diff options
Diffstat (limited to 'compiler/debug/elf_writer_debug.cc')
-rw-r--r-- | compiler/debug/elf_writer_debug.cc | 1666 |
1 files changed, 1666 insertions, 0 deletions
diff --git a/compiler/debug/elf_writer_debug.cc b/compiler/debug/elf_writer_debug.cc new file mode 100644 index 0000000000..07d16d22e7 --- /dev/null +++ b/compiler/debug/elf_writer_debug.cc @@ -0,0 +1,1666 @@ +/* + * Copyright (C) 2015 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "elf_writer_debug.h" + +#include <algorithm> +#include <unordered_set> +#include <vector> +#include <cstdio> + +#include "base/casts.h" +#include "base/stl_util.h" +#include "compiled_method.h" +#include "debug/dwarf/expression.h" +#include "debug/dwarf/headers.h" +#include "debug/dwarf/register.h" +#include "debug/method_debug_info.h" +#include "dex_file-inl.h" +#include "driver/compiler_driver.h" +#include "elf_builder.h" +#include "linear_alloc.h" +#include "linker/vector_output_stream.h" +#include "mirror/array.h" +#include "mirror/class-inl.h" +#include "mirror/class.h" +#include "oat_writer.h" +#include "stack_map.h" +#include "utils.h" + +// liblzma. +#include "XzEnc.h" +#include "7zCrc.h" +#include "XzCrc64.h" + +namespace art { +namespace dwarf { + +// The ARM specification defines three special mapping symbols +// $a, $t and $d which mark ARM, Thumb and data ranges respectively. +// These symbols can be used by tools, for example, to pretty +// print instructions correctly. Objdump will use them if they +// exist, but it will still work well without them. +// However, these extra symbols take space, so let's just generate +// one symbol which marks the whole .text section as code. +constexpr bool kGenerateSingleArmMappingSymbol = true; + +static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) { + switch (isa) { + case kArm: + case kThumb2: + return Reg::ArmCore(machine_reg); + case kArm64: + return Reg::Arm64Core(machine_reg); + case kX86: + return Reg::X86Core(machine_reg); + case kX86_64: + return Reg::X86_64Core(machine_reg); + case kMips: + return Reg::MipsCore(machine_reg); + case kMips64: + return Reg::Mips64Core(machine_reg); + default: + LOG(FATAL) << "Unknown instruction set: " << isa; + UNREACHABLE(); + } +} + +static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) { + switch (isa) { + case kArm: + case kThumb2: + return Reg::ArmFp(machine_reg); + case kArm64: + return Reg::Arm64Fp(machine_reg); + case kX86: + return Reg::X86Fp(machine_reg); + case kX86_64: + return Reg::X86_64Fp(machine_reg); + case kMips: + return Reg::MipsFp(machine_reg); + case kMips64: + return Reg::Mips64Fp(machine_reg); + default: + LOG(FATAL) << "Unknown instruction set: " << isa; + UNREACHABLE(); + } +} + +static void WriteCIE(InstructionSet isa, + CFIFormat format, + std::vector<uint8_t>* buffer) { + // Scratch registers should be marked as undefined. This tells the + // debugger that its value in the previous frame is not recoverable. + bool is64bit = Is64BitInstructionSet(isa); + switch (isa) { + case kArm: + case kThumb2: { + DebugFrameOpCodeWriter<> opcodes; + opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP). + // core registers. + for (int reg = 0; reg < 13; reg++) { + if (reg < 4 || reg == 12) { + opcodes.Undefined(Reg::ArmCore(reg)); + } else { + opcodes.SameValue(Reg::ArmCore(reg)); + } + } + // fp registers. + for (int reg = 0; reg < 32; reg++) { + if (reg < 16) { + opcodes.Undefined(Reg::ArmFp(reg)); + } else { + opcodes.SameValue(Reg::ArmFp(reg)); + } + } + auto return_reg = Reg::ArmCore(14); // R14(LR). + WriteCIE(is64bit, return_reg, opcodes, format, buffer); + return; + } + case kArm64: { + DebugFrameOpCodeWriter<> opcodes; + opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP). + // core registers. + for (int reg = 0; reg < 30; reg++) { + if (reg < 8 || reg == 16 || reg == 17) { + opcodes.Undefined(Reg::Arm64Core(reg)); + } else { + opcodes.SameValue(Reg::Arm64Core(reg)); + } + } + // fp registers. + for (int reg = 0; reg < 32; reg++) { + if (reg < 8 || reg >= 16) { + opcodes.Undefined(Reg::Arm64Fp(reg)); + } else { + opcodes.SameValue(Reg::Arm64Fp(reg)); + } + } + auto return_reg = Reg::Arm64Core(30); // R30(LR). + WriteCIE(is64bit, return_reg, opcodes, format, buffer); + return; + } + case kMips: + case kMips64: { + DebugFrameOpCodeWriter<> opcodes; + opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP). + // core registers. + for (int reg = 1; reg < 26; reg++) { + if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*. + opcodes.Undefined(Reg::MipsCore(reg)); + } else { + opcodes.SameValue(Reg::MipsCore(reg)); + } + } + // fp registers. + for (int reg = 0; reg < 32; reg++) { + if (reg < 24) { + opcodes.Undefined(Reg::Mips64Fp(reg)); + } else { + opcodes.SameValue(Reg::Mips64Fp(reg)); + } + } + auto return_reg = Reg::MipsCore(31); // R31(RA). + WriteCIE(is64bit, return_reg, opcodes, format, buffer); + return; + } + case kX86: { + // FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296 + constexpr bool generate_opcodes_for_x86_fp = false; + DebugFrameOpCodeWriter<> opcodes; + opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP). + opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP). + // core registers. + for (int reg = 0; reg < 8; reg++) { + if (reg <= 3) { + opcodes.Undefined(Reg::X86Core(reg)); + } else if (reg == 4) { + // Stack pointer. + } else { + opcodes.SameValue(Reg::X86Core(reg)); + } + } + // fp registers. + if (generate_opcodes_for_x86_fp) { + for (int reg = 0; reg < 8; reg++) { + opcodes.Undefined(Reg::X86Fp(reg)); + } + } + auto return_reg = Reg::X86Core(8); // R8(EIP). + WriteCIE(is64bit, return_reg, opcodes, format, buffer); + return; + } + case kX86_64: { + DebugFrameOpCodeWriter<> opcodes; + opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP). + opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP). + // core registers. + for (int reg = 0; reg < 16; reg++) { + if (reg == 4) { + // Stack pointer. + } else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP. + opcodes.Undefined(Reg::X86_64Core(reg)); + } else { + opcodes.SameValue(Reg::X86_64Core(reg)); + } + } + // fp registers. + for (int reg = 0; reg < 16; reg++) { + if (reg < 12) { + opcodes.Undefined(Reg::X86_64Fp(reg)); + } else { + opcodes.SameValue(Reg::X86_64Fp(reg)); + } + } + auto return_reg = Reg::X86_64Core(16); // R16(RIP). + WriteCIE(is64bit, return_reg, opcodes, format, buffer); + return; + } + case kNone: + break; + } + LOG(FATAL) << "Cannot write CIE frame for ISA " << isa; + UNREACHABLE(); +} + +template<typename ElfTypes> +void WriteCFISection(ElfBuilder<ElfTypes>* builder, + const ArrayRef<const MethodDebugInfo>& method_infos, + CFIFormat format, + bool write_oat_patches) { + CHECK(format == DW_DEBUG_FRAME_FORMAT || format == DW_EH_FRAME_FORMAT); + typedef typename ElfTypes::Addr Elf_Addr; + + if (method_infos.empty()) { + return; + } + + std::vector<uint32_t> binary_search_table; + std::vector<uintptr_t> patch_locations; + if (format == DW_EH_FRAME_FORMAT) { + binary_search_table.reserve(2 * method_infos.size()); + } else { + patch_locations.reserve(method_infos.size()); + } + + // The methods can be written any order. + // Let's therefore sort them in the lexicographical order of the opcodes. + // This has no effect on its own. However, if the final .debug_frame section is + // compressed it reduces the size since similar opcodes sequences are grouped. + std::vector<const MethodDebugInfo*> sorted_method_infos; + sorted_method_infos.reserve(method_infos.size()); + for (size_t i = 0; i < method_infos.size(); i++) { + sorted_method_infos.push_back(&method_infos[i]); + } + std::sort( + sorted_method_infos.begin(), + sorted_method_infos.end(), + [](const MethodDebugInfo* lhs, const MethodDebugInfo* rhs) { + ArrayRef<const uint8_t> l = lhs->compiled_method_->GetCFIInfo(); + ArrayRef<const uint8_t> r = rhs->compiled_method_->GetCFIInfo(); + return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end()); + }); + + // Write .eh_frame/.debug_frame section. + auto* cfi_section = (format == DW_DEBUG_FRAME_FORMAT + ? builder->GetDebugFrame() + : builder->GetEhFrame()); + { + cfi_section->Start(); + const bool is64bit = Is64BitInstructionSet(builder->GetIsa()); + const Elf_Addr text_address = builder->GetText()->Exists() + ? builder->GetText()->GetAddress() + : 0; + const Elf_Addr cfi_address = cfi_section->GetAddress(); + const Elf_Addr cie_address = cfi_address; + Elf_Addr buffer_address = cfi_address; + std::vector<uint8_t> buffer; // Small temporary buffer. + WriteCIE(builder->GetIsa(), format, &buffer); + cfi_section->WriteFully(buffer.data(), buffer.size()); + buffer_address += buffer.size(); + buffer.clear(); + for (const MethodDebugInfo* mi : sorted_method_infos) { + if (!mi->deduped_) { // Only one FDE per unique address. + ArrayRef<const uint8_t> opcodes = mi->compiled_method_->GetCFIInfo(); + if (!opcodes.empty()) { + const Elf_Addr code_address = text_address + mi->low_pc_; + if (format == DW_EH_FRAME_FORMAT) { + binary_search_table.push_back( + dchecked_integral_cast<uint32_t>(code_address)); + binary_search_table.push_back( + dchecked_integral_cast<uint32_t>(buffer_address)); + } + WriteFDE(is64bit, cfi_address, cie_address, + code_address, mi->high_pc_ - mi->low_pc_, + opcodes, format, buffer_address, &buffer, + &patch_locations); + cfi_section->WriteFully(buffer.data(), buffer.size()); + buffer_address += buffer.size(); + buffer.clear(); + } + } + } + cfi_section->End(); + } + + if (format == DW_EH_FRAME_FORMAT) { + auto* header_section = builder->GetEhFrameHdr(); + header_section->Start(); + uint32_t header_address = dchecked_integral_cast<int32_t>(header_section->GetAddress()); + // Write .eh_frame_hdr section. + std::vector<uint8_t> buffer; + Writer<> header(&buffer); + header.PushUint8(1); // Version. + // Encoding of .eh_frame pointer - libunwind does not honor datarel here, + // so we have to use pcrel which means relative to the pointer's location. + header.PushUint8(DW_EH_PE_pcrel | DW_EH_PE_sdata4); + // Encoding of binary search table size. + header.PushUint8(DW_EH_PE_udata4); + // Encoding of binary search table addresses - libunwind supports only this + // specific combination, which means relative to the start of .eh_frame_hdr. + header.PushUint8(DW_EH_PE_datarel | DW_EH_PE_sdata4); + // .eh_frame pointer + header.PushInt32(cfi_section->GetAddress() - (header_address + 4u)); + // Binary search table size (number of entries). + header.PushUint32(dchecked_integral_cast<uint32_t>(binary_search_table.size()/2)); + header_section->WriteFully(buffer.data(), buffer.size()); + // Binary search table. + for (size_t i = 0; i < binary_search_table.size(); i++) { + // Make addresses section-relative since we know the header address now. + binary_search_table[i] -= header_address; + } + header_section->WriteFully(binary_search_table.data(), binary_search_table.size()); + header_section->End(); + } else { + if (write_oat_patches) { + builder->WritePatches(".debug_frame.oat_patches", + ArrayRef<const uintptr_t>(patch_locations)); + } + } +} + +namespace { + struct CompilationUnit { + std::vector<const MethodDebugInfo*> methods_; + size_t debug_line_offset_ = 0; + uintptr_t low_pc_ = std::numeric_limits<uintptr_t>::max(); + uintptr_t high_pc_ = 0; + }; + + typedef std::vector<DexFile::LocalInfo> LocalInfos; + + void LocalInfoCallback(void* ctx, const DexFile::LocalInfo& entry) { + static_cast<LocalInfos*>(ctx)->push_back(entry); + } + + typedef std::vector<DexFile::PositionInfo> PositionInfos; + + bool PositionInfoCallback(void* ctx, const DexFile::PositionInfo& entry) { + static_cast<PositionInfos*>(ctx)->push_back(entry); + return false; + } + + std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) { + std::vector<const char*> names; + if (mi->code_item_ != nullptr) { + const uint8_t* stream = mi->dex_file_->GetDebugInfoStream(mi->code_item_); + if (stream != nullptr) { + DecodeUnsignedLeb128(&stream); // line. + uint32_t parameters_size = DecodeUnsignedLeb128(&stream); + for (uint32_t i = 0; i < parameters_size; ++i) { + uint32_t id = DecodeUnsignedLeb128P1(&stream); + names.push_back(mi->dex_file_->StringDataByIdx(id)); + } + } + } + return names; + } + + struct VariableLocation { + uint32_t low_pc; + uint32_t high_pc; + DexRegisterLocation reg_lo; // May be None if the location is unknown. + DexRegisterLocation reg_hi; // Most significant bits of 64-bit value. + }; + + // Get the location of given dex register (e.g. stack or machine register). + // Note that the location might be different based on the current pc. + // The result will cover all ranges where the variable is in scope. + std::vector<VariableLocation> GetVariableLocations(const MethodDebugInfo* method_info, + uint16_t vreg, + bool is64bitValue, + uint32_t dex_pc_low, + uint32_t dex_pc_high) { + std::vector<VariableLocation> variable_locations; + + // Get stack maps sorted by pc (they might not be sorted internally). + const CodeInfo code_info(method_info->compiled_method_->GetVmapTable().data()); + const StackMapEncoding encoding = code_info.ExtractEncoding(); + std::map<uint32_t, StackMap> stack_maps; + for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(); s++) { + StackMap stack_map = code_info.GetStackMapAt(s, encoding); + DCHECK(stack_map.IsValid()); + const uint32_t low_pc = method_info->low_pc_ + stack_map.GetNativePcOffset(encoding); + DCHECK_LE(low_pc, method_info->high_pc_); + stack_maps.emplace(low_pc, stack_map); + } + + // Create entries for the requested register based on stack map data. + for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) { + const StackMap& stack_map = it->second; + const uint32_t low_pc = it->first; + auto next_it = it; + next_it++; + const uint32_t high_pc = next_it != stack_maps.end() ? next_it->first + : method_info->high_pc_; + DCHECK_LE(low_pc, high_pc); + if (low_pc == high_pc) { + continue; // Ignore if the address range is empty. + } + + // Check that the stack map is in the requested range. + uint32_t dex_pc = stack_map.GetDexPc(encoding); + if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) { + continue; + } + + // Find the location of the dex register. + DexRegisterLocation reg_lo = DexRegisterLocation::None(); + DexRegisterLocation reg_hi = DexRegisterLocation::None(); + if (stack_map.HasDexRegisterMap(encoding)) { + DexRegisterMap dex_register_map = code_info.GetDexRegisterMapOf( + stack_map, encoding, method_info->code_item_->registers_size_); + reg_lo = dex_register_map.GetDexRegisterLocation( + vreg, method_info->code_item_->registers_size_, code_info, encoding); + if (is64bitValue) { + reg_hi = dex_register_map.GetDexRegisterLocation( + vreg + 1, method_info->code_item_->registers_size_, code_info, encoding); + } + } + + // Add location entry for this address range. + if (!variable_locations.empty() && + variable_locations.back().reg_lo == reg_lo && + variable_locations.back().reg_hi == reg_hi && + variable_locations.back().high_pc == low_pc) { + // Merge with the previous entry (extend its range). + variable_locations.back().high_pc = high_pc; + } else { + variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi}); + } + } + + return variable_locations; + } + + bool IsFromOptimizingCompiler(const MethodDebugInfo* method_info) { + return method_info->compiled_method_->GetQuickCode().size() > 0 && + method_info->compiled_method_->GetVmapTable().size() > 0 && + method_info->compiled_method_->GetGcMap().size() == 0 && + method_info->code_item_ != nullptr; + } +} // namespace + +// Helper class to write .debug_info and its supporting sections. +template<typename ElfTypes> +class DebugInfoWriter { + typedef typename ElfTypes::Addr Elf_Addr; + + // Helper class to write one compilation unit. + // It holds helper methods and temporary state. + class CompilationUnitWriter { + public: + explicit CompilationUnitWriter(DebugInfoWriter* owner) + : owner_(owner), + info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) { + } + + void Write(const CompilationUnit& compilation_unit) { + CHECK(!compilation_unit.methods_.empty()); + const Elf_Addr text_address = owner_->builder_->GetText()->Exists() + ? owner_->builder_->GetText()->GetAddress() + : 0; + const uintptr_t cu_size = compilation_unit.high_pc_ - compilation_unit.low_pc_; + + info_.StartTag(DW_TAG_compile_unit); + info_.WriteString(DW_AT_producer, "Android dex2oat"); + info_.WriteData1(DW_AT_language, DW_LANG_Java); + info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT"); + info_.WriteAddr(DW_AT_low_pc, text_address + compilation_unit.low_pc_); + info_.WriteUdata(DW_AT_high_pc, dchecked_integral_cast<uint32_t>(cu_size)); + info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset_); + + const char* last_dex_class_desc = nullptr; + for (auto mi : compilation_unit.methods_) { + const DexFile* dex = mi->dex_file_; + const DexFile::CodeItem* dex_code = mi->code_item_; + const DexFile::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index_); + const DexFile::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method); + const DexFile::TypeList* dex_params = dex->GetProtoParameters(dex_proto); + const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method); + const bool is_static = (mi->access_flags_ & kAccStatic) != 0; + + // Enclose the method in correct class definition. + if (last_dex_class_desc != dex_class_desc) { + if (last_dex_class_desc != nullptr) { + EndClassTag(); + } + // Write reference tag for the class we are about to declare. + size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type); + type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset); + size_t type_attrib_offset = info_.size(); + info_.WriteRef4(DW_AT_type, 0); + info_.EndTag(); + // Declare the class that owns this method. + size_t class_offset = StartClassTag(dex_class_desc); + info_.UpdateUint32(type_attrib_offset, class_offset); + info_.WriteFlagPresent(DW_AT_declaration); + // Check that each class is defined only once. + bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second; + CHECK(unique) << "Redefinition of " << dex_class_desc; + last_dex_class_desc = dex_class_desc; + } + + int start_depth = info_.Depth(); + info_.StartTag(DW_TAG_subprogram); + WriteName(dex->GetMethodName(dex_method)); + info_.WriteAddr(DW_AT_low_pc, text_address + mi->low_pc_); + info_.WriteUdata(DW_AT_high_pc, dchecked_integral_cast<uint32_t>(mi->high_pc_-mi->low_pc_)); + std::vector<uint8_t> expr_buffer; + Expression expr(&expr_buffer); + expr.WriteOpCallFrameCfa(); + info_.WriteExprLoc(DW_AT_frame_base, expr); + WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto)); + + // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not + // guarantee order or uniqueness so it is safer to iterate over them manually. + // DecodeDebugLocalInfo might not also be available if there is no debug info. + std::vector<const char*> param_names = GetParamNames(mi); + uint32_t arg_reg = 0; + if (!is_static) { + info_.StartTag(DW_TAG_formal_parameter); + WriteName("this"); + info_.WriteFlagPresent(DW_AT_artificial); + WriteLazyType(dex_class_desc); + if (dex_code != nullptr) { + // Write the stack location of the parameter. + const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg; + const bool is64bitValue = false; + WriteRegLocation(mi, vreg, is64bitValue, compilation_unit.low_pc_); + } + arg_reg++; + info_.EndTag(); + } + if (dex_params != nullptr) { + for (uint32_t i = 0; i < dex_params->Size(); ++i) { + info_.StartTag(DW_TAG_formal_parameter); + // Parameter names may not be always available. + if (i < param_names.size()) { + WriteName(param_names[i]); + } + // Write the type. + const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_); + WriteLazyType(type_desc); + const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J'; + if (dex_code != nullptr) { + // Write the stack location of the parameter. + const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg; + WriteRegLocation(mi, vreg, is64bitValue, compilation_unit.low_pc_); + } + arg_reg += is64bitValue ? 2 : 1; + info_.EndTag(); + } + if (dex_code != nullptr) { + DCHECK_EQ(arg_reg, dex_code->ins_size_); + } + } + + // Write local variables. + LocalInfos local_infos; + if (dex->DecodeDebugLocalInfo(dex_code, + is_static, + mi->dex_method_index_, + LocalInfoCallback, + &local_infos)) { + for (const DexFile::LocalInfo& var : local_infos) { + if (var.reg_ < dex_code->registers_size_ - dex_code->ins_size_) { + info_.StartTag(DW_TAG_variable); + WriteName(var.name_); + WriteLazyType(var.descriptor_); + bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J'; + WriteRegLocation(mi, var.reg_, is64bitValue, compilation_unit.low_pc_, + var.start_address_, var.end_address_); + info_.EndTag(); + } + } + } + + info_.EndTag(); + CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end. + } + if (last_dex_class_desc != nullptr) { + EndClassTag(); + } + FinishLazyTypes(); + CloseNamespacesAboveDepth(0); + info_.EndTag(); // DW_TAG_compile_unit + CHECK_EQ(info_.Depth(), 0); + std::vector<uint8_t> buffer; + buffer.reserve(info_.data()->size() + KB); + const size_t offset = owner_->builder_->GetDebugInfo()->GetSize(); + // All compilation units share single table which is at the start of .debug_abbrev. + const size_t debug_abbrev_offset = 0; + WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_); + owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size()); + } + + void Write(const ArrayRef<mirror::Class*>& types) SHARED_REQUIRES(Locks::mutator_lock_) { + info_.StartTag(DW_TAG_compile_unit); + info_.WriteString(DW_AT_producer, "Android dex2oat"); + info_.WriteData1(DW_AT_language, DW_LANG_Java); + + // Base class references to be patched at the end. + std::map<size_t, mirror::Class*> base_class_references; + + // Already written declarations or definitions. + std::map<mirror::Class*, size_t> class_declarations; + + std::vector<uint8_t> expr_buffer; + for (mirror::Class* type : types) { + if (type->IsPrimitive()) { + // For primitive types the definition and the declaration is the same. + if (type->GetPrimitiveType() != Primitive::kPrimVoid) { + WriteTypeDeclaration(type->GetDescriptor(nullptr)); + } + } else if (type->IsArrayClass()) { + mirror::Class* element_type = type->GetComponentType(); + uint32_t component_size = type->GetComponentSize(); + uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value(); + uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); + + CloseNamespacesAboveDepth(0); // Declare in root namespace. + info_.StartTag(DW_TAG_array_type); + std::string descriptor_string; + WriteLazyType(element_type->GetDescriptor(&descriptor_string)); + WriteLinkageName(type); + info_.WriteUdata(DW_AT_data_member_location, data_offset); + info_.StartTag(DW_TAG_subrange_type); + Expression count_expr(&expr_buffer); + count_expr.WriteOpPushObjectAddress(); + count_expr.WriteOpPlusUconst(length_offset); + count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide. + info_.WriteExprLoc(DW_AT_count, count_expr); + info_.EndTag(); // DW_TAG_subrange_type. + info_.EndTag(); // DW_TAG_array_type. + } else if (type->IsInterface()) { + // Skip. Variables cannot have an interface as a dynamic type. + // We do not expose the interface information to the debugger in any way. + } else { + std::string descriptor_string; + const char* desc = type->GetDescriptor(&descriptor_string); + size_t class_offset = StartClassTag(desc); + class_declarations.emplace(type, class_offset); + + if (!type->IsVariableSize()) { + info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize()); + } + + WriteLinkageName(type); + + if (type->IsObjectClass()) { + // Generate artificial member which is used to get the dynamic type of variable. + // The run-time value of this field will correspond to linkage name of some type. + // We need to do it only once in j.l.Object since all other types inherit it. + info_.StartTag(DW_TAG_member); + WriteName(".dynamic_type"); + WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I"); + info_.WriteFlagPresent(DW_AT_artificial); + // Create DWARF expression to get the value of the methods_ field. + Expression expr(&expr_buffer); + // The address of the object has been implicitly pushed on the stack. + // Dereference the klass_ field of Object (32-bit; possibly poisoned). + DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u); + DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u); + expr.WriteOpDerefSize(4); + if (kPoisonHeapReferences) { + expr.WriteOpNeg(); + // DWARF stack is pointer sized. Ensure that the high bits are clear. + expr.WriteOpConstu(0xFFFFFFFF); + expr.WriteOpAnd(); + } + // Add offset to the methods_ field. + expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value()); + // Top of stack holds the location of the field now. + info_.WriteExprLoc(DW_AT_data_member_location, expr); + info_.EndTag(); // DW_TAG_member. + } + + // Base class. + mirror::Class* base_class = type->GetSuperClass(); + if (base_class != nullptr) { + info_.StartTag(DW_TAG_inheritance); + base_class_references.emplace(info_.size(), base_class); + info_.WriteRef4(DW_AT_type, 0); + info_.WriteUdata(DW_AT_data_member_location, 0); + info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public); + info_.EndTag(); // DW_TAG_inheritance. + } + + // Member variables. + for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) { + ArtField* field = type->GetInstanceField(i); + info_.StartTag(DW_TAG_member); + WriteName(field->GetName()); + WriteLazyType(field->GetTypeDescriptor()); + info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value()); + uint32_t access_flags = field->GetAccessFlags(); + if (access_flags & kAccPublic) { + info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public); + } else if (access_flags & kAccProtected) { + info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected); + } else if (access_flags & kAccPrivate) { + info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private); + } + info_.EndTag(); // DW_TAG_member. + } + + if (type->IsStringClass()) { + // Emit debug info about an artifical class member for java.lang.String which represents + // the first element of the data stored in a string instance. Consumers of the debug + // info will be able to read the content of java.lang.String based on the count (real + // field) and based on the location of this data member. + info_.StartTag(DW_TAG_member); + WriteName("value"); + // We don't support fields with C like array types so we just say its type is java char. + WriteLazyType("C"); // char. + info_.WriteUdata(DW_AT_data_member_location, + mirror::String::ValueOffset().Uint32Value()); + info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private); + info_.EndTag(); // DW_TAG_member. + } + + EndClassTag(); + } + } + + // Write base class declarations. + for (const auto& base_class_reference : base_class_references) { + size_t reference_offset = base_class_reference.first; + mirror::Class* base_class = base_class_reference.second; + const auto& it = class_declarations.find(base_class); + if (it != class_declarations.end()) { + info_.UpdateUint32(reference_offset, it->second); + } else { + // Declare base class. We can not use the standard WriteLazyType + // since we want to avoid the DW_TAG_reference_tag wrapping. + std::string tmp_storage; + const char* base_class_desc = base_class->GetDescriptor(&tmp_storage); + size_t base_class_declaration_offset = StartClassTag(base_class_desc); + info_.WriteFlagPresent(DW_AT_declaration); + WriteLinkageName(base_class); + EndClassTag(); + class_declarations.emplace(base_class, base_class_declaration_offset); + info_.UpdateUint32(reference_offset, base_class_declaration_offset); + } + } + + FinishLazyTypes(); + CloseNamespacesAboveDepth(0); + info_.EndTag(); // DW_TAG_compile_unit. + CHECK_EQ(info_.Depth(), 0); + std::vector<uint8_t> buffer; + buffer.reserve(info_.data()->size() + KB); + const size_t offset = owner_->builder_->GetDebugInfo()->GetSize(); + // All compilation units share single table which is at the start of .debug_abbrev. + const size_t debug_abbrev_offset = 0; + WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_); + owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size()); + } + + // Linkage name uniquely identifies type. + // It is used to determine the dynamic type of objects. + // We use the methods_ field of class since it is unique and it is not moved by the GC. + void WriteLinkageName(mirror::Class* type) SHARED_REQUIRES(Locks::mutator_lock_) { + auto* methods_ptr = type->GetMethodsPtr(); + if (methods_ptr == nullptr) { + // Some types might have no methods. Allocate empty array instead. + LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc(); + void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>)); + methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0); + type->SetMethodsPtr(methods_ptr, 0, 0); + DCHECK(type->GetMethodsPtr() != nullptr); + } + char name[32]; + snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr)); + info_.WriteString(DW_AT_linkage_name, name); + } + + // Write table into .debug_loc which describes location of dex register. + // The dex register might be valid only at some points and it might + // move between machine registers and stack. + void WriteRegLocation(const MethodDebugInfo* method_info, + uint16_t vreg, + bool is64bitValue, + uint32_t compilation_unit_low_pc, + uint32_t dex_pc_low = 0, + uint32_t dex_pc_high = 0xFFFFFFFF) { + using Kind = DexRegisterLocation::Kind; + if (!IsFromOptimizingCompiler(method_info)) { + return; + } + + Writer<> debug_loc(&owner_->debug_loc_); + Writer<> debug_ranges(&owner_->debug_ranges_); + info_.WriteSecOffset(DW_AT_location, debug_loc.size()); + info_.WriteSecOffset(DW_AT_start_scope, debug_ranges.size()); + + std::vector<VariableLocation> variable_locations = GetVariableLocations( + method_info, + vreg, + is64bitValue, + dex_pc_low, + dex_pc_high); + + // Write .debug_loc entries. + const InstructionSet isa = owner_->builder_->GetIsa(); + const bool is64bit = Is64BitInstructionSet(isa); + std::vector<uint8_t> expr_buffer; + for (const VariableLocation& variable_location : variable_locations) { + // Translate dex register location to DWARF expression. + // Note that 64-bit value might be split to two distinct locations. + // (for example, two 32-bit machine registers, or even stack and register) + Expression expr(&expr_buffer); + DexRegisterLocation reg_lo = variable_location.reg_lo; + DexRegisterLocation reg_hi = variable_location.reg_hi; + for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) { + DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi); + const Kind kind = reg_loc.GetKind(); + const int32_t value = reg_loc.GetValue(); + if (kind == Kind::kInStack) { + const size_t frame_size = method_info->compiled_method_->GetFrameSizeInBytes(); + // The stack offset is relative to SP. Make it relative to CFA. + expr.WriteOpFbreg(value - frame_size); + if (piece == 0 && reg_hi.GetKind() == Kind::kInStack && + reg_hi.GetValue() == value + 4) { + break; // the high word is correctly implied by the low word. + } + } else if (kind == Kind::kInRegister) { + expr.WriteOpReg(GetDwarfCoreReg(isa, value).num()); + if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh && + reg_hi.GetValue() == value) { + break; // the high word is correctly implied by the low word. + } + } else if (kind == Kind::kInFpuRegister) { + if ((isa == kArm || isa == kThumb2) && + piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister && + reg_hi.GetValue() == value + 1 && value % 2 == 0) { + // Translate S register pair to D register (e.g. S4+S5 to D2). + expr.WriteOpReg(Reg::ArmDp(value / 2).num()); + break; + } + expr.WriteOpReg(GetDwarfFpReg(isa, value).num()); + if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh && + reg_hi.GetValue() == reg_lo.GetValue()) { + break; // the high word is correctly implied by the low word. + } + } else if (kind == Kind::kConstant) { + expr.WriteOpConsts(value); + expr.WriteOpStackValue(); + } else if (kind == Kind::kNone) { + break; + } else { + // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind(). + // kInRegisterHigh and kInFpuRegisterHigh should be handled by + // the special cases above and they should not occur alone. + LOG(ERROR) << "Unexpected register location kind: " + << DexRegisterLocation::PrettyDescriptor(kind); + break; + } + if (is64bitValue) { + // Write the marker which is needed by split 64-bit values. + // This code is skipped by the special cases. + expr.WriteOpPiece(4); + } + } + + if (expr.size() > 0) { + if (is64bit) { + debug_loc.PushUint64(variable_location.low_pc - compilation_unit_low_pc); + debug_loc.PushUint64(variable_location.high_pc - compilation_unit_low_pc); + } else { + debug_loc.PushUint32(variable_location.low_pc - compilation_unit_low_pc); + debug_loc.PushUint32(variable_location.high_pc - compilation_unit_low_pc); + } + // Write the expression. + debug_loc.PushUint16(expr.size()); + debug_loc.PushData(expr.data()); + } else { + // Do not generate .debug_loc if the location is not known. + } + } + // Write end-of-list entry. + if (is64bit) { + debug_loc.PushUint64(0); + debug_loc.PushUint64(0); + } else { + debug_loc.PushUint32(0); + debug_loc.PushUint32(0); + } + + // Write .debug_ranges entries. + // This includes ranges where the variable is in scope but the location is not known. + for (size_t i = 0; i < variable_locations.size(); i++) { + uint32_t low_pc = variable_locations[i].low_pc; + uint32_t high_pc = variable_locations[i].high_pc; + while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) { + // Merge address range with the next entry. + high_pc = variable_locations[++i].high_pc; + } + if (is64bit) { + debug_ranges.PushUint64(low_pc - compilation_unit_low_pc); + debug_ranges.PushUint64(high_pc - compilation_unit_low_pc); + } else { + debug_ranges.PushUint32(low_pc - compilation_unit_low_pc); + debug_ranges.PushUint32(high_pc - compilation_unit_low_pc); + } + } + // Write end-of-list entry. + if (is64bit) { + debug_ranges.PushUint64(0); + debug_ranges.PushUint64(0); + } else { + debug_ranges.PushUint32(0); + debug_ranges.PushUint32(0); + } + } + + // Some types are difficult to define as we go since they need + // to be enclosed in the right set of namespaces. Therefore we + // just define all types lazily at the end of compilation unit. + void WriteLazyType(const char* type_descriptor) { + if (type_descriptor != nullptr && type_descriptor[0] != 'V') { + lazy_types_.emplace(std::string(type_descriptor), info_.size()); + info_.WriteRef4(DW_AT_type, 0); + } + } + + void FinishLazyTypes() { + for (const auto& lazy_type : lazy_types_) { + info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first)); + } + lazy_types_.clear(); + } + + private: + void WriteName(const char* name) { + if (name != nullptr) { + info_.WriteString(DW_AT_name, name); + } + } + + // Convert dex type descriptor to DWARF. + // Returns offset in the compilation unit. + size_t WriteTypeDeclaration(const std::string& desc) { + DCHECK(!desc.empty()); + const auto& it = type_cache_.find(desc); + if (it != type_cache_.end()) { + return it->second; + } + + size_t offset; + if (desc[0] == 'L') { + // Class type. For example: Lpackage/name; + size_t class_offset = StartClassTag(desc.c_str()); + info_.WriteFlagPresent(DW_AT_declaration); + EndClassTag(); + // Reference to the class type. + offset = info_.StartTag(DW_TAG_reference_type); + info_.WriteRef(DW_AT_type, class_offset); + info_.EndTag(); + } else if (desc[0] == '[') { + // Array type. + size_t element_type = WriteTypeDeclaration(desc.substr(1)); + CloseNamespacesAboveDepth(0); // Declare in root namespace. + size_t array_type = info_.StartTag(DW_TAG_array_type); + info_.WriteFlagPresent(DW_AT_declaration); + info_.WriteRef(DW_AT_type, element_type); + info_.EndTag(); + offset = info_.StartTag(DW_TAG_reference_type); + info_.WriteRef4(DW_AT_type, array_type); + info_.EndTag(); + } else { + // Primitive types. + DCHECK_EQ(desc.size(), 1u); + + const char* name; + uint32_t encoding; + uint32_t byte_size; + switch (desc[0]) { + case 'B': + name = "byte"; + encoding = DW_ATE_signed; + byte_size = 1; + break; + case 'C': + name = "char"; + encoding = DW_ATE_UTF; + byte_size = 2; + break; + case 'D': + name = "double"; + encoding = DW_ATE_float; + byte_size = 8; + break; + case 'F': + name = "float"; + encoding = DW_ATE_float; + byte_size = 4; + break; + case 'I': + name = "int"; + encoding = DW_ATE_signed; + byte_size = 4; + break; + case 'J': + name = "long"; + encoding = DW_ATE_signed; + byte_size = 8; + break; + case 'S': + name = "short"; + encoding = DW_ATE_signed; + byte_size = 2; + break; + case 'Z': + name = "boolean"; + encoding = DW_ATE_boolean; + byte_size = 1; + break; + case 'V': + LOG(FATAL) << "Void type should not be encoded"; + UNREACHABLE(); + default: + LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\""; + UNREACHABLE(); + } + CloseNamespacesAboveDepth(0); // Declare in root namespace. + offset = info_.StartTag(DW_TAG_base_type); + WriteName(name); + info_.WriteData1(DW_AT_encoding, encoding); + info_.WriteData1(DW_AT_byte_size, byte_size); + info_.EndTag(); + } + + type_cache_.emplace(desc, offset); + return offset; + } + + // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags. + // Returns offset of the class tag in the compilation unit. + size_t StartClassTag(const char* desc) { + std::string name = SetNamespaceForClass(desc); + size_t offset = info_.StartTag(DW_TAG_class_type); + WriteName(name.c_str()); + return offset; + } + + void EndClassTag() { + info_.EndTag(); + } + + // Set the current namespace nesting to one required by the given class. + // Returns the class name with namespaces, 'L', and ';' stripped. + std::string SetNamespaceForClass(const char* desc) { + DCHECK(desc != nullptr && desc[0] == 'L'); + desc++; // Skip the initial 'L'. + size_t depth = 0; + for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) { + // Check whether the name at this depth is already what we need. + if (depth < current_namespace_.size()) { + const std::string& name = current_namespace_[depth]; + if (name.compare(0, name.size(), desc, end - desc) == 0) { + continue; + } + } + // Otherwise we need to open a new namespace tag at this depth. + CloseNamespacesAboveDepth(depth); + info_.StartTag(DW_TAG_namespace); + std::string name(desc, end - desc); + WriteName(name.c_str()); + current_namespace_.push_back(std::move(name)); + } + CloseNamespacesAboveDepth(depth); + return std::string(desc, strchr(desc, ';') - desc); + } + + // Close namespace tags to reach the given nesting depth. + void CloseNamespacesAboveDepth(size_t depth) { + DCHECK_LE(depth, current_namespace_.size()); + while (current_namespace_.size() > depth) { + info_.EndTag(); + current_namespace_.pop_back(); + } + } + + // For access to the ELF sections. + DebugInfoWriter<ElfTypes>* owner_; + // Temporary buffer to create and store the entries. + DebugInfoEntryWriter<> info_; + // Cache of already translated type descriptors. + std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset. + // 32-bit references which need to be resolved to a type later. + // Given type may be used multiple times. Therefore we need a multimap. + std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset. + // The current set of open namespace tags which are active and not closed yet. + std::vector<std::string> current_namespace_; + }; + + public: + explicit DebugInfoWriter(ElfBuilder<ElfTypes>* builder) + : builder_(builder), + debug_abbrev_(&debug_abbrev_buffer_) { + } + + void Start() { + builder_->GetDebugInfo()->Start(); + } + + void WriteCompilationUnit(const CompilationUnit& compilation_unit) { + CompilationUnitWriter writer(this); + writer.Write(compilation_unit); + } + + void WriteTypes(const ArrayRef<mirror::Class*>& types) SHARED_REQUIRES(Locks::mutator_lock_) { + CompilationUnitWriter writer(this); + writer.Write(types); + } + + void End(bool write_oat_patches) { + builder_->GetDebugInfo()->End(); + if (write_oat_patches) { + builder_->WritePatches(".debug_info.oat_patches", + ArrayRef<const uintptr_t>(debug_info_patches_)); + } + builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_); + if (!debug_loc_.empty()) { + builder_->WriteSection(".debug_loc", &debug_loc_); + } + if (!debug_ranges_.empty()) { + builder_->WriteSection(".debug_ranges", &debug_ranges_); + } + } + + private: + ElfBuilder<ElfTypes>* builder_; + std::vector<uintptr_t> debug_info_patches_; + std::vector<uint8_t> debug_abbrev_buffer_; + DebugAbbrevWriter<> debug_abbrev_; + std::vector<uint8_t> debug_loc_; + std::vector<uint8_t> debug_ranges_; + + std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only. +}; + +template<typename ElfTypes> +class DebugLineWriter { + typedef typename ElfTypes::Addr Elf_Addr; + + public: + explicit DebugLineWriter(ElfBuilder<ElfTypes>* builder) : builder_(builder) { + } + + void Start() { + builder_->GetDebugLine()->Start(); + } + + // Write line table for given set of methods. + // Returns the number of bytes written. + size_t WriteCompilationUnit(CompilationUnit& compilation_unit) { + const bool is64bit = Is64BitInstructionSet(builder_->GetIsa()); + const Elf_Addr text_address = builder_->GetText()->Exists() + ? builder_->GetText()->GetAddress() + : 0; + + compilation_unit.debug_line_offset_ = builder_->GetDebugLine()->GetSize(); + + std::vector<FileEntry> files; + std::unordered_map<std::string, size_t> files_map; + std::vector<std::string> directories; + std::unordered_map<std::string, size_t> directories_map; + int code_factor_bits_ = 0; + int dwarf_isa = -1; + switch (builder_->GetIsa()) { + case kArm: // arm actually means thumb2. + case kThumb2: + code_factor_bits_ = 1; // 16-bit instuctions + dwarf_isa = 1; // DW_ISA_ARM_thumb. + break; + case kArm64: + case kMips: + case kMips64: + code_factor_bits_ = 2; // 32-bit instructions + break; + case kNone: + case kX86: + case kX86_64: + break; + } + DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_); + for (const MethodDebugInfo* mi : compilation_unit.methods_) { + // Ignore function if we have already generated line table for the same address. + // It would confuse the debugger and the DWARF specification forbids it. + if (mi->deduped_) { + continue; + } + + ArrayRef<const SrcMapElem> src_mapping_table; + std::vector<SrcMapElem> src_mapping_table_from_stack_maps; + if (IsFromOptimizingCompiler(mi)) { + // Use stack maps to create mapping table from pc to dex. + const CodeInfo code_info(mi->compiled_method_->GetVmapTable().data()); + const StackMapEncoding encoding = code_info.ExtractEncoding(); + for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(); s++) { + StackMap stack_map = code_info.GetStackMapAt(s, encoding); + DCHECK(stack_map.IsValid()); + // Emit only locations where we have local-variable information. + // In particular, skip mappings inside the prologue. + if (stack_map.HasDexRegisterMap(encoding)) { + const uint32_t pc = stack_map.GetNativePcOffset(encoding); + const int32_t dex = stack_map.GetDexPc(encoding); + src_mapping_table_from_stack_maps.push_back({pc, dex}); + } + } + std::sort(src_mapping_table_from_stack_maps.begin(), + src_mapping_table_from_stack_maps.end()); + src_mapping_table = ArrayRef<const SrcMapElem>(src_mapping_table_from_stack_maps); + } else { + // Use the mapping table provided by the quick compiler. + src_mapping_table = mi->compiled_method_->GetSrcMappingTable(); + } + + if (src_mapping_table.empty()) { + continue; + } + + Elf_Addr method_address = text_address + mi->low_pc_; + + PositionInfos position_infos; + const DexFile* dex = mi->dex_file_; + if (!dex->DecodeDebugPositionInfo(mi->code_item_, PositionInfoCallback, &position_infos)) { + continue; + } + + if (position_infos.empty()) { + continue; + } + + opcodes.SetAddress(method_address); + if (dwarf_isa != -1) { + opcodes.SetISA(dwarf_isa); + } + + // Get and deduplicate directory and filename. + int file_index = 0; // 0 - primary source file of the compilation. + auto& dex_class_def = dex->GetClassDef(mi->class_def_index_); + const char* source_file = dex->GetSourceFile(dex_class_def); + if (source_file != nullptr) { + std::string file_name(source_file); + size_t file_name_slash = file_name.find_last_of('/'); + std::string class_name(dex->GetClassDescriptor(dex_class_def)); + size_t class_name_slash = class_name.find_last_of('/'); + std::string full_path(file_name); + + // Guess directory from package name. + int directory_index = 0; // 0 - current directory of the compilation. + if (file_name_slash == std::string::npos && // Just filename. + class_name.front() == 'L' && // Type descriptor for a class. + class_name_slash != std::string::npos) { // Has package name. + std::string package_name = class_name.substr(1, class_name_slash - 1); + auto it = directories_map.find(package_name); + if (it == directories_map.end()) { + directory_index = 1 + directories.size(); + directories_map.emplace(package_name, directory_index); + directories.push_back(package_name); + } else { + directory_index = it->second; + } + full_path = package_name + "/" + file_name; + } + + // Add file entry. + auto it2 = files_map.find(full_path); + if (it2 == files_map.end()) { + file_index = 1 + files.size(); + files_map.emplace(full_path, file_index); + files.push_back(FileEntry { + file_name, + directory_index, + 0, // Modification time - NA. + 0, // File size - NA. + }); + } else { + file_index = it2->second; + } + } + opcodes.SetFile(file_index); + + // Generate mapping opcodes from PC to Java lines. + if (file_index != 0) { + bool first = true; + for (SrcMapElem pc2dex : src_mapping_table) { + uint32_t pc = pc2dex.from_; + int dex_pc = pc2dex.to_; + // Find mapping with address with is greater than our dex pc; then go back one step. + auto ub = std::upper_bound(position_infos.begin(), position_infos.end(), dex_pc, + [](uint32_t address, const DexFile::PositionInfo& entry) { + return address < entry.address_; + }); + if (ub != position_infos.begin()) { + int line = (--ub)->line_; + if (first) { + first = false; + if (pc > 0) { + // Assume that any preceding code is prologue. + int first_line = position_infos.front().line_; + // Prologue is not a sensible place for a breakpoint. + opcodes.NegateStmt(); + opcodes.AddRow(method_address, first_line); + opcodes.NegateStmt(); + opcodes.SetPrologueEnd(); + } + opcodes.AddRow(method_address + pc, line); + } else if (line != opcodes.CurrentLine()) { + opcodes.AddRow(method_address + pc, line); + } + } + } + } else { + // line 0 - instruction cannot be attributed to any source line. + opcodes.AddRow(method_address, 0); + } + + opcodes.AdvancePC(text_address + mi->high_pc_); + opcodes.EndSequence(); + } + std::vector<uint8_t> buffer; + buffer.reserve(opcodes.data()->size() + KB); + size_t offset = builder_->GetDebugLine()->GetSize(); + WriteDebugLineTable(directories, files, opcodes, offset, &buffer, &debug_line_patches); + builder_->GetDebugLine()->WriteFully(buffer.data(), buffer.size()); + return buffer.size(); + } + + void End(bool write_oat_patches) { + builder_->GetDebugLine()->End(); + if (write_oat_patches) { + builder_->WritePatches(".debug_line.oat_patches", + ArrayRef<const uintptr_t>(debug_line_patches)); + } + } + + private: + ElfBuilder<ElfTypes>* builder_; + std::vector<uintptr_t> debug_line_patches; +}; + +template<typename ElfTypes> +static void WriteDebugSections(ElfBuilder<ElfTypes>* builder, + const ArrayRef<const MethodDebugInfo>& method_infos, + bool write_oat_patches) { + // Group the methods into compilation units based on source file. + std::vector<CompilationUnit> compilation_units; + const char* last_source_file = nullptr; + for (const MethodDebugInfo& mi : method_infos) { + auto& dex_class_def = mi.dex_file_->GetClassDef(mi.class_def_index_); + const char* source_file = mi.dex_file_->GetSourceFile(dex_class_def); + if (compilation_units.empty() || source_file != last_source_file) { + compilation_units.push_back(CompilationUnit()); + } + CompilationUnit& cu = compilation_units.back(); + cu.methods_.push_back(&mi); + cu.low_pc_ = std::min(cu.low_pc_, mi.low_pc_); + cu.high_pc_ = std::max(cu.high_pc_, mi.high_pc_); + last_source_file = source_file; + } + + // Write .debug_line section. + if (!compilation_units.empty()) { + DebugLineWriter<ElfTypes> line_writer(builder); + line_writer.Start(); + for (auto& compilation_unit : compilation_units) { + line_writer.WriteCompilationUnit(compilation_unit); + } + line_writer.End(write_oat_patches); + } + + // Write .debug_info section. + if (!compilation_units.empty()) { + DebugInfoWriter<ElfTypes> info_writer(builder); + info_writer.Start(); + for (const auto& compilation_unit : compilation_units) { + info_writer.WriteCompilationUnit(compilation_unit); + } + info_writer.End(write_oat_patches); + } +} + +template <typename ElfTypes> +static void WriteDebugSymbols(ElfBuilder<ElfTypes>* builder, + const ArrayRef<const MethodDebugInfo>& method_infos, + bool with_signature) { + bool generated_mapping_symbol = false; + auto* strtab = builder->GetStrTab(); + auto* symtab = builder->GetSymTab(); + + if (method_infos.empty()) { + return; + } + + // Find all addresses (low_pc) which contain deduped methods. + // The first instance of method is not marked deduped_, but the rest is. + std::unordered_set<uint32_t> deduped_addresses; + for (const MethodDebugInfo& info : method_infos) { + if (info.deduped_) { + deduped_addresses.insert(info.low_pc_); + } + } + + strtab->Start(); + strtab->Write(""); // strtab should start with empty string. + std::string last_name; + size_t last_name_offset = 0; + for (const MethodDebugInfo& info : method_infos) { + if (info.deduped_) { + continue; // Add symbol only for the first instance. + } + std::string name = PrettyMethod(info.dex_method_index_, *info.dex_file_, with_signature); + if (deduped_addresses.find(info.low_pc_) != deduped_addresses.end()) { + name += " [DEDUPED]"; + } + // If we write method names without signature, we might see the same name multiple times. + size_t name_offset = (name == last_name ? last_name_offset : strtab->Write(name)); + + const auto* text = builder->GetText()->Exists() ? builder->GetText() : nullptr; + const bool is_relative = (text != nullptr); + uint32_t low_pc = info.low_pc_; + // Add in code delta, e.g., thumb bit 0 for Thumb2 code. + low_pc += info.compiled_method_->CodeDelta(); + symtab->Add(name_offset, + text, + low_pc, + is_relative, + info.high_pc_ - info.low_pc_, + STB_GLOBAL, + STT_FUNC); + + // Conforming to aaelf, add $t mapping symbol to indicate start of a sequence of thumb2 + // instructions, so that disassembler tools can correctly disassemble. + // Note that even if we generate just a single mapping symbol, ARM's Streamline + // requires it to match function symbol. Just address 0 does not work. + if (info.compiled_method_->GetInstructionSet() == kThumb2) { + if (!generated_mapping_symbol || !kGenerateSingleArmMappingSymbol) { + symtab->Add(strtab->Write("$t"), text, info.low_pc_ & ~1, + is_relative, 0, STB_LOCAL, STT_NOTYPE); + generated_mapping_symbol = true; + } + } + + last_name = std::move(name); + last_name_offset = name_offset; + } + strtab->End(); + + // Symbols are buffered and written after names (because they are smaller). + // We could also do two passes in this function to avoid the buffering. + symtab->Start(); + symtab->Write(); + symtab->End(); +} + +template <typename ElfTypes> +void WriteDebugInfo(ElfBuilder<ElfTypes>* builder, + const ArrayRef<const MethodDebugInfo>& method_infos, + CFIFormat cfi_format, + bool write_oat_patches) { + // Add methods to .symtab. + WriteDebugSymbols(builder, method_infos, true /* with_signature */); + // Generate CFI (stack unwinding information). + WriteCFISection(builder, method_infos, cfi_format, write_oat_patches); + // Write DWARF .debug_* sections. + WriteDebugSections(builder, method_infos, write_oat_patches); +} + +static void XzCompress(const std::vector<uint8_t>* src, std::vector<uint8_t>* dst) { + // Configure the compression library. + CrcGenerateTable(); + Crc64GenerateTable(); + CLzma2EncProps lzma2Props; + Lzma2EncProps_Init(&lzma2Props); + lzma2Props.lzmaProps.level = 1; // Fast compression. + Lzma2EncProps_Normalize(&lzma2Props); + CXzProps props; + XzProps_Init(&props); + props.lzma2Props = &lzma2Props; + // Implement the required interface for communication (written in C so no virtual methods). + struct XzCallbacks : public ISeqInStream, public ISeqOutStream, public ICompressProgress { + static SRes ReadImpl(void* p, void* buf, size_t* size) { + auto* ctx = static_cast<XzCallbacks*>(reinterpret_cast<ISeqInStream*>(p)); + *size = std::min(*size, ctx->src_->size() - ctx->src_pos_); + memcpy(buf, ctx->src_->data() + ctx->src_pos_, *size); + ctx->src_pos_ += *size; + return SZ_OK; + } + static size_t WriteImpl(void* p, const void* buf, size_t size) { + auto* ctx = static_cast<XzCallbacks*>(reinterpret_cast<ISeqOutStream*>(p)); + const uint8_t* buffer = reinterpret_cast<const uint8_t*>(buf); + ctx->dst_->insert(ctx->dst_->end(), buffer, buffer + size); + return size; + } + static SRes ProgressImpl(void* , UInt64, UInt64) { + return SZ_OK; + } + size_t src_pos_; + const std::vector<uint8_t>* src_; + std::vector<uint8_t>* dst_; + }; + XzCallbacks callbacks; + callbacks.Read = XzCallbacks::ReadImpl; + callbacks.Write = XzCallbacks::WriteImpl; + callbacks.Progress = XzCallbacks::ProgressImpl; + callbacks.src_pos_ = 0; + callbacks.src_ = src; + callbacks.dst_ = dst; + // Compress. + SRes res = Xz_Encode(&callbacks, &callbacks, &props, &callbacks); + CHECK_EQ(res, SZ_OK); +} + +template <typename ElfTypes> +std::vector<uint8_t> MakeMiniDebugInfoInternal( + InstructionSet isa, + size_t rodata_section_size, + size_t text_section_size, + const ArrayRef<const MethodDebugInfo>& method_infos) { + std::vector<uint8_t> buffer; + buffer.reserve(KB); + VectorOutputStream out("Mini-debug-info ELF file", &buffer); + std::unique_ptr<ElfBuilder<ElfTypes>> builder(new ElfBuilder<ElfTypes>(isa, &out)); + builder->Start(); + // Mirror .rodata and .text as NOBITS sections. + // It is needed to detected relocations after compression. + builder->GetRoData()->WriteNoBitsSection(rodata_section_size); + builder->GetText()->WriteNoBitsSection(text_section_size); + WriteDebugSymbols(builder.get(), method_infos, false /* with_signature */); + WriteCFISection(builder.get(), method_infos, DW_DEBUG_FRAME_FORMAT, false /* write_oat_paches */); + builder->End(); + CHECK(builder->Good()); + std::vector<uint8_t> compressed_buffer; + compressed_buffer.reserve(buffer.size() / 4); + XzCompress(&buffer, &compressed_buffer); + return compressed_buffer; +} + +std::vector<uint8_t> MakeMiniDebugInfo( + InstructionSet isa, + size_t rodata_size, + size_t text_size, + const ArrayRef<const MethodDebugInfo>& method_infos) { + if (Is64BitInstructionSet(isa)) { + return MakeMiniDebugInfoInternal<ElfTypes64>(isa, rodata_size, text_size, method_infos); + } else { + return MakeMiniDebugInfoInternal<ElfTypes32>(isa, rodata_size, text_size, method_infos); + } +} + +template <typename ElfTypes> +static ArrayRef<const uint8_t> WriteDebugElfFileForMethodInternal( + const dwarf::MethodDebugInfo& method_info) { + const InstructionSet isa = method_info.compiled_method_->GetInstructionSet(); + std::vector<uint8_t> buffer; + buffer.reserve(KB); + VectorOutputStream out("Debug ELF file", &buffer); + std::unique_ptr<ElfBuilder<ElfTypes>> builder(new ElfBuilder<ElfTypes>(isa, &out)); + // No program headers since the ELF file is not linked and has no allocated sections. + builder->Start(false /* write_program_headers */); + WriteDebugInfo(builder.get(), + ArrayRef<const MethodDebugInfo>(&method_info, 1), + DW_DEBUG_FRAME_FORMAT, + false /* write_oat_patches */); + builder->End(); + CHECK(builder->Good()); + // Make a copy of the buffer. We want to shrink it anyway. + uint8_t* result = new uint8_t[buffer.size()]; + CHECK(result != nullptr); + memcpy(result, buffer.data(), buffer.size()); + return ArrayRef<const uint8_t>(result, buffer.size()); +} + +ArrayRef<const uint8_t> WriteDebugElfFileForMethod(const dwarf::MethodDebugInfo& method_info) { + const InstructionSet isa = method_info.compiled_method_->GetInstructionSet(); + if (Is64BitInstructionSet(isa)) { + return WriteDebugElfFileForMethodInternal<ElfTypes64>(method_info); + } else { + return WriteDebugElfFileForMethodInternal<ElfTypes32>(method_info); + } +} + +template <typename ElfTypes> +static ArrayRef<const uint8_t> WriteDebugElfFileForClassesInternal( + const InstructionSet isa, const ArrayRef<mirror::Class*>& types) + SHARED_REQUIRES(Locks::mutator_lock_) { + std::vector<uint8_t> buffer; + buffer.reserve(KB); + VectorOutputStream out("Debug ELF file", &buffer); + std::unique_ptr<ElfBuilder<ElfTypes>> builder(new ElfBuilder<ElfTypes>(isa, &out)); + // No program headers since the ELF file is not linked and has no allocated sections. + builder->Start(false /* write_program_headers */); + DebugInfoWriter<ElfTypes> info_writer(builder.get()); + info_writer.Start(); + info_writer.WriteTypes(types); + info_writer.End(false /* write_oat_patches */); + + builder->End(); + CHECK(builder->Good()); + // Make a copy of the buffer. We want to shrink it anyway. + uint8_t* result = new uint8_t[buffer.size()]; + CHECK(result != nullptr); + memcpy(result, buffer.data(), buffer.size()); + return ArrayRef<const uint8_t>(result, buffer.size()); +} + +ArrayRef<const uint8_t> WriteDebugElfFileForClasses(const InstructionSet isa, + const ArrayRef<mirror::Class*>& types) { + if (Is64BitInstructionSet(isa)) { + return WriteDebugElfFileForClassesInternal<ElfTypes64>(isa, types); + } else { + return WriteDebugElfFileForClassesInternal<ElfTypes32>(isa, types); + } +} + +// Explicit instantiations +template void WriteDebugInfo<ElfTypes32>( + ElfBuilder<ElfTypes32>* builder, + const ArrayRef<const MethodDebugInfo>& method_infos, + CFIFormat cfi_format, + bool write_oat_patches); +template void WriteDebugInfo<ElfTypes64>( + ElfBuilder<ElfTypes64>* builder, + const ArrayRef<const MethodDebugInfo>& method_infos, + CFIFormat cfi_format, + bool write_oat_patches); + +} // namespace dwarf +} // namespace art |