAR: +       op = kOp2Char; +       break; +    default: +      LOG(ERROR) << "Bad int conversion type"; +  } +  OpRegReg(op, rl_result.low_reg, rl_src.low_reg); +  StoreValue(rl_dest, rl_result); +} + +/* + * Let helper function take care of everything.  Will call + * Array::AllocFromCode(type_idx, method, count); + * Note: AllocFromCode will handle checks for errNegativeArraySize. + */ +void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest, +                          RegLocation rl_src) { +  FlushAllRegs();  /* Everything to home location */ +  ThreadOffset func_offset(-1); +  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, +                                                       type_idx)) { +    func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocArray); +  } else { +    func_offset= QUICK_ENTRYPOINT_OFFSET(pAllocArrayWithAccessCheck); +  } +  CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true); +  RegLocation rl_result = GetReturn(false); +  StoreValue(rl_dest, rl_result); +} + +/* + * Similar to GenNewArray, but with post-allocation initialization. + * Verifier guarantees we're dealing with an array class.  Current + * code throws runtime exception "bad Filled array req" for 'D' and 'J'. + * Current code also throws internal unimp if not 'L', '[' or 'I'. + */ +void Mir2Lir::GenFilledNewArray(CallInfo* info) { +  int elems = info->num_arg_words; +  int type_idx = info->index; +  FlushAllRegs();  /* Everything to home location */ +  ThreadOffset func_offset(-1); +  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, +                                                       type_idx)) { +    func_offset = QUICK_ENTRYPOINT_OFFSET(pCheckAndAllocArray); +  } else { +    func_offset = QUICK_ENTRYPOINT_OFFSET(pCheckAndAllocArrayWithAccessCheck); +  } +  CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true); +  FreeTemp(TargetReg(kArg2)); +  FreeTemp(TargetReg(kArg1)); +  /* +   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the +   * return region.  Because AllocFromCode placed the new array +   * in kRet0, we'll just lock it into place.  When debugger support is +   * added, it may be necessary to additionally copy all return +   * values to a home location in thread-local storage +   */ +  LockTemp(TargetReg(kRet0)); + +  // TODO: use the correct component size, currently all supported types +  // share array alignment with ints (see comment at head of function) +  size_t component_size = sizeof(int32_t); + +  // Having a range of 0 is legal +  if (info->is_range && (elems > 0)) { +    /* +     * Bit of ugliness here.  We're going generate a mem copy loop +     * on the register range, but it is possible that some regs +     * in the range have been promoted.  This is unlikely, but +     * before generating the copy, we'll just force a flush +     * of any regs in the source range that have been promoted to +     * home location. +     */ +    for (int i = 0; i < elems; i++) { +      RegLocation loc = UpdateLoc(info->args[i]); +      if (loc.location == kLocPhysReg) { +        StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), +                      loc.low_reg, kWord); +      } +    } +    /* +     * TUNING note: generated code here could be much improved, but +     * this is an uncommon operation and isn't especially performance +     * critical. +     */ +    int r_src = AllocTemp(); +    int r_dst = AllocTemp(); +    int r_idx = AllocTemp(); +    int r_val = INVALID_REG; +    switch (cu_->instruction_set) { +      case kThumb2: +        r_val = TargetReg(kLr); +        break; +      case kX86: +        FreeTemp(TargetReg(kRet0)); +        r_val = AllocTemp(); +        break; +      case kMips: +        r_val = AllocTemp(); +        break; +      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; +    } +    // Set up source pointer +    RegLocation rl_first = info->args[0]; +    OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low)); +    // Set up the target pointer +    OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0), +                mirror::Array::DataOffset(component_size).Int32Value()); +    // Set up the loop counter (known to be > 0) +    LoadConstant(r_idx, elems - 1); +    // Generate the copy loop.  Going backwards for convenience +    LIR* target = NewLIR0(kPseudoTargetLabel); +    // Copy next element +    LoadBaseIndexed(r_src, r_idx, r_val, 2, kWord); +    StoreBaseIndexed(r_dst, r_idx, r_val, 2, kWord); +    FreeTemp(r_val); +    OpDecAndBranch(kCondGe, r_idx, target); +    if (cu_->instruction_set == kX86) { +      // Restore the target pointer +      OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst, +                  -mirror::Array::DataOffset(component_size).Int32Value()); +    } +  } else if (!info->is_range) { +    // TUNING: interleave +    for (int i = 0; i < elems; i++) { +      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg); +      StoreBaseDisp(TargetReg(kRet0), +                    mirror::Array::DataOffset(component_size).Int32Value() + +                    i * 4, rl_arg.low_reg, kWord); +      // If the LoadValue caused a temp to be allocated, free it +      if (IsTemp(rl_arg.low_reg)) { +        FreeTemp(rl_arg.low_reg); +      } +    } +  } +  if (info->result.location != kLocInvalid) { +    StoreValue(info->result, GetReturn(false /* not fp */)); +  } +} + +void Mir2Lir::GenSput(uint32_t field_idx, RegLocation rl_src, bool is_long_or_double, +                      bool is_object) { +  int field_offset; +  int ssb_index; +  bool is_volatile; +  bool is_referrers_class; +  bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( +      field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index, +      is_referrers_class, is_volatile, true); +  if (fast_path && !SLOW_FIELD_PATH) { +    DCHECK_GE(field_offset, 0); +    int rBase; +    if (is_referrers_class) { +      // Fast path, static storage base is this method's class +      RegLocation rl_method  = LoadCurrMethod(); +      rBase = AllocTemp(); +      LoadWordDisp(rl_method.low_reg, +                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(), rBase); +      if (IsTemp(rl_method.low_reg)) { +        FreeTemp(rl_method.low_reg); +      } +    } else { +      // Medium path, static storage base in a different class which requires checks that the other +      // class is initialized. +      // TODO: remove initialized check now that we are initializing classes in the compiler driver. +      DCHECK_GE(ssb_index, 0); +      // May do runtime call so everything to home locations. +      FlushAllRegs(); +      // Using fixed register to sync with possible call to runtime support. +      int r_method = TargetReg(kArg1); +      LockTemp(r_method); +      LoadCurrMethodDirect(r_method); +      rBase = TargetReg(kArg0); +      LockTemp(rBase); +      LoadWordDisp(r_method, +                   mirror::ArtMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), +                   rBase); +      LoadWordDisp(rBase, +                   mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + +                   sizeof(int32_t*) * ssb_index, rBase); +      // rBase now points at appropriate static storage base (Class*) +      // or NULL if not initialized. Check for NULL and call helper if NULL. +      // TUNING: fast path should fall through +      LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); +      LoadConstant(TargetReg(kArg0), ssb_index); +      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); +      if (cu_->instruction_set == kMips) { +        // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy +        OpRegCopy(rBase, TargetReg(kRet0)); +      } +      LIR* skip_target = NewLIR0(kPseudoTargetLabel); +      branch_over->target = skip_target; +      FreeTemp(r_method); +    } +    // rBase now holds static storage base +    if (is_long_or_double) { +      rl_src = LoadValueWide(rl_src, kAnyReg); +    } else { +      rl_src = LoadValue(rl_src, kAnyReg); +    } +    if (is_volatile) { +      GenMemBarrier(kStoreStore); +    } +    if (is_long_or_double) { +      StoreBaseDispWide(rBase, field_offset, rl_src.low_reg, +                        rl_src.high_reg); +    } else { +      StoreWordDisp(rBase, field_offset, rl_src.low_reg); +    } +    if (is_volatile) { +      GenMemBarrier(kStoreLoad); +    } +    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { +      MarkGCCard(rl_src.low_reg, rBase); +    } +    FreeTemp(rBase); +  } else { +    FlushAllRegs();  // Everything to home locations +    ThreadOffset setter_offset = +        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pSet64Static) +                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pSetObjStatic) +                                       : QUICK_ENTRYPOINT_OFFSET(pSet32Static)); +    CallRuntimeHelperImmRegLocation(setter_offset, field_idx, rl_src, true); +  } +} + +void Mir2Lir::GenSget(uint32_t field_idx, RegLocation rl_dest, +                      bool is_long_or_double, bool is_object) { +  int field_offset; +  int ssb_index; +  bool is_volatile; +  bool is_referrers_class; +  bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( +      field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index, +      is_referrers_class, is_volatile, false); +  if (fast_path && !SLOW_FIELD_PATH) { +    DCHECK_GE(field_offset, 0); +    int rBase; +    if (is_referrers_class) { +      // Fast path, static storage base is this method's class +      RegLocation rl_method  = LoadCurrMethod(); +      rBase = AllocTemp(); +      LoadWordDisp(rl_method.low_reg, +                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(), rBase); +    } else { +      // Medium path, static storage base in a different class which requires checks that the other +      // class is initialized +      // TODO: remove initialized check now that we are initializing classes in the compiler driver. +      DCHECK_GE(ssb_index, 0); +      // May do runtime call so everything to home locations. +      FlushAllRegs(); +      // Using fixed register to sync with possible call to runtime support. +      int r_method = TargetReg(kArg1); +      LockTemp(r_method); +      LoadCurrMethodDirect(r_method); +      rBase = TargetReg(kArg0); +      LockTemp(rBase); +      LoadWordDisp(r_method, +                   mirror::ArtMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), +                   rBase); +      LoadWordDisp(rBase, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + +                   sizeof(int32_t*) * ssb_index, rBase); +      // rBase now points at appropriate static storage base (Class*) +      // or NULL if not initialized. Check for NULL and call helper if NULL. +      // TUNING: fast path should fall through +      LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); +      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); +      if (cu_->instruction_set == kMips) { +        // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy +        OpRegCopy(rBase, TargetReg(kRet0)); +      } +      LIR* skip_target = NewLIR0(kPseudoTargetLabel); +      branch_over->target = skip_target; +      FreeTemp(r_method); +    } +    // rBase now holds static storage base +    RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true); +    if (is_volatile) { +      GenMemBarrier(kLoadLoad); +    } +    if (is_long_or_double) { +      LoadBaseDispWide(rBase, field_offset, rl_result.low_reg, +                       rl_result.high_reg, INVALID_SREG); +    } else { +      LoadWordDisp(rBase, field_offset, rl_result.low_reg); +    } +    FreeTemp(rBase); +    if (is_long_or_double) { +      StoreValueWide(rl_dest, rl_result); +    } else { +      StoreValue(rl_dest, rl_result); +    } +  } else { +    FlushAllRegs();  // Everything to home locations +    ThreadOffset getterOffset = +        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pGet64Static) +                          :(is_object ? QUICK_ENTRYPOINT_OFFSET(pGetObjStatic) +                                      : QUICK_ENTRYPOINT_OFFSET(pGet32Static)); +    CallRuntimeHelperImm(getterOffset, field_idx, true); +    if (is_long_or_double) { +      RegLocation rl_result = GetReturnWide(rl_dest.fp); +      StoreValueWide(rl_dest, rl_result); +    } else { +      RegLocation rl_result = GetReturn(rl_dest.fp); +      StoreValue(rl_dest, rl_result); +    } +  } +} + +void Mir2Lir::HandleSuspendLaunchPads() { +  int num_elems = suspend_launchpads_.Size(); +  ThreadOffset helper_offset = QUICK_ENTRYPOINT_OFFSET(pTestSuspend); +  for (int i = 0; i < num_elems; i++) { +    ResetRegPool(); +    ResetDefTracking(); +    LIR* lab = suspend_launchpads_.Get(i); +    LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]); +    current_dalvik_offset_ = lab->operands[1]; +    AppendLIR(lab); +    int r_tgt = CallHelperSetup(helper_offset); +    CallHelper(r_tgt, helper_offset, true /* MarkSafepointPC */); +    OpUnconditionalBranch(resume_lab); +  } +} + +void Mir2Lir::HandleIntrinsicLaunchPads() { +  int num_elems = intrinsic_launchpads_.Size(); +  for (int i = 0; i < num_elems; i++) { +    ResetRegPool(); +    ResetDefTracking(); +    LIR* lab = intrinsic_launchpads_.Get(i); +    CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]); +    current_dalvik_offset_ = info->offset; +    AppendLIR(lab); +    // NOTE: GenInvoke handles MarkSafepointPC +    GenInvoke(info); +    LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]); +    if (resume_lab != NULL) { +      OpUnconditionalBranch(resume_lab); +    } +  } +} + +void Mir2Lir::HandleThrowLaunchPads() { +  int num_elems = throw_launchpads_.Size(); +  for (int i = 0; i < num_elems; i++) { +    ResetRegPool(); +    ResetDefTracking(); +    LIR* lab = throw_launchpads_.Get(i); +    current_dalvik_offset_ = lab->operands[1]; +    AppendLIR(lab); +    ThreadOffset func_offset(-1); +    int v1 = lab->operands[2]; +    int v2 = lab->operands[3]; +    bool target_x86 = (cu_->instruction_set == kX86); +    switch (lab->operands[0]) { +      case kThrowNullPointer: +        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowNullPointer); +        break; +      case kThrowConstantArrayBounds:  // v1 is length reg (for Arm/Mips), v2 constant index +        // v1 holds the constant array index.  Mips/Arm uses v2 for length, x86 reloads. +        if (target_x86) { +          OpRegMem(kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value()); +        } else { +          OpRegCopy(TargetReg(kArg1), v1); +        } +        // Make sure the following LoadConstant doesn't mess with kArg1. +        LockTemp(TargetReg(kArg1)); +        LoadConstant(TargetReg(kArg0), v2); +        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowArrayBounds); +        break; +      case kThrowArrayBounds: +        // Move v1 (array index) to kArg0 and v2 (array length) to kArg1 +        if (v2 != TargetReg(kArg0)) { +          OpRegCopy(TargetReg(kArg0), v1); +          if (target_x86) { +            // x86 leaves the array pointer in v2, so load the array length that the handler expects +            OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); +          } else { +            OpRegCopy(TargetReg(kArg1), v2); +          } +        } else { +          if (v1 == TargetReg(kArg1)) { +            // Swap v1 and v2, using kArg2 as a temp +            OpRegCopy(TargetReg(kArg2), v1); +            if (target_x86) { +              // x86 leaves the array pointer in v2; load the array length that the handler expects +              OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); +            } else { +              OpRegCopy(TargetReg(kArg1), v2); +            } +            OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); +          } else { +            if (target_x86) { +              // x86 leaves the array pointer in v2; load the array length that the handler expects +              OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); +            } else { +              OpRegCopy(TargetReg(kArg1), v2); +            } +            OpRegCopy(TargetReg(kArg0), v1); +          } +        } +        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowArrayBounds); +        break; +      case kThrowDivZero: +        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowDivZero); +        break; +      case kThrowNoSuchMethod: +        OpRegCopy(TargetReg(kArg0), v1); +        func_offset = +          QUICK_ENTRYPOINT_OFFSET(pThrowNoSuchMethod); +        break; +      case kThrowStackOverflow: +        func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowStackOverflow); +        // Restore stack alignment +        if (target_x86) { +          OpRegImm(kOpAdd, TargetReg(kSp), frame_size_); +        } else { +          OpRegImm(kOpAdd, TargetReg(kSp), (num_core_spills_ + num_fp_spills_) * 4); +        } +        break; +      default: +        LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0]; +    } +    ClobberCalleeSave(); +    int r_tgt = CallHelperSetup(func_offset); +    CallHelper(r_tgt, func_offset, true /* MarkSafepointPC */); +  } +} + +void Mir2Lir::GenIGet(uint32_t field_idx, int opt_flags, OpSize size, +                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, +                      bool is_object) { +  int field_offset; +  bool is_volatile; + +  bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false); + +  if (fast_path && !SLOW_FIELD_PATH) { +    RegLocation rl_result; +    RegisterClass reg_class = oat_reg_class_by_size(size); +    DCHECK_GE(field_offset, 0); +    rl_obj = LoadValue(rl_obj, kCoreReg); +    if (is_long_or_double) { +      DCHECK(rl_dest.wide); +      GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); +      if (cu_->instruction_set == kX86) { +        rl_result = EvalLoc(rl_dest, reg_class, true); +        GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); +        LoadBaseDispWide(rl_obj.low_reg, field_offset, rl_result.low_reg, +                         rl_result.high_reg, rl_obj.s_reg_low); +        if (is_volatile) { +          GenMemBarrier(kLoadLoad); +        } +      } else { +        int reg_ptr = AllocTemp(); +        OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); +        rl_result = EvalLoc(rl_dest, reg_class, true); +        LoadBaseDispWide(reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); +        if (is_volatile) { +          GenMemBarrier(kLoadLoad); +        } +        FreeTemp(reg_ptr); +      } +      StoreValueWide(rl_dest, rl_result); +    } else { +      rl_result = EvalLoc(rl_dest, reg_class, true); +      GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); +      LoadBaseDisp(rl_obj.low_reg, field_offset, rl_result.low_reg, +                   kWord, rl_obj.s_reg_low); +      if (is_volatile) { +        GenMemBarrier(kLoadLoad); +      } +      StoreValue(rl_dest, rl_result); +    } +  } else { +    ThreadOffset getterOffset = +        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pGet64Instance) +                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pGetObjInstance) +                                       : QUICK_ENTRYPOINT_OFFSET(pGet32Instance)); +    CallRuntimeHelperImmRegLocation(getterOffset, field_idx, rl_obj, true); +    if (is_long_or_double) { +      RegLocation rl_result = GetReturnWide(rl_dest.fp); +      StoreValueWide(rl_dest, rl_result); +    } else { +      RegLocation rl_result = GetReturn(rl_dest.fp); +      StoreValue(rl_dest, rl_result); +    } +  } +} + +void Mir2Lir::GenIPut(uint32_t field_idx, int opt_flags, OpSize size, +                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, +                      bool is_object) { +  int field_offset; +  bool is_volatile; + +  bool fast_path = FastInstance(field_idx, field_offset, is_volatile, +                 true); +  if (fast_path && !SLOW_FIELD_PATH) { +    RegisterClass reg_class = oat_reg_class_by_size(size); +    DCHECK_GE(field_offset, 0); +    rl_obj = LoadValue(rl_obj, kCoreReg); +    if (is_long_or_double) { +      int reg_ptr; +      rl_src = LoadValueWide(rl_src, kAnyReg); +      GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); +      reg_ptr = AllocTemp(); +      OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); +      if (is_volatile) { +        GenMemBarrier(kStoreStore); +      } +      StoreBaseDispWide(reg_ptr, 0, rl_src.low_reg, rl_src.high_reg); +      if (is_volatile) { +        GenMemBarrier(kLoadLoad); +      } +      FreeTemp(reg_ptr); +    } else { +      rl_src = LoadValue(rl_src, reg_class); +      GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); +      if (is_volatile) { +        GenMemBarrier(kStoreStore); +      } +      StoreBaseDisp(rl_obj.low_reg, field_offset, rl_src.low_reg, kWord); +      if (is_volatile) { +        GenMemBarrier(kLoadLoad); +      } +      if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { +        MarkGCCard(rl_src.low_reg, rl_obj.low_reg); +      } +    } +  } else { +    ThreadOffset setter_offset = +        is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pSet64Instance) +                          : (is_object ? QUICK_ENTRYPOINT_OFFSET(pSetObjInstance) +                                       : QUICK_ENTRYPOINT_OFFSET(pSet32Instance)); +    CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_idx, rl_obj, rl_src, true); +  } +} + +void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) { +  RegLocation rl_method = LoadCurrMethod(); +  int res_reg = AllocTemp(); +  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); +  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, +                                                   *cu_->dex_file, +                                                   type_idx)) { +    // Call out to helper which resolves type and verifies access. +    // Resolved type returned in kRet0. +    CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), +                            type_idx, rl_method.low_reg, true); +    RegLocation rl_result = GetReturn(false); +    StoreValue(rl_dest, rl_result); +  } else { +    // We're don't need access checks, load type from dex cache +    int32_t dex_cache_offset = +        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(); +    LoadWordDisp(rl_method.low_reg, dex_cache_offset, res_reg); +    int32_t offset_of_type = +        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) +                          * type_idx); +    LoadWordDisp(res_reg, offset_of_type, rl_result.low_reg); +    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, +        type_idx) || SLOW_TYPE_PATH) { +      // Slow path, at runtime test if type is null and if so initialize +      FlushAllRegs(); +      LIR* branch1 = OpCmpImmBranch(kCondEq, rl_result.low_reg, 0, NULL); +      // Resolved, store and hop over following code +      StoreValue(rl_dest, rl_result); +      /* +       * Because we have stores of the target value on two paths, +       * clobber temp tracking for the destination using the ssa name +       */ +      ClobberSReg(rl_dest.s_reg_low); +      LIR* branch2 = OpUnconditionalBranch(0); +      // TUNING: move slow path to end & remove unconditional branch +      LIR* target1 = NewLIR0(kPseudoTargetLabel); +      // Call out to helper, which will return resolved type in kArg0 +      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, +                              rl_method.low_reg, true); +      RegLocation rl_result = GetReturn(false); +      StoreValue(rl_dest, rl_result); +      /* +       * Because we have stores of the target value on two paths, +       * clobber temp tracking for the destination using the ssa name +       */ +      ClobberSReg(rl_dest.s_reg_low); +      // Rejoin code paths +      LIR* target2 = NewLIR0(kPseudoTargetLabel); +      branch1->target = target1; +      branch2->target = target2; +    } else { +      // Fast path, we're done - just store result +      StoreValue(rl_dest, rl_result); +    } +  } +} + +void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) { +  /* NOTE: Most strings should be available at compile time */ +  int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() + +                 (sizeof(mirror::String*) * string_idx); +  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache( +      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) { +    // slow path, resolve string if not in dex cache +    FlushAllRegs(); +    LockCallTemps();  // Using explicit registers +    LoadCurrMethodDirect(TargetReg(kArg2)); +    LoadWordDisp(TargetReg(kArg2), +                 mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0)); +    // Might call out to helper, which will return resolved string in kRet0 +    int r_tgt = CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(pResolveString)); +    LoadWordDisp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0)); +    LoadConstant(TargetReg(kArg1), string_idx); +    if (cu_->instruction_set == kThumb2) { +      OpRegImm(kOpCmp, TargetReg(kRet0), 0);  // Is resolved? +      GenBarrier(); +      // For testing, always force through helper +      if (!EXERCISE_SLOWEST_STRING_PATH) { +        OpIT(kCondEq, "T"); +      } +      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));   // .eq +      LIR* call_inst = OpReg(kOpBlx, r_tgt);    // .eq, helper(Method*, string_idx) +      MarkSafepointPC(call_inst); +      FreeTemp(r_tgt); +    } else if (cu_->instruction_set == kMips) { +      LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kRet0), 0, NULL); +      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));   // .eq +      LIR* call_inst = OpReg(kOpBlx, r_tgt); +      MarkSafepointPC(call_inst); +      FreeTemp(r_tgt); +      LIR* target = NewLIR0(kPseudoTargetLabel); +      branch->target = target; +    } else { +      DCHECK_EQ(cu_->instruction_set, kX86); +      CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pResolveString), TargetReg(kArg2), +                              TargetReg(kArg1), true); +    } +    GenBarrier(); +    StoreValue(rl_dest, GetReturn(false)); +  } else { +    RegLocation rl_method = LoadCurrMethod(); +    int res_reg = AllocTemp(); +    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); +    LoadWordDisp(rl_method.low_reg, +                 mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg); +    LoadWordDisp(res_reg, offset_of_string, rl_result.low_reg); +    StoreValue(rl_dest, rl_result); +  } +} + +/* + * Let helper function take care of everything.  Will + * call Class::NewInstanceFromCode(type_idx, method); + */ +void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) { +  FlushAllRegs();  /* Everything to home location */ +  // alloc will always check for resolution, do we also need to verify +  // access because the verifier was unable to? +  ThreadOffset func_offset(-1); +  if (cu_->compiler_driver->CanAccessInstantiableTypeWithoutChecks( +      cu_->method_idx, *cu_->dex_file, type_idx)) { +    func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObject); +  } else { +    func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObjectWithAccessCheck); +  } +  CallRuntimeHelperImmMethod(func_offset, type_idx, true); +  RegLocation rl_result = GetReturn(false); +  StoreValue(rl_dest, rl_result); +} + +void Mir2Lir::GenThrow(RegLocation rl_src) { +  FlushAllRegs(); +  CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(pDeliverException), rl_src, true); +} + +// For final classes there are no sub-classes to check and so we can answer the instance-of +// question with simple comparisons. +void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, +                                 RegLocation rl_src) { +  RegLocation object = LoadValue(rl_src, kCoreReg); +  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); +  int result_reg = rl_result.low_reg; +  if (result_reg == object.low_reg) { +    result_reg = AllocTypedTemp(false, kCoreReg); +  } +  LoadConstant(result_reg, 0);     // assume false +  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL); + +  int check_class = AllocTypedTemp(false, kCoreReg); +  int object_class = AllocTypedTemp(false, kCoreReg); + +  LoadCurrMethodDirect(check_class); +  if (use_declaring_class) { +    LoadWordDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), +                 check_class); +    LoadWordDisp(object.low_reg,  mirror::Object::ClassOffset().Int32Value(), object_class); +  } else { +    LoadWordDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), +                 check_class); +    LoadWordDisp(object.low_reg,  mirror::Object::ClassOffset().Int32Value(), object_class); +    int32_t offset_of_type = +      mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + +      (sizeof(mirror::Class*) * type_idx); +    LoadWordDisp(check_class, offset_of_type, check_class); +  } + +  LIR* ne_branchover = NULL; +  if (cu_->instruction_set == kThumb2) { +    OpRegReg(kOpCmp, check_class, object_class);  // Same? +    OpIT(kCondEq, "");   // if-convert the test +    LoadConstant(result_reg, 1);     // .eq case - load true +  } else { +    ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL); +    LoadConstant(result_reg, 1);     // eq case - load true +  } +  LIR* target = NewLIR0(kPseudoTargetLabel); +  null_branchover->target = target; +  if (ne_branchover != NULL) { +    ne_branchover->target = target; +  } +  FreeTemp(object_class); +  FreeTemp(check_class); +  if (IsTemp(result_reg)) { +    OpRegCopy(rl_result.low_reg, result_reg); +    FreeTemp(result_reg); +  } +  StoreValue(rl_dest, rl_result); +} + +void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, +                                         bool type_known_abstract, bool use_declaring_class, +                                         bool can_assume_type_is_in_dex_cache, +                                         uint32_t type_idx, RegLocation rl_dest, +                                         RegLocation rl_src) { +  FlushAllRegs(); +  // May generate a call - use explicit registers +  LockCallTemps(); +  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 <= current Method* +  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class* +  if (needs_access_check) { +    // Check we have access to type_idx and if not throw IllegalAccessError, +    // returns Class* in kArg0 +    CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), +                         type_idx, true); +    OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path +    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref +  } else if (use_declaring_class) { +    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref +    LoadWordDisp(TargetReg(kArg1), +                 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg); +  } else { +    // Load dex cache entry into class_reg (kArg2) +    LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref +    LoadWordDisp(TargetReg(kArg1), +                 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); +    int32_t offset_of_type = +        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) +        * type_idx); +    LoadWordDisp(class_reg, offset_of_type, class_reg); +    if (!can_assume_type_is_in_dex_cache) { +      // Need to test presence of type in dex cache at runtime +      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); +      // Not resolved +      // Call out to helper, which will return resolved type in kRet0 +      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true); +      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path +      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* reload Ref */ +      // Rejoin code paths +      LIR* hop_target = NewLIR0(kPseudoTargetLabel); +      hop_branch->target = hop_target; +    } +  } +  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */ +  RegLocation rl_result = GetReturn(false); +  if (cu_->instruction_set == kMips) { +    // On MIPS rArg0 != rl_result, place false in result if branch is taken. +    LoadConstant(rl_result.low_reg, 0); +  } +  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); + +  /* load object->klass_ */ +  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); +  LoadWordDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); +  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */ +  LIR* branchover = NULL; +  if (type_known_final) { +    // rl_result == ref == null == 0. +    if (cu_->instruction_set == kThumb2) { +      OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same? +      OpIT(kCondEq, "E");   // if-convert the test +      LoadConstant(rl_result.low_reg, 1);     // .eq case - load true +      LoadConstant(rl_result.low_reg, 0);     // .ne case - load false +    } else { +      LoadConstant(rl_result.low_reg, 0);     // ne case - load false +      branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL); +      LoadConstant(rl_result.low_reg, 1);     // eq case - load true +    } +  } else { +    if (cu_->instruction_set == kThumb2) { +      int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); +      if (!type_known_abstract) { +      /* Uses conditional nullification */ +        OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));  // Same? +        OpIT(kCondEq, "EE");   // if-convert the test +        LoadConstant(TargetReg(kArg0), 1);     // .eq case - load true +      } +      OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class +      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class) +      FreeTemp(r_tgt); +    } else { +      if (!type_known_abstract) { +        /* Uses branchovers */ +        LoadConstant(rl_result.low_reg, 1);     // assume true +        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL); +      } +      if (cu_->instruction_set != kX86) { +        int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); +        OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));    // .ne case - arg0 <= class +        OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class) +        FreeTemp(r_tgt); +      } else { +        OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); +        OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); +      } +    } +  } +  // TODO: only clobber when type isn't final? +  ClobberCalleeSave(); +  /* branch targets here */ +  LIR* target = NewLIR0(kPseudoTargetLabel); +  StoreValue(rl_dest, rl_result); +  branch1->target = target; +  if (branchover != NULL) { +    branchover->target = target; +  } +} + +void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { +  bool type_known_final, type_known_abstract, use_declaring_class; +  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, +                                                                              *cu_->dex_file, +                                                                              type_idx, +                                                                              &type_known_final, +                                                                              &type_known_abstract, +                                                                              &use_declaring_class); +  bool can_assume_type_is_in_dex_cache = !needs_access_check && +      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx); + +  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) { +    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src); +  } else { +    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract, +                               use_declaring_class, can_assume_type_is_in_dex_cache, +                               type_idx, rl_dest, rl_src); +  } +} + +void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) { +  bool type_known_final, type_known_abstract, use_declaring_class; +  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, +                                                                              *cu_->dex_file, +                                                                              type_idx, +                                                                              &type_known_final, +                                                                              &type_known_abstract, +                                                                              &use_declaring_class); +  // Note: currently type_known_final is unused, as optimizing will only improve the performance +  // of the exception throw path. +  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit(); +  const MethodReference mr(cu->GetDexFile(), cu->GetDexMethodIndex()); +  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(mr, insn_idx)) { +    // Verifier type analysis proved this check cast would never cause an exception. +    return; +  } +  FlushAllRegs(); +  // May generate a call - use explicit registers +  LockCallTemps(); +  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 <= current Method* +  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class* +  if (needs_access_check) { +    // Check we have access to type_idx and if not throw IllegalAccessError, +    // returns Class* in kRet0 +    // InitializeTypeAndVerifyAccess(idx, method) +    CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), +                            type_idx, TargetReg(kArg1), true); +    OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path +  } else if (use_declaring_class) { +    LoadWordDisp(TargetReg(kArg1), +                 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg); +  } else { +    // Load dex cache entry into class_reg (kArg2) +    LoadWordDisp(TargetReg(kArg1), +                 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); +    int32_t offset_of_type = +        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + +        (sizeof(mirror::Class*) * type_idx); +    LoadWordDisp(class_reg, offset_of_type, class_reg); +    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) { +      // Need to test presence of type in dex cache at runtime +      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); +      // Not resolved +      // Call out to helper, which will return resolved type in kArg0 +      // InitializeTypeFromCode(idx, method) +      CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, +                              TargetReg(kArg1), true); +      OpRegCopy(class_reg, TargetReg(kRet0));  // Align usage with fast path +      // Rejoin code paths +      LIR* hop_target = NewLIR0(kPseudoTargetLabel); +      hop_branch->target = hop_target; +    } +  } +  // At this point, class_reg (kArg2) has class +  LoadValueDirectFixed(rl_src, TargetReg(kArg0));  // kArg0 <= ref +  /* Null is OK - continue */ +  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); +  /* load object->klass_ */ +  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); +  LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); +  /* kArg1 now contains object->klass_ */ +  LIR* branch2 = NULL; +  if (!type_known_abstract) { +    branch2 = OpCmpBranch(kCondEq, TargetReg(kArg1), class_reg, NULL); +  } +  CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pCheckCast), TargetReg(kArg1), +                          TargetReg(kArg2), true); +  /* branch target here */ +  LIR* target = NewLIR0(kPseudoTargetLabel); +  branch1->target = target; +  if (branch2 != NULL) { +    branch2->target = target; +  } +} + +void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, +                           RegLocation rl_src1, RegLocation rl_src2) { +  RegLocation rl_result; +  if (cu_->instruction_set == kThumb2) { +    /* +     * NOTE:  This is the one place in the code in which we might have +     * as many as six live temporary registers.  There are 5 in the normal +     * set for Arm.  Until we have spill capabilities, temporarily add +     * lr to the temp set.  It is safe to do this locally, but note that +     * lr is used explicitly elsewhere in the code generator and cannot +     * normally be used as a general temp register. +     */ +    MarkTemp(TargetReg(kLr));   // Add lr to the temp pool +    FreeTemp(TargetReg(kLr));   // and make it available +  } +  rl_src1 = LoadValueWide(rl_src1, kCoreReg); +  rl_src2 = LoadValueWide(rl_src2, kCoreReg); +  rl_result = EvalLoc(rl_dest, kCoreReg, true); +  // The longs may overlap - use intermediate temp if so +  if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)) { +    int t_reg = AllocTemp(); +    OpRegRegReg(first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg); +    OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg); +    OpRegCopy(rl_result.low_reg, t_reg); +    FreeTemp(t_reg); +  } else { +    OpRegRegReg(first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); +    OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, +                rl_src2.high_reg); +  } +  /* +   * NOTE: If rl_dest refers to a frame variable in a large frame, the +   * following StoreValueWide might need to allocate a temp register. +   * To further work around the lack of a spill capability, explicitly +   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result. +   * Remove when spill is functional. +   */ +  FreeRegLocTemps(rl_result, rl_src1); +  FreeRegLocTemps(rl_result, rl_src2); +  StoreValueWide(rl_dest, rl_result); +  if (cu_->instruction_set == kThumb2) { +    Clobber(TargetReg(kLr)); +    UnmarkTemp(TargetReg(kLr));  // Remove lr from the temp pool +  } +} + + +void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, +                             RegLocation rl_src1, RegLocation rl_shift) { +  ThreadOffset func_offset(-1); + +  switch (opcode) { +    case Instruction::SHL_LONG: +    case Instruction::SHL_LONG_2ADDR: +      func_offset = QUICK_ENTRYPOINT_OFFSET(pShlLong); +      break; +    case Instruction::SHR_LONG: +    case Instruction::SHR_LONG_2ADDR: +      func_offset = QUICK_ENTRYPOINT_OFFSET(pShrLong); +      break; +    case Instruction::USHR_LONG: +    case Instruction::USHR_LONG_2ADDR: +      func_offset = QUICK_ENTRYPOINT_OFFSET(pUshrLong); +      break; +    default: +      LOG(FATAL) << "Unexpected case"; +  } +  FlushAllRegs();   /* Send everything to home location */ +  CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false); +  RegLocation rl_result = GetReturnWide(false); +  StoreValueWide(rl_dest, rl_result); +} + + +void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, +                            RegLocation rl_src1, RegLocation rl_src2) { +  OpKind op = kOpBkpt; +  bool is_div_rem = false; +  bool check_zero = false; +  bool unary = false; +  RegLocation rl_result; +  bool shift_op = false; +  switch (opcode) { +    case Instruction::NEG_INT: +      op = kOpNeg; +      unary = true; +      break; +    case Instruction::NOT_INT: +      op = kOpMvn; +      unary = true; +      break; +    case Instruction::ADD_INT: +    case Instruction::ADD_INT_2ADDR: +      op = kOpAdd; +      break; +    case Instruction::SUB_INT: +    case Instruction::SUB_INT_2ADDR: +      op = kOpSub; +      break; +    case Instruction::MUL_INT: +    case Instruction::MUL_INT_2ADDR: +      op = kOpMul; +      break; +    case Instruction::DIV_INT: +    case Instruction::DIV_INT_2ADDR: +      check_zero = true; +      op = kOpDiv; +      is_div_rem = true; +      break; +    /* NOTE: returns in kArg1 */ +    case Instruction::REM_INT: +    case Instruction::REM_INT_2ADDR: +      check_zero = true; +      op = kOpRem; +      is_div_rem = true; +      break; +    case Instruction::AND_INT: +    case Instruction::AND_INT_2ADDR: +      op = kOpAnd; +      break; +    case Instruction::OR_INT: +    case Instruction::OR_INT_2ADDR: +      op = kOpOr; +      break; +    case Instruction::XOR_INT: +    case Instruction::XOR_INT_2ADDR: +      op = kOpXor; +      break; +    case Instruction::SHL_INT: +    case Instruction::SHL_INT_2ADDR: +      shift_op = true; +      op = kOpLsl; +      break; +    case Instruction::SHR_INT: +    case Instruction::SHR_INT_2ADDR: +      shift_op = true; +      op = kOpAsr; +      break; +    case Instruction::USHR_INT: +    case Instruction::USHR_INT_2ADDR: +      shift_op = true; +      op = kOpLsr; +      break; +    default: +      LOG(FATAL) << "Invalid word arith op: " << opcode; +  } +  if (!is_div_rem) { +    if (unary) { +      rl_src1 = LoadValue(rl_src1, kCoreReg); +      rl_result = EvalLoc(rl_dest, kCoreReg, true); +      OpRegReg(op, rl_result.low_reg, rl_src1.low_reg); +    } else { +      if (shift_op) { +        int t_reg = INVALID_REG; +        if (cu_->instruction_set == kX86) { +          // X86 doesn't require masking and must use ECX +          t_reg = TargetReg(kCount);  // rCX +          LoadValueDirectFixed(rl_src2, t_reg); +        } else { +          rl_src2 = LoadValue(rl_src2, kCoreReg); +          t_reg = AllocTemp(); +          OpRegRegImm(kOpAnd, t_reg, rl_src2.low_reg, 31); +        } +        rl_src1 = LoadValue(rl_src1, kCoreReg); +        rl_result = EvalLoc(rl_dest, kCoreReg, true); +        OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, t_reg); +        FreeTemp(t_reg); +      } else { +        rl_src1 = LoadValue(rl_src1, kCoreReg); +        rl_src2 = LoadValue(rl_src2, kCoreReg); +        rl_result = EvalLoc(rl_dest, kCoreReg, true); +        OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); +      } +    } +    StoreValue(rl_dest, rl_result); +  } else { +    if (cu_->instruction_set == kMips) { +      rl_src1 = LoadValue(rl_src1, kCoreReg); +      rl_src2 = LoadValue(rl_src2, kCoreReg); +      if (check_zero) { +          GenImmedCheck(kCondEq, rl_src2.low_reg, 0, kThrowDivZero); +      } +      rl_result = GenDivRem(rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv); +    } else { +      ThreadOffset func_offset = QUICK_ENTRYPOINT_OFFSET(pIdivmod); +      FlushAllRegs();   /* Send everything to home location */ +      LoadValueDirectFixed(rl_src2, TargetReg(kArg1)); +      int r_tgt = CallHelperSetup(func_offset); +      LoadValueDirectFixed(rl_src1, TargetReg(kArg0)); +      if (check_zero) { +        GenImmedCheck(kCondEq, TargetReg(kArg1), 0, kThrowDivZero); +      } +      // NOTE: callout here is not a safepoint +      CallHelper(r_tgt, func_offset, false /* not a safepoint */); +      if (op == kOpDiv) +        rl_result = GetReturn(false); +      else +        rl_result = GetReturnAlt(); +    } +    StoreValue(rl_dest, rl_result); +  } +} + +/* + * The following are the first-level codegen routines that analyze the format + * of each bytecode then either dispatch special purpose codegen routines + * or produce corresponding Thumb instructions directly. + */ + +static bool IsPowerOfTwo(int x) { +  return (x & (x - 1)) == 0; +} + +// Returns true if no more than two bits are set in 'x'. +static bool IsPopCountLE2(unsigned int x) { +  x &= x - 1; +  return (x & (x - 1)) == 0; +} + +// Returns the index of the lowest set bit in 'x'. +static int LowestSetBit(unsigned int x) { +  int bit_posn = 0; +  while ((x & 0xf) == 0) { +    bit_posn += 4; +    x >>= 4; +  } +  while ((x & 1) == 0) { +    bit_posn++; +    x >>= 1; +  } +  return bit_posn; +} + +// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' +// and store the result in 'rl_dest'. +bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, +                               RegLocation rl_src, RegLocation rl_dest, int lit) { +  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) { +    return false; +  } +  // No divide instruction for Arm, so check for more special cases +  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) { +    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit); +  } +  int k = LowestSetBit(lit); +  if (k >= 30) { +    // Avoid special cases. +    return false; +  } +  rl_src = LoadValue(rl_src, kCoreReg); +  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); +  if (is_div) { +    int t_reg = AllocTemp(); +    if (lit == 2) { +      // Division by 2 is by far the most common division by constant. +      OpRegRegImm(kOpLsr, t_reg, rl_src.low_reg, 32 - k); +      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); +      OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); +    } else { +      OpRegRegImm(kOpAsr, t_reg, rl_src.low_reg, 31); +      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k); +      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); +      OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); +    } +  } else { +    int t_reg1 = AllocTemp(); +    int t_reg2 = AllocTemp(); +    if (lit == 2) { +      OpRegRegImm(kOpLsr, t_reg1, rl_src.low_reg, 32 - k); +      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); +      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1); +      OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); +    } else { +      OpRegRegImm(kOpAsr, t_reg1, rl_src.low_reg, 31); +      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k); +      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); +      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1); +      OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); +    } +  } +  StoreValue(rl_dest, rl_result); +  return true; +} + +// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit' +// and store the result in 'rl_dest'. +bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { +  // Can we simplify this multiplication? +  bool power_of_two = false; +  bool pop_count_le2 = false; +  bool power_of_two_minus_one = false; +  if (lit < 2) { +    // Avoid special cases. +    return false; +  } else if (IsPowerOfTwo(lit)) { +    power_of_two = true; +  } else if (IsPopCountLE2(lit)) { +    pop_count_le2 = true; +  } else if (IsPowerOfTwo(lit + 1)) { +    power_of_two_minus_one = true; +  } else { +    return false; +  } +  rl_src = LoadValue(rl_src, kCoreReg); +  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); +  if (power_of_two) { +    // Shift. +    OpRegRegImm(kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit)); +  } else if (pop_count_le2) { +    // Shift and add and shift. +    int first_bit = LowestSetBit(lit); +    int second_bit = LowestSetBit(lit ^ (1 << first_bit)); +    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit); +  } else { +    // Reverse subtract: (src << (shift + 1)) - src. +    DCHECK(power_of_two_minus_one); +    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1) +    int t_reg = AllocTemp(); +    OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1)); +    OpRegRegReg(kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg); +  } +  StoreValue(rl_dest, rl_result); +  return true; +} + +void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, +                               int lit) { +  RegLocation rl_result; +  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */ +  int shift_op = false; +  bool is_div = false; + +  switch (opcode) { +    case Instruction::RSUB_INT_LIT8: +    case Instruction::RSUB_INT: { +      rl_src = LoadValue(rl_src, kCoreReg); +      rl_result = EvalLoc(rl_dest, kCoreReg, true); +      if (cu_->instruction_set == kThumb2) { +        OpRegRegImm(kOpRsub, rl_result.low_reg, rl_src.low_reg, lit); +      } else { +        OpRegReg(kOpNeg, rl_result.low_reg, rl_src.low_reg); +        OpRegImm(kOpAdd, rl_result.low_reg, lit); +      } +      StoreValue(rl_dest, rl_result); +      return; +    } + +    case Instruction::SUB_INT: +    case Instruction::SUB_INT_2ADDR: +      lit = -lit; +      // Intended fallthrough +    case Instruction::ADD_INT: +    case Instruction::ADD_INT_2ADDR: +    case Instruction::ADD_INT_LIT8: +    case Instruction::ADD_INT_LIT16: +      op = kOpAdd; +      break; +    case Instruction::MUL_INT: +    case Instruction::MUL_INT_2ADDR: +    case Instruction::MUL_INT_LIT8: +    case Instruction::MUL_INT_LIT16: { +      if (HandleEasyMultiply(rl_src, rl_dest, lit)) { +        return; +      } +      op = kOpMul; +      break; +    } +    case Instruction::AND_INT: +    case Instruction::AND_INT_2ADDR: +    case Instruction::AND_INT_LIT8: +    case Instruction::AND_INT_LIT16: +      op = kOpAnd; +      break; +    case Instruction::OR_INT: +    case Instruction::OR_INT_2ADDR: +    case Instruction::OR_INT_LIT8: +    case Instruction::OR_INT_LIT16: +      op = kOpOr; +      break; +    case Instruction::XOR_INT: +    case Instruction::XOR_INT_2ADDR: +    case Instruction::XOR_INT_LIT8: +    case Instruction::XOR_INT_LIT16: +      op = kOpXor; +      break; +    case Instruction::SHL_INT_LIT8: +    case Instruction::SHL_INT: +    case Instruction::SHL_INT_2ADDR: +      lit &= 31; +      shift_op = true; +      op = kOpLsl; +      break; +    case Instruction::SHR_INT_LIT8: +    case Instruction::SHR_INT: +    case Instruction::SHR_INT_2ADDR: +      lit &= 31; +      shift_op = true; +      op = kOpAsr; +      break; +    case Instruction::USHR_INT_LIT8: +    case Instruction::USHR_INT: +    case Instruction::USHR_INT_2ADDR: +      lit &= 31; +      shift_op = true; +      op = kOpLsr; +      break; + +    case Instruction::DIV_INT: +    case Instruction::DIV_INT_2ADDR: +    case Instruction::DIV_INT_LIT8: +    case Instruction::DIV_INT_LIT16: +    case Instruction::REM_INT: +    case Instruction::REM_INT_2ADDR: +    case Instruction::REM_INT_LIT8: +    case Instruction::REM_INT_LIT16: { +      if (lit == 0) { +        GenImmedCheck(kCondAl, 0, 0, kThrowDivZero); +        return; +      } +      if ((opcode == Instruction::DIV_INT) || +          (opcode == Instruction::DIV_INT_2ADDR) || +          (opcode == Instruction::DIV_INT_LIT8) || +          (opcode == Instruction::DIV_INT_LIT16)) { +        is_div = true; +      } else { +        is_div = false; +      } +      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) { +        return; +      } +      if (cu_->instruction_set == kMips) { +        rl_src = LoadValue(rl_src, kCoreReg); +        rl_result = GenDivRemLit(rl_dest, rl_src.low_reg, lit, is_div); +      } else { +        FlushAllRegs();   /* Everything to home location */ +        LoadValueDirectFixed(rl_src, TargetReg(kArg0)); +        Clobber(TargetReg(kArg0)); +        ThreadOffset func_offset = QUICK_ENTRYPOINT_OFFSET(pIdivmod); +        CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false); +        if (is_div) +          rl_result = GetReturn(false); +        else +          rl_result = GetReturnAlt(); +      } +      StoreValue(rl_dest, rl_result); +      return; +    } +    default: +      LOG(FATAL) << "Unexpected opcode " << opcode; +  } +  rl_src = LoadValue(rl_src, kCoreReg); +  rl_result = EvalLoc(rl_dest, kCoreReg, true); +  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy +  if (shift_op && (lit == 0)) { +    OpRegCopy(rl_result.low_reg, rl_src.low_reg); +  } else { +    OpRegRegImm(op, rl_result.low_reg, rl_src.low_reg, lit); +  } +  StoreValue(rl_dest, rl_result); +} + +void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, +                             RegLocation rl_src1, RegLocation rl_src2) { +  RegLocation rl_result; +  OpKind first_op = kOpBkpt; +  OpKind second_op = kOpBkpt; +  bool call_out = false; +  bool check_zero = false; +  ThreadOffset func_offset(-1); +  int ret_reg = TargetReg(kRet0); + +  switch (opcode) { +    case Instruction::NOT_LONG: +      rl_src2 = LoadValueWide(rl_src2, kCoreReg); +      rl_result = EvalLoc(rl_dest, kCoreReg, true); +      // Check for destructive overlap +      if (rl_result.low_reg == rl_src2.high_reg) { +        int t_reg = AllocTemp(); +        OpRegCopy(t_reg, rl_src2.high_reg); +        OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); +        OpRegReg(kOpMvn, rl_result.high_reg, t_reg); +        FreeTemp(t_reg); +      } else { +        OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); +        OpRegReg(kOpMvn, rl_result.high_reg, rl_src2.high_reg); +      } +      StoreValueWide(rl_dest, rl_result); +      return; +    case Instruction::ADD_LONG: +    case Instruction::ADD_LONG_2ADDR: +      if (cu_->instruction_set != kThumb2) { +        GenAddLong(rl_dest, rl_src1, rl_src2); +        return; +      } +      first_op = kOpAdd; +      second_op = kOpAdc; +      break; +    case Instruction::SUB_LONG: +    case Instruction::SUB_LONG_2ADDR: +      if (cu_->instruction_set != kThumb2) { +        GenSubLong(rl_dest, rl_src1, rl_src2); +        return; +      } +      first_op = kOpSub; +      second_op = kOpSbc; +      break; +    case Instruction::MUL_LONG: +    case Instruction::MUL_LONG_2ADDR: +      if (cu_->instruction_set == kThumb2) { +        GenMulLong(rl_dest, rl_src1, rl_src2); +        return; +      } else { +        call_out = true; +        ret_reg = TargetReg(kRet0); +        func_offset = QUICK_ENTRYPOINT_OFFSET(pLmul); +      } +      break; +    case Instruction::DIV_LONG: +    case Instruction::DIV_LONG_2ADDR: +      call_out = true; +      check_zero = true; +      ret_reg = TargetReg(kRet0); +      func_offset = QUICK_ENTRYPOINT_OFFSET(pLdiv); +      break; +    case Instruction::REM_LONG: +    case Instruction::REM_LONG_2ADDR: +      call_out = true; +      check_zero = true; +      func_offset = QUICK_ENTRYPOINT_OFFSET(pLdivmod); +      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */ +      ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0); +      break; +    case Instruction::AND_LONG_2ADDR: +    case Instruction::AND_LONG: +      if (cu_->instruction_set == kX86) { +        return GenAndLong(rl_dest, rl_src1, rl_src2); +      } +      first_op = kOpAnd; +      second_op = kOpAnd; +      break; +    case Instruction::OR_LONG: +    case Instruction::OR_LONG_2ADDR: +      if (cu_->instruction_set == kX86) { +        GenOrLong(rl_dest, rl_src1, rl_src2); +        return; +      } +      first_op = kOpOr; +      second_op = kOpOr; +      break; +    case Instruction::XOR_LONG: +    case Instruction::XOR_LONG_2ADDR: +      if (cu_->instruction_set == kX86) { +        GenXorLong(rl_dest, rl_src1, rl_src2); +        return; +      } +      first_op = kOpXor; +      second_op = kOpXor; +      break; +    case Instruction::NEG_LONG: { +      GenNegLong(rl_dest, rl_src2); +      return; +    } +    default: +      LOG(FATAL) << "Invalid long arith op"; +  } +  if (!call_out) { +    GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2); +  } else { +    FlushAllRegs();   /* Send everything to home location */ +    if (check_zero) { +      LoadValueDirectWideFixed(rl_src2, TargetReg(kArg2), TargetReg(kArg3)); +      int r_tgt = CallHelperSetup(func_offset); +      GenDivZeroCheck(TargetReg(kArg2), TargetReg(kArg3)); +      LoadValueDirectWideFixed(rl_src1, TargetReg(kArg0), TargetReg(kArg1)); +      // NOTE: callout here is not a safepoint +      CallHelper(r_tgt, func_offset, false /* not safepoint */); +    } else { +      CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false); +    } +    // Adjust return regs in to handle case of rem returning kArg2/kArg3 +    if (ret_reg == TargetReg(kRet0)) +      rl_result = GetReturnWide(false); +    else +      rl_result = GetReturnWideAlt(); +    StoreValueWide(rl_dest, rl_result); +  } +} + +void Mir2Lir::GenConversionCall(ThreadOffset func_offset, +                                RegLocation rl_dest, RegLocation rl_src) { +  /* +   * Don't optimize the register usage since it calls out to support +   * functions +   */ +  FlushAllRegs();   /* Send everything to home location */ +  if (rl_src.wide) { +    LoadValueDirectWideFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0), +                             rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); +  } else { +    LoadValueDirectFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); +  } +  CallRuntimeHelperRegLocation(func_offset, rl_src, false); +  if (rl_dest.wide) { +    RegLocation rl_result; +    rl_result = GetReturnWide(rl_dest.fp); +    StoreValueWide(rl_dest, rl_result); +  } else { +    RegLocation rl_result; +    rl_result = GetReturn(rl_dest.fp); +    StoreValue(rl_dest, rl_result); +  } +} + +/* Check if we need to check for pending suspend request */ +void Mir2Lir::GenSuspendTest(int opt_flags) { +  if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { +    return; +  } +  FlushAllRegs(); +  LIR* branch = OpTestSuspend(NULL); +  LIR* ret_lab = NewLIR0(kPseudoTargetLabel); +  LIR* target = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, +                       reinterpret_cast<uintptr_t>(ret_lab), current_dalvik_offset_); +  branch->target = target; +  suspend_launchpads_.Insert(target); +} + +/* Check if we need to check for pending suspend request */ +void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) { +  if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { +    OpUnconditionalBranch(target); +    return; +  } +  OpTestSuspend(target); +  LIR* launch_pad = +      RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, +             reinterpret_cast<uintptr_t>(target), current_dalvik_offset_); +  FlushAllRegs(); +  OpUnconditionalBranch(launch_pad); +  suspend_launchpads_.Insert(launch_pad); +} + +}  // namespace art  |