diff options
-rw-r--r-- | compiler/optimizing/register_allocator_graph_color.cc | 1373 | ||||
-rw-r--r-- | compiler/optimizing/register_allocator_graph_color.h | 60 | ||||
-rw-r--r-- | compiler/optimizing/ssa_liveness_analysis.h | 4 |
3 files changed, 1209 insertions, 228 deletions
diff --git a/compiler/optimizing/register_allocator_graph_color.cc b/compiler/optimizing/register_allocator_graph_color.cc index 79ca5a0d86..cfdb41ab62 100644 --- a/compiler/optimizing/register_allocator_graph_color.cc +++ b/compiler/optimizing/register_allocator_graph_color.cc @@ -37,6 +37,165 @@ static constexpr size_t kMaxNumRegs = 32; // intervals are split when coloring fails. static constexpr size_t kMaxGraphColoringAttemptsDebug = 100; +// We always want to avoid spilling inside loops. +static constexpr size_t kLoopSpillWeightMultiplier = 10; + +// If we avoid moves in single jump blocks, we can avoid jumps to jumps. +static constexpr size_t kSingleJumpBlockWeightMultiplier = 2; + +// We avoid moves in blocks that dominate the exit block, since these blocks will +// be executed on every path through the method. +static constexpr size_t kDominatesExitBlockWeightMultiplier = 2; + +enum class CoalesceKind { + kAdjacentSibling, // Prevents moves at interval split points. + kFixedOutputSibling, // Prevents moves from a fixed output location. + kFixedInput, // Prevents moves into a fixed input location. + kNonlinearControlFlow, // Prevents moves between blocks. + kPhi, // Prevents phi resolution moves. + kFirstInput, // Prevents a single input move. + kAnyInput, // May lead to better instruction selection / smaller encodings. +}; + +std::ostream& operator<<(std::ostream& os, const CoalesceKind& kind) { + return os << static_cast<typename std::underlying_type<CoalesceKind>::type>(kind); +} + +static size_t LoopDepthAt(HBasicBlock* block) { + HLoopInformation* loop_info = block->GetLoopInformation(); + size_t depth = 0; + while (loop_info != nullptr) { + ++depth; + loop_info = loop_info->GetPreHeader()->GetLoopInformation(); + } + return depth; +} + +// Return the runtime cost of inserting a move instruction at the specified location. +static size_t CostForMoveAt(size_t position, const SsaLivenessAnalysis& liveness) { + HBasicBlock* block = liveness.GetBlockFromPosition(position / 2); + DCHECK(block != nullptr); + size_t cost = 1; + if (block->IsSingleJump()) { + cost *= kSingleJumpBlockWeightMultiplier; + } + if (block->Dominates(block->GetGraph()->GetExitBlock())) { + cost *= kDominatesExitBlockWeightMultiplier; + } + for (size_t loop_depth = LoopDepthAt(block); loop_depth > 0; --loop_depth) { + cost *= kLoopSpillWeightMultiplier; + } + return cost; +} + +// In general, we estimate coalesce priority by whether it will definitely avoid a move, +// and by how likely it is to create an interference graph that's harder to color. +static size_t ComputeCoalescePriority(CoalesceKind kind, + size_t position, + const SsaLivenessAnalysis& liveness) { + if (kind == CoalesceKind::kAnyInput) { + // This type of coalescing can affect instruction selection, but not moves, so we + // give it the lowest priority. + return 0; + } else { + return CostForMoveAt(position, liveness); + } +} + +enum class CoalesceStage { + kWorklist, // Currently in the iterative coalescing worklist. + kActive, // Not in a worklist, but could be considered again during iterative coalescing. + kInactive, // No longer considered until last-chance coalescing. + kDefunct, // Either the two nodes interfere, or have already been coalesced. +}; + +std::ostream& operator<<(std::ostream& os, const CoalesceStage& stage) { + return os << static_cast<typename std::underlying_type<CoalesceStage>::type>(stage); +} + +// Represents a coalesce opportunity between two nodes. +struct CoalesceOpportunity : public ArenaObject<kArenaAllocRegisterAllocator> { + CoalesceOpportunity(InterferenceNode* a, + InterferenceNode* b, + CoalesceKind kind, + size_t position, + const SsaLivenessAnalysis& liveness) + : node_a(a), + node_b(b), + stage(CoalesceStage::kWorklist), + priority(ComputeCoalescePriority(kind, position, liveness)) {} + + // Compare two coalesce opportunities based on their priority. + // Return true if lhs has a lower priority than that of rhs. + static bool CmpPriority(const CoalesceOpportunity* lhs, + const CoalesceOpportunity* rhs) { + return lhs->priority < rhs->priority; + } + + InterferenceNode* const node_a; + InterferenceNode* const node_b; + + // The current stage of this coalesce opportunity, indicating whether it is in a worklist, + // and whether it should still be considered. + CoalesceStage stage; + + // The priority of this coalesce opportunity, based on heuristics. + const size_t priority; +}; + +enum class NodeStage { + kInitial, // Uninitialized. + kPrecolored, // Marks fixed nodes. + kSafepoint, // Marks safepoint nodes. + kPrunable, // Marks uncolored nodes in the interference graph. + kSimplifyWorklist, // Marks non-move-related nodes with degree less than the number of registers. + kFreezeWorklist, // Marks move-related nodes with degree less than the number of registers. + kSpillWorklist, // Marks nodes with degree greater or equal to the number of registers. + kPruned // Marks nodes already pruned from the interference graph. +}; + +std::ostream& operator<<(std::ostream& os, const NodeStage& stage) { + return os << static_cast<typename std::underlying_type<NodeStage>::type>(stage); +} + +// Returns the estimated cost of spilling a particular live interval. +static float ComputeSpillWeight(LiveInterval* interval, const SsaLivenessAnalysis& liveness) { + if (interval->HasRegister()) { + // Intervals with a fixed register cannot be spilled. + return std::numeric_limits<float>::min(); + } + + size_t length = interval->GetLength(); + if (length == 1) { + // Tiny intervals should have maximum priority, since they cannot be split any further. + return std::numeric_limits<float>::max(); + } + + size_t use_weight = 0; + if (interval->GetDefinedBy() != nullptr && interval->DefinitionRequiresRegister()) { + // Cost for spilling at a register definition point. + use_weight += CostForMoveAt(interval->GetStart() + 1, liveness); + } + + UsePosition* use = interval->GetFirstUse(); + while (use != nullptr && use->GetPosition() <= interval->GetStart()) { + // Skip uses before the start of this live interval. + use = use->GetNext(); + } + + while (use != nullptr && use->GetPosition() <= interval->GetEnd()) { + if (use->GetUser() != nullptr && use->RequiresRegister()) { + // Cost for spilling at a register use point. + use_weight += CostForMoveAt(use->GetUser()->GetLifetimePosition() - 1, liveness); + } + use = use->GetNext(); + } + + // We divide by the length of the interval because we want to prioritize + // short intervals; we do not benefit much if we split them further. + return static_cast<float>(use_weight) / static_cast<float>(length); +} + // Interference nodes make up the interference graph, which is the primary data structure in // graph coloring register allocation. Each node represents a single live interval, and contains // a set of adjacent nodes corresponding to intervals overlapping with its own. To save memory, @@ -58,84 +217,320 @@ static constexpr size_t kMaxGraphColoringAttemptsDebug = 100; // and thus whether it is safe to prune it from the interference graph early on. class InterferenceNode : public ArenaObject<kArenaAllocRegisterAllocator> { public: - InterferenceNode(ArenaAllocator* allocator, LiveInterval* interval, size_t id) - : interval_(interval), - adjacent_nodes_(CmpPtr, allocator->Adapter(kArenaAllocRegisterAllocator)), - out_degree_(0), - id_(id) {} - - // Used to maintain determinism when storing InterferenceNode pointers in sets. - static bool CmpPtr(const InterferenceNode* lhs, const InterferenceNode* rhs) { - return lhs->id_ < rhs->id_; + InterferenceNode(ArenaAllocator* allocator, + LiveInterval* interval, + const SsaLivenessAnalysis& liveness) + : stage(NodeStage::kInitial), + interval_(interval), + adjacent_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)), + coalesce_opportunities_(allocator->Adapter(kArenaAllocRegisterAllocator)), + out_degree_(interval->HasRegister() ? std::numeric_limits<size_t>::max() : 0), + alias_(this), + spill_weight_(ComputeSpillWeight(interval, liveness)), + requires_color_(interval->RequiresRegister()) { + DCHECK(!interval->IsHighInterval()) << "Pair nodes should be represented by the low interval"; } - void AddInterference(InterferenceNode* other) { - if (adjacent_nodes_.insert(other).second) { + void AddInterference(InterferenceNode* other, bool guaranteed_not_interfering_yet) { + DCHECK(!IsPrecolored()) << "To save memory, fixed nodes should not have outgoing interferences"; + DCHECK_NE(this, other) << "Should not create self loops in the interference graph"; + DCHECK_EQ(this, alias_) << "Should not add interferences to a node that aliases another"; + DCHECK_NE(stage, NodeStage::kPruned); + DCHECK_NE(other->stage, NodeStage::kPruned); + if (guaranteed_not_interfering_yet) { + DCHECK(std::find(adjacent_nodes_.begin(), adjacent_nodes_.end(), other) + == adjacent_nodes_.end()); + adjacent_nodes_.push_back(other); out_degree_ += EdgeWeightWith(other); + } else { + auto it = std::find(adjacent_nodes_.begin(), adjacent_nodes_.end(), other); + if (it == adjacent_nodes_.end()) { + adjacent_nodes_.push_back(other); + out_degree_ += EdgeWeightWith(other); + } } } void RemoveInterference(InterferenceNode* other) { - if (adjacent_nodes_.erase(other) > 0) { + DCHECK_EQ(this, alias_) << "Should not remove interferences from a coalesced node"; + DCHECK_EQ(other->stage, NodeStage::kPruned) << "Should only remove interferences when pruning"; + auto it = std::find(adjacent_nodes_.begin(), adjacent_nodes_.end(), other); + if (it != adjacent_nodes_.end()) { + adjacent_nodes_.erase(it); out_degree_ -= EdgeWeightWith(other); } } bool ContainsInterference(InterferenceNode* other) const { - return adjacent_nodes_.count(other) > 0; + DCHECK(!IsPrecolored()) << "Should not query fixed nodes for interferences"; + DCHECK_EQ(this, alias_) << "Should not query a coalesced node for interferences"; + auto it = std::find(adjacent_nodes_.begin(), adjacent_nodes_.end(), other); + return it != adjacent_nodes_.end(); } LiveInterval* GetInterval() const { return interval_; } - const ArenaSet<InterferenceNode*, decltype(&CmpPtr)>& GetAdjacentNodes() const { + const ArenaVector<InterferenceNode*>& GetAdjacentNodes() const { return adjacent_nodes_; } size_t GetOutDegree() const { + // Pre-colored nodes have infinite degree. + DCHECK(!IsPrecolored() || out_degree_ == std::numeric_limits<size_t>::max()); return out_degree_; } - size_t GetId() const { - return id_; + void AddCoalesceOpportunity(CoalesceOpportunity* opportunity) { + coalesce_opportunities_.push_back(opportunity); + } + + void ClearCoalesceOpportunities() { + coalesce_opportunities_.clear(); + } + + bool IsMoveRelated() const { + for (CoalesceOpportunity* opportunity : coalesce_opportunities_) { + if (opportunity->stage == CoalesceStage::kWorklist || + opportunity->stage == CoalesceStage::kActive) { + return true; + } + } + return false; + } + + // Return whether this node already has a color. + // Used to find fixed nodes in the interference graph before coloring. + bool IsPrecolored() const { + return interval_->HasRegister(); + } + + bool IsPair() const { + return interval_->HasHighInterval(); + } + + void SetAlias(InterferenceNode* rep) { + DCHECK_NE(rep->stage, NodeStage::kPruned); + DCHECK_EQ(this, alias_) << "Should only set a node's alias once"; + alias_ = rep; + } + + InterferenceNode* GetAlias() { + if (alias_ != this) { + // Recurse in order to flatten tree of alias pointers. + alias_ = alias_->GetAlias(); + } + return alias_; + } + + const ArenaVector<CoalesceOpportunity*>& GetCoalesceOpportunities() const { + return coalesce_opportunities_; + } + + float GetSpillWeight() const { + return spill_weight_; + } + + bool RequiresColor() const { + return requires_color_; } - private: // We give extra weight to edges adjacent to pair nodes. See the general comment on the // interference graph above. - size_t EdgeWeightWith(InterferenceNode* other) const { - return (interval_->HasHighInterval() || other->interval_->HasHighInterval()) ? 2 : 1; + size_t EdgeWeightWith(const InterferenceNode* other) const { + return (IsPair() || other->IsPair()) ? 2 : 1; } + // The current stage of this node, indicating which worklist it belongs to. + NodeStage stage; + + private: // The live interval that this node represents. LiveInterval* const interval_; // All nodes interfering with this one. - // TODO: There is potential to use a cheaper data structure here, especially since - // adjacency sets will usually be small. - ArenaSet<InterferenceNode*, decltype(&CmpPtr)> adjacent_nodes_; + // We use an unsorted vector as a set, since a tree or hash set is too heavy for the + // set sizes that we encounter. Using a vector leads to much better performance. + ArenaVector<InterferenceNode*> adjacent_nodes_; + + // Interference nodes that this node should be coalesced with to reduce moves. + ArenaVector<CoalesceOpportunity*> coalesce_opportunities_; // The maximum number of colors with which this node could interfere. This could be more than // the number of adjacent nodes if this is a pair node, or if some adjacent nodes are pair nodes. // We use "out" degree because incoming edges come from nodes already pruned from the graph, // and do not affect the coloring of this node. + // Pre-colored nodes are treated as having infinite degree. size_t out_degree_; - // A unique identifier for this node, used to maintain determinism when storing - // interference nodes in sets. - const size_t id_; + // The node representing this node in the interference graph. + // Initially set to `this`, and only changed if this node is coalesced into another. + InterferenceNode* alias_; - // TODO: We could cache the result of interval_->RequiresRegister(), since it - // will not change for the lifetime of this node. (Currently, RequiresRegister() requires - // iterating through all uses of a live interval.) + // The cost of splitting and spilling this interval to the stack. + // Nodes with a higher spill weight should be prioritized when assigning registers. + // This is essentially based on use density and location; short intervals with many uses inside + // deeply nested loops have a high spill weight. + const float spill_weight_; + + const bool requires_color_; DISALLOW_COPY_AND_ASSIGN(InterferenceNode); }; +// The order in which we color nodes is important. To guarantee forward progress, +// we prioritize intervals that require registers, and after that we prioritize +// short intervals. That way, if we fail to color a node, it either won't require a +// register, or it will be a long interval that can be split in order to make the +// interference graph sparser. +// To improve code quality, we prioritize intervals used frequently in deeply nested loops. +// (This metric is secondary to the forward progress requirements above.) +// TODO: May also want to consider: +// - Constants (since they can be rematerialized) +// - Allocated spill slots +static bool HasGreaterNodePriority(const InterferenceNode* lhs, + const InterferenceNode* rhs) { + // (1) Prioritize the node that requires a color. + if (lhs->RequiresColor() != rhs->RequiresColor()) { + return lhs->RequiresColor(); + } + + // (2) Prioritize the interval that has a higher spill weight. + return lhs->GetSpillWeight() > rhs->GetSpillWeight(); +} + +// A ColoringIteration holds the many data structures needed for a single graph coloring attempt, +// and provides methods for each phase of the attempt. +class ColoringIteration { + public: + ColoringIteration(RegisterAllocatorGraphColor* register_allocator, + ArenaAllocator* allocator, + bool processing_core_regs, + size_t num_regs) + : register_allocator_(register_allocator), + allocator_(allocator), + processing_core_regs_(processing_core_regs), + num_regs_(num_regs), + interval_node_map_(allocator->Adapter(kArenaAllocRegisterAllocator)), + prunable_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)), + pruned_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)), + simplify_worklist_(allocator->Adapter(kArenaAllocRegisterAllocator)), + freeze_worklist_(allocator->Adapter(kArenaAllocRegisterAllocator)), + spill_worklist_(HasGreaterNodePriority, allocator->Adapter(kArenaAllocRegisterAllocator)), + coalesce_worklist_(CoalesceOpportunity::CmpPriority, + allocator->Adapter(kArenaAllocRegisterAllocator)) {} + + // Use the intervals collected from instructions to construct an + // interference graph mapping intervals to adjacency lists. + // Also, collect synthesized safepoint nodes, used to keep + // track of live intervals across safepoints. + // TODO: Should build safepoints elsewhere. + void BuildInterferenceGraph(const ArenaVector<LiveInterval*>& intervals, + const ArenaVector<InterferenceNode*>& physical_nodes, + ArenaVector<InterferenceNode*>* safepoints); + + // Add coalesce opportunities to interference nodes. + void FindCoalesceOpportunities(); + + // Prune nodes from the interference graph to be colored later. Build + // a stack (pruned_nodes) containing these intervals in an order determined + // by various heuristics. + void PruneInterferenceGraph(); + + // Process pruned_intervals_ to color the interference graph, spilling when + // necessary. Returns true if successful. Else, some intervals have been + // split, and the interference graph should be rebuilt for another attempt. + bool ColorInterferenceGraph(); + + // Return prunable nodes. + // The register allocator will need to access prunable nodes after coloring + // in order to tell the code generator which registers have been assigned. + const ArenaVector<InterferenceNode*>& GetPrunableNodes() const { + return prunable_nodes_; + } + + private: + // Create a coalesce opportunity between two nodes. + void CreateCoalesceOpportunity(InterferenceNode* a, + InterferenceNode* b, + CoalesceKind kind, + size_t position); + + // Add an edge in the interference graph, if valid. + // Note that `guaranteed_not_interfering_yet` is used to optimize adjacency set insertion + // when possible. + void AddPotentialInterference(InterferenceNode* from, + InterferenceNode* to, + bool guaranteed_not_interfering_yet, + bool both_directions = true); + + // Invalidate all coalesce opportunities this node has, so that it (and possibly its neighbors) + // may be pruned from the interference graph. + void FreezeMoves(InterferenceNode* node); + + // Prune a node from the interference graph, updating worklists if necessary. + void PruneNode(InterferenceNode* node); + + // Add coalesce opportunities associated with this node to the coalesce worklist. + void EnableCoalesceOpportunities(InterferenceNode* node); + + // If needed, from `node` from the freeze worklist to the simplify worklist. + void CheckTransitionFromFreezeWorklist(InterferenceNode* node); + + // Return true if `into` is colored, and `from` can be coalesced with `into` conservatively. + bool PrecoloredHeuristic(InterferenceNode* from, InterferenceNode* into); + + // Return true if `from` and `into` are uncolored, and can be coalesced conservatively. + bool UncoloredHeuristic(InterferenceNode* from, InterferenceNode* into); + + void Coalesce(CoalesceOpportunity* opportunity); + + // Merge `from` into `into` in the interference graph. + void Combine(InterferenceNode* from, InterferenceNode* into); + + // A reference to the register allocator instance, + // needed to split intervals and assign spill slots. + RegisterAllocatorGraphColor* register_allocator_; + + // An arena allocator used for a single graph coloring attempt. + ArenaAllocator* allocator_; + + const bool processing_core_regs_; + + const size_t num_regs_; + + // A map from live intervals to interference nodes. + ArenaHashMap<LiveInterval*, InterferenceNode*> interval_node_map_; + + // Uncolored nodes that should be pruned from the interference graph. + ArenaVector<InterferenceNode*> prunable_nodes_; + + // A stack of nodes pruned from the interference graph, waiting to be pruned. + ArenaStdStack<InterferenceNode*> pruned_nodes_; + + // A queue containing low degree, non-move-related nodes that can pruned immediately. + ArenaDeque<InterferenceNode*> simplify_worklist_; + + // A queue containing low degree, move-related nodes. + ArenaDeque<InterferenceNode*> freeze_worklist_; + + // A queue containing high degree nodes. + // If we have to prune from the spill worklist, we cannot guarantee + // the pruned node a color, so we order the worklist by priority. + ArenaPriorityQueue<InterferenceNode*, decltype(&HasGreaterNodePriority)> spill_worklist_; + + // A queue containing coalesce opportunities. + // We order the coalesce worklist by priority, since some coalesce opportunities (e.g., those + // inside of loops) are more important than others. + ArenaPriorityQueue<CoalesceOpportunity*, + decltype(&CoalesceOpportunity::CmpPriority)> coalesce_worklist_; + + DISALLOW_COPY_AND_ASSIGN(ColoringIteration); +}; + static bool IsCoreInterval(LiveInterval* interval) { - return interval->GetType() != Primitive::kPrimFloat - && interval->GetType() != Primitive::kPrimDouble; + return !Primitive::IsFloatingPointType(interval->GetType()); } static size_t ComputeReservedArtMethodSlots(const CodeGenerator& codegen) { @@ -144,14 +539,16 @@ static size_t ComputeReservedArtMethodSlots(const CodeGenerator& codegen) { RegisterAllocatorGraphColor::RegisterAllocatorGraphColor(ArenaAllocator* allocator, CodeGenerator* codegen, - const SsaLivenessAnalysis& liveness) + const SsaLivenessAnalysis& liveness, + bool iterative_move_coalescing) : RegisterAllocator(allocator, codegen, liveness), + iterative_move_coalescing_(iterative_move_coalescing), core_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)), fp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)), temp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)), safepoints_(allocator->Adapter(kArenaAllocRegisterAllocator)), - physical_core_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)), - physical_fp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)), + physical_core_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)), + physical_fp_nodes_(allocator->Adapter(kArenaAllocRegisterAllocator)), int_spill_slot_counter_(0), double_spill_slot_counter_(0), float_spill_slot_counter_(0), @@ -162,17 +559,18 @@ RegisterAllocatorGraphColor::RegisterAllocatorGraphColor(ArenaAllocator* allocat number_of_globally_blocked_core_regs_(0), number_of_globally_blocked_fp_regs_(0), max_safepoint_live_core_regs_(0), - max_safepoint_live_fp_regs_(0), - coloring_attempt_allocator_(nullptr) { + max_safepoint_live_fp_regs_(0) { // Before we ask for blocked registers, set them up in the code generator. codegen->SetupBlockedRegisters(); // Initialize physical core register live intervals and blocked registers. // This includes globally blocked registers, such as the stack pointer. - physical_core_intervals_.resize(codegen->GetNumberOfCoreRegisters(), nullptr); - for (size_t i = 0; i < codegen->GetNumberOfCoreRegisters(); ++i) { + physical_core_nodes_.resize(codegen_->GetNumberOfCoreRegisters(), nullptr); + for (size_t i = 0; i < codegen_->GetNumberOfCoreRegisters(); ++i) { LiveInterval* interval = LiveInterval::MakeFixedInterval(allocator_, i, Primitive::kPrimInt); - physical_core_intervals_[i] = interval; + physical_core_nodes_[i] = + new (allocator_) InterferenceNode(allocator_, interval, liveness); + physical_core_nodes_[i]->stage = NodeStage::kPrecolored; core_intervals_.push_back(interval); if (codegen_->IsBlockedCoreRegister(i)) { ++number_of_globally_blocked_core_regs_; @@ -180,10 +578,12 @@ RegisterAllocatorGraphColor::RegisterAllocatorGraphColor(ArenaAllocator* allocat } } // Initialize physical floating point register live intervals and blocked registers. - physical_fp_intervals_.resize(codegen->GetNumberOfFloatingPointRegisters(), nullptr); - for (size_t i = 0; i < codegen->GetNumberOfFloatingPointRegisters(); ++i) { + physical_fp_nodes_.resize(codegen_->GetNumberOfFloatingPointRegisters(), nullptr); + for (size_t i = 0; i < codegen_->GetNumberOfFloatingPointRegisters(); ++i) { LiveInterval* interval = LiveInterval::MakeFixedInterval(allocator_, i, Primitive::kPrimFloat); - physical_fp_intervals_[i] = interval; + physical_fp_nodes_[i] = + new (allocator_) InterferenceNode(allocator_, interval, liveness); + physical_fp_nodes_[i]->stage = NodeStage::kPrecolored; fp_intervals_.push_back(interval); if (codegen_->IsBlockedFloatingPointRegister(i)) { ++number_of_globally_blocked_fp_regs_; @@ -213,24 +613,44 @@ void RegisterAllocatorGraphColor::AllocateRegisters() { << "which could be caused by prioritizing the wrong live intervals. (Short intervals " << "should be prioritized over long ones, because they cannot be split further.)"; - // Reset the allocator for the next coloring attempt. + // Many data structures are cleared between graph coloring attempts, so we reduce + // total memory usage by using a new arena allocator for each attempt. ArenaAllocator coloring_attempt_allocator(allocator_->GetArenaPool()); - coloring_attempt_allocator_ = &coloring_attempt_allocator; + ColoringIteration iteration(this, + &coloring_attempt_allocator, + processing_core_regs, + num_registers); - // (2) Build the interference graph. - ArenaVector<InterferenceNode*> prunable_nodes( - coloring_attempt_allocator_->Adapter(kArenaAllocRegisterAllocator)); + // (2) Build the interference graph. Also gather safepoints. ArenaVector<InterferenceNode*> safepoints( - coloring_attempt_allocator_->Adapter(kArenaAllocRegisterAllocator)); - BuildInterferenceGraph(intervals, &prunable_nodes, &safepoints); + coloring_attempt_allocator.Adapter(kArenaAllocRegisterAllocator)); + ArenaVector<InterferenceNode*>& physical_nodes = processing_core_regs + ? physical_core_nodes_ + : physical_fp_nodes_; + iteration.BuildInterferenceGraph(intervals, physical_nodes, &safepoints); + + // (3) Add coalesce opportunities. + // If we have tried coloring the graph a suspiciously high number of times, give + // up on move coalescing, just in case the coalescing heuristics are not conservative. + // (This situation will be caught if DCHECKs are turned on.) + if (iterative_move_coalescing_ && attempt <= kMaxGraphColoringAttemptsDebug) { + iteration.FindCoalesceOpportunities(); + } - // (3) Prune all uncolored nodes from interference graph. - ArenaStdStack<InterferenceNode*> pruned_nodes( - coloring_attempt_allocator_->Adapter(kArenaAllocRegisterAllocator)); - PruneInterferenceGraph(prunable_nodes, num_registers, &pruned_nodes); + // (4) Prune all uncolored nodes from interference graph. + iteration.PruneInterferenceGraph(); - // (4) Color pruned nodes based on interferences. - bool successful = ColorInterferenceGraph(&pruned_nodes, num_registers); + // (5) Color pruned nodes based on interferences. + bool successful = iteration.ColorInterferenceGraph(); + + // We manually clear coalesce opportunities for physical nodes, + // since they persist across coloring attempts. + for (InterferenceNode* node : physical_core_nodes_) { + node->ClearCoalesceOpportunities(); + } + for (InterferenceNode* node : physical_fp_nodes_) { + node->ClearCoalesceOpportunities(); + } if (successful) { // Compute the maximum number of live registers across safepoints. @@ -250,7 +670,7 @@ void RegisterAllocatorGraphColor::AllocateRegisters() { // We only look at prunable_nodes because we already told the code generator about // fixed intervals while processing instructions. We also ignore the fixed intervals // placed at the top of catch blocks. - for (InterferenceNode* node : prunable_nodes) { + for (InterferenceNode* node : iteration.GetPrunableNodes()) { LiveInterval* interval = node->GetInterval(); if (interval->HasRegister()) { Location low_reg = processing_core_regs @@ -275,7 +695,7 @@ void RegisterAllocatorGraphColor::AllocateRegisters() { } // while unsuccessful } // for processing_core_instructions - // (5) Resolve locations and deconstruct SSA form. + // (6) Resolve locations and deconstruct SSA form. RegisterAllocationResolver(allocator_, codegen_, liveness_) .Resolve(max_safepoint_live_core_regs_, max_safepoint_live_fp_regs_, @@ -304,11 +724,12 @@ bool RegisterAllocatorGraphColor::Validate(bool log_fatal_on_failure) { } } - ArenaVector<LiveInterval*>& physical_intervals = processing_core_regs - ? physical_core_intervals_ - : physical_fp_intervals_; - for (LiveInterval* fixed : physical_intervals) { - if (fixed->GetFirstRange() != nullptr) { + ArenaVector<InterferenceNode*>& physical_nodes = processing_core_regs + ? physical_core_nodes_ + : physical_fp_nodes_; + for (InterferenceNode* fixed : physical_nodes) { + LiveInterval* interval = fixed->GetInterval(); + if (interval->GetFirstRange() != nullptr) { // Ideally we would check fixed ranges as well, but currently there are times when // two fixed intervals for the same register will overlap. For example, a fixed input // and a fixed output may sometimes share the same register, in which there will be two @@ -358,7 +779,8 @@ void RegisterAllocatorGraphColor::ProcessInstructions() { ProcessInstruction(phi_it.Current()); } - if (block->IsCatchBlock() || (block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible())) { + if (block->IsCatchBlock() + || (block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible())) { // By blocking all registers at the top of each catch block or irreducible loop, we force // intervals belonging to the live-in set of the catch/header block to be spilled. // TODO(ngeoffray): Phis in this block could be allocated in register. @@ -435,7 +857,9 @@ void RegisterAllocatorGraphColor::CheckForFixedInputs(HInstruction* instruction) // TODO: Ideally we would coalesce the physical register with the register // allocated to the input value, but this can be tricky if, e.g., there // could be multiple physical register uses of the same value at the - // same instruction. Need to think about it more. + // same instruction. Furthermore, there's currently no distinction between + // fixed inputs to a call (which will be clobbered) and other fixed inputs (which + // may not be clobbered). LocationSummary* locations = instruction->GetLocations(); size_t position = instruction->GetLifetimePosition(); for (size_t i = 0; i < locations->GetInputCount(); ++i) { @@ -639,8 +1063,8 @@ void RegisterAllocatorGraphColor::BlockRegister(Location location, DCHECK(location.IsRegister() || location.IsFpuRegister()); int reg = location.reg(); LiveInterval* interval = location.IsRegister() - ? physical_core_intervals_[reg] - : physical_fp_intervals_[reg]; + ? physical_core_nodes_[reg]->GetInterval() + : physical_fp_nodes_[reg]->GetInterval(); DCHECK(interval->GetRegister() == reg); bool blocked_by_codegen = location.IsRegister() ? codegen_->IsBlockedCoreRegister(reg) @@ -666,28 +1090,105 @@ void RegisterAllocatorGraphColor::BlockRegisters(size_t start, size_t end, bool } } -// Add an interference edge, but only if necessary. -static void AddPotentialInterference(InterferenceNode* from, InterferenceNode* to) { - if (from->GetInterval()->HasRegister()) { +void ColoringIteration::AddPotentialInterference(InterferenceNode* from, + InterferenceNode* to, + bool guaranteed_not_interfering_yet, + bool both_directions) { + if (from->IsPrecolored()) { // We save space by ignoring outgoing edges from fixed nodes. } else if (to->GetInterval()->IsSlowPathSafepoint()) { // Safepoint intervals are only there to count max live registers, // so no need to give them incoming interference edges. // This is also necessary for correctness, because we don't want nodes // to remove themselves from safepoint adjacency sets when they're pruned. + } else if (to->IsPrecolored()) { + // It is important that only a single node represents a given fixed register in the + // interference graph. We retrieve that node here. + const ArenaVector<InterferenceNode*>& physical_nodes = to->GetInterval()->IsFloatingPoint() + ? register_allocator_->physical_fp_nodes_ + : register_allocator_->physical_core_nodes_; + InterferenceNode* physical_node = physical_nodes[to->GetInterval()->GetRegister()]; + from->AddInterference(physical_node, /*guaranteed_not_interfering_yet*/ false); + DCHECK_EQ(to->GetInterval()->GetRegister(), physical_node->GetInterval()->GetRegister()); + DCHECK_EQ(to->GetAlias(), physical_node) << "Fixed nodes should alias the canonical fixed node"; + + // If a node interferes with a fixed pair node, the weight of the edge may + // be inaccurate after using the alias of the pair node, because the alias of the pair node + // is a singular node. + // We could make special pair fixed nodes, but that ends up being too conservative because + // a node could then interfere with both {r1} and {r1,r2}, leading to a degree of + // three rather than two. + // Instead, we explicitly add an interference with the high node of the fixed pair node. + // TODO: This is too conservative at time for pair nodes, but the fact that fixed pair intervals + // can be unaligned on x86 complicates things. + if (to->IsPair()) { + InterferenceNode* high_node = + physical_nodes[to->GetInterval()->GetHighInterval()->GetRegister()]; + DCHECK_EQ(to->GetInterval()->GetHighInterval()->GetRegister(), + high_node->GetInterval()->GetRegister()); + from->AddInterference(high_node, /*guaranteed_not_interfering_yet*/ false); + } } else { - from->AddInterference(to); + // Standard interference between two uncolored nodes. + from->AddInterference(to, guaranteed_not_interfering_yet); + } + + if (both_directions) { + AddPotentialInterference(to, from, guaranteed_not_interfering_yet, /*both_directions*/ false); } } -// TODO: See locations->OutputCanOverlapWithInputs(); we may want to consider -// this when building the interference graph. -void RegisterAllocatorGraphColor::BuildInterferenceGraph( +// Returns true if `in_node` represents an input interval of `out_node`, and the output interval +// is allowed to have the same register as the input interval. +// TODO: Ideally we should just produce correct intervals in liveness analysis. +// We would need to refactor the current live interval layout to do so, which is +// no small task. +static bool CheckInputOutputCanOverlap(InterferenceNode* in_node, InterferenceNode* out_node) { + LiveInterval* output_interval = out_node->GetInterval(); + HInstruction* defined_by = output_interval->GetDefinedBy(); + if (defined_by == nullptr) { + // This must not be a definition point. + return false; + } + + LocationSummary* locations = defined_by->GetLocations(); + if (locations->OutputCanOverlapWithInputs()) { + // This instruction does not allow the output to reuse a register from an input. + return false; + } + + LiveInterval* input_interval = in_node->GetInterval(); + LiveInterval* next_sibling = input_interval->GetNextSibling(); + size_t def_position = defined_by->GetLifetimePosition(); + size_t use_position = def_position + 1; + if (next_sibling != nullptr && next_sibling->GetStart() == use_position) { + // The next sibling starts at the use position, so reusing the input register in the output + // would clobber the input before it's moved into the sibling interval location. + return false; + } + + if (!input_interval->IsDeadAt(use_position) && input_interval->CoversSlow(use_position)) { + // The input interval is live after the use position. + return false; + } + + HInputsRef inputs = defined_by->GetInputs(); + for (size_t i = 0; i < inputs.size(); ++i) { + if (inputs[i]->GetLiveInterval()->GetSiblingAt(def_position) == input_interval) { + DCHECK(input_interval->SameRegisterKind(*output_interval)); + return true; + } + } + + // The input interval was not an input for this instruction. + return false; +} + +void ColoringIteration::BuildInterferenceGraph( const ArenaVector<LiveInterval*>& intervals, - ArenaVector<InterferenceNode*>* prunable_nodes, + const ArenaVector<InterferenceNode*>& physical_nodes, ArenaVector<InterferenceNode*>* safepoints) { - size_t interval_id_counter = 0; - + DCHECK(interval_node_map_.Empty() && prunable_nodes_.empty()); // Build the interference graph efficiently by ordering range endpoints // by position and doing a linear sweep to find interferences. (That is, we // jump from endpoint to endpoint, maintaining a set of intervals live at each @@ -701,21 +1202,34 @@ void RegisterAllocatorGraphColor::BuildInterferenceGraph( // For simplicity, we create a tuple for each endpoint, and then sort the tuples. // Tuple contents: (position, is_range_beginning, node). ArenaVector<std::tuple<size_t, bool, InterferenceNode*>> range_endpoints( - coloring_attempt_allocator_->Adapter(kArenaAllocRegisterAllocator)); + allocator_->Adapter(kArenaAllocRegisterAllocator)); + + // We reserve plenty of space to avoid excessive copying. + range_endpoints.reserve(4 * prunable_nodes_.size()); + for (LiveInterval* parent : intervals) { for (LiveInterval* sibling = parent; sibling != nullptr; sibling = sibling->GetNextSibling()) { LiveRange* range = sibling->GetFirstRange(); if (range != nullptr) { - InterferenceNode* node = new (coloring_attempt_allocator_) InterferenceNode( - coloring_attempt_allocator_, sibling, interval_id_counter++); + InterferenceNode* node = new (allocator_) InterferenceNode( + allocator_, sibling, register_allocator_->liveness_); + interval_node_map_.Insert(std::make_pair(sibling, node)); + if (sibling->HasRegister()) { - // Fixed nodes will never be pruned, so no need to keep track of them. + // Fixed nodes should alias the canonical node for the corresponding register. + node->stage = NodeStage::kPrecolored; + InterferenceNode* physical_node = physical_nodes[sibling->GetRegister()]; + node->SetAlias(physical_node); + DCHECK_EQ(node->GetInterval()->GetRegister(), + physical_node->GetInterval()->GetRegister()); } else if (sibling->IsSlowPathSafepoint()) { // Safepoint intervals are synthesized to count max live registers. // They will be processed separately after coloring. + node->stage = NodeStage::kSafepoint; safepoints->push_back(node); } else { - prunable_nodes->push_back(node); + node->stage = NodeStage::kPrunable; + prunable_nodes_.push_back(node); } while (range != nullptr) { @@ -728,11 +1242,18 @@ void RegisterAllocatorGraphColor::BuildInterferenceGraph( } // Sort the endpoints. - std::sort(range_endpoints.begin(), range_endpoints.end()); + // We explicitly ignore the third entry of each tuple (the node pointer) in order + // to maintain determinism. + std::sort(range_endpoints.begin(), range_endpoints.end(), + [] (const std::tuple<size_t, bool, InterferenceNode*>& lhs, + const std::tuple<size_t, bool, InterferenceNode*>& rhs) { + return std::tie(std::get<0>(lhs), std::get<1>(lhs)) + < std::tie(std::get<0>(rhs), std::get<1>(rhs)); + }); // Nodes live at the current position in the linear sweep. - ArenaSet<InterferenceNode*, decltype(&InterferenceNode::CmpPtr)> live( - InterferenceNode::CmpPtr, coloring_attempt_allocator_->Adapter(kArenaAllocRegisterAllocator)); + ArenaVector<InterferenceNode*> live( + allocator_->Adapter(kArenaAllocRegisterAllocator)); // Linear sweep. When we encounter the beginning of a range, we add the corresponding node to the // live set. When we encounter the end of a range, we remove the corresponding node @@ -740,131 +1261,505 @@ void RegisterAllocatorGraphColor::BuildInterferenceGraph( for (auto it = range_endpoints.begin(); it != range_endpoints.end(); ++it) { bool is_range_beginning; InterferenceNode* node; + size_t position; // Extract information from the tuple, including the node this tuple represents. - std::tie(std::ignore, is_range_beginning, node) = *it; + std::tie(position, is_range_beginning, node) = *it; if (is_range_beginning) { + bool guaranteed_not_interfering_yet = position == node->GetInterval()->GetStart(); for (InterferenceNode* conflicting : live) { DCHECK_NE(node, conflicting); - AddPotentialInterference(node, conflicting); - AddPotentialInterference(conflicting, node); + if (CheckInputOutputCanOverlap(conflicting, node)) { + // We do not add an interference, because the instruction represented by `node` allows + // its output to share a register with an input, represented here by `conflicting`. + } else { + AddPotentialInterference(node, conflicting, guaranteed_not_interfering_yet); + } } - DCHECK_EQ(live.count(node), 0u); - live.insert(node); + DCHECK(std::find(live.begin(), live.end(), node) == live.end()); + live.push_back(node); } else { // End of range. - DCHECK_EQ(live.count(node), 1u); - live.erase(node); + auto live_it = std::find(live.begin(), live.end(), node); + DCHECK(live_it != live.end()); + live.erase(live_it); } } DCHECK(live.empty()); } -// The order in which we color nodes is vital to both correctness (forward -// progress) and code quality. Specifically, we must prioritize intervals -// that require registers, and after that we must prioritize short intervals. -// That way, if we fail to color a node, it either won't require a register, -// or it will be a long interval that can be split in order to make the -// interference graph sparser. -// TODO: May also want to consider: -// - Loop depth -// - Constants (since they can be rematerialized) -// - Allocated spill slots -static bool GreaterNodePriority(const InterferenceNode* lhs, - const InterferenceNode* rhs) { - LiveInterval* lhs_interval = lhs->GetInterval(); - LiveInterval* rhs_interval = rhs->GetInterval(); +void ColoringIteration::CreateCoalesceOpportunity(InterferenceNode* a, + InterferenceNode* b, + CoalesceKind kind, + size_t position) { + DCHECK_EQ(a->IsPair(), b->IsPair()) + << "Nodes of different memory widths should never be coalesced"; + CoalesceOpportunity* opportunity = + new (allocator_) CoalesceOpportunity(a, b, kind, position, register_allocator_->liveness_); + a->AddCoalesceOpportunity(opportunity); + b->AddCoalesceOpportunity(opportunity); + coalesce_worklist_.push(opportunity); +} - // (1) Choose the interval that requires a register. - if (lhs_interval->RequiresRegister() != rhs_interval->RequiresRegister()) { - return lhs_interval->RequiresRegister(); - } +// When looking for coalesce opportunities, we use the interval_node_map_ to find the node +// corresponding to an interval. Note that not all intervals are in this map, notably the parents +// of constants and stack arguments. (However, these interval should not be involved in coalesce +// opportunities anyway, because they're not going to be in registers.) +void ColoringIteration::FindCoalesceOpportunities() { + DCHECK(coalesce_worklist_.empty()); - // (2) Choose the interval that has a shorter life span. - if (lhs_interval->GetLength() != rhs_interval->GetLength()) { - return lhs_interval->GetLength() < rhs_interval->GetLength(); - } + for (InterferenceNode* node : prunable_nodes_) { + LiveInterval* interval = node->GetInterval(); + + // Coalesce siblings. + LiveInterval* next_sibling = interval->GetNextSibling(); + if (next_sibling != nullptr && interval->GetEnd() == next_sibling->GetStart()) { + auto it = interval_node_map_.Find(next_sibling); + if (it != interval_node_map_.end()) { + InterferenceNode* sibling_node = it->second; + CreateCoalesceOpportunity(node, + sibling_node, + CoalesceKind::kAdjacentSibling, + interval->GetEnd()); + } + } + + // Coalesce fixed outputs with this interval if this interval is an adjacent sibling. + LiveInterval* parent = interval->GetParent(); + if (parent->HasRegister() + && parent->GetNextSibling() == interval + && parent->GetEnd() == interval->GetStart()) { + auto it = interval_node_map_.Find(parent); + if (it != interval_node_map_.end()) { + InterferenceNode* parent_node = it->second; + CreateCoalesceOpportunity(node, + parent_node, + CoalesceKind::kFixedOutputSibling, + parent->GetEnd()); + } + } + + // Try to prevent moves across blocks. + // Note that this does not lead to many succeeding coalesce attempts, so could be removed + // if found to add to compile time. + const SsaLivenessAnalysis& liveness = register_allocator_->liveness_; + if (interval->IsSplit() && liveness.IsAtBlockBoundary(interval->GetStart() / 2)) { + // If the start of this interval is at a block boundary, we look at the + // location of the interval in blocks preceding the block this interval + // starts at. This can avoid a move between the two blocks. + HBasicBlock* block = liveness.GetBlockFromPosition(interval->GetStart() / 2); + for (HBasicBlock* predecessor : block->GetPredecessors()) { + size_t position = predecessor->GetLifetimeEnd() - 1; + LiveInterval* existing = interval->GetParent()->GetSiblingAt(position); + if (existing != nullptr) { + auto it = interval_node_map_.Find(existing); + if (it != interval_node_map_.end()) { + InterferenceNode* existing_node = it->second; + CreateCoalesceOpportunity(node, + existing_node, + CoalesceKind::kNonlinearControlFlow, + position); + } + } + } + } + + // Coalesce phi inputs with the corresponding output. + HInstruction* defined_by = interval->GetDefinedBy(); + if (defined_by != nullptr && defined_by->IsPhi()) { + const ArenaVector<HBasicBlock*>& predecessors = defined_by->GetBlock()->GetPredecessors(); + HInputsRef inputs = defined_by->GetInputs(); + + for (size_t i = 0, e = inputs.size(); i < e; ++i) { + // We want the sibling at the end of the appropriate predecessor block. + size_t position = predecessors[i]->GetLifetimeEnd() - 1; + LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(position); + + auto it = interval_node_map_.Find(input_interval); + if (it != interval_node_map_.end()) { + InterferenceNode* input_node = it->second; + CreateCoalesceOpportunity(node, input_node, CoalesceKind::kPhi, position); + } + } + } + + // Coalesce output with first input when policy is kSameAsFirstInput. + if (defined_by != nullptr) { + Location out = defined_by->GetLocations()->Out(); + if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) { + LiveInterval* input_interval + = defined_by->InputAt(0)->GetLiveInterval()->GetSiblingAt(interval->GetStart() - 1); + // TODO: Could we consider lifetime holes here? + if (input_interval->GetEnd() == interval->GetStart()) { + auto it = interval_node_map_.Find(input_interval); + if (it != interval_node_map_.end()) { + InterferenceNode* input_node = it->second; + CreateCoalesceOpportunity(node, + input_node, + CoalesceKind::kFirstInput, + interval->GetStart()); + } + } + } + } + + // An interval that starts an instruction (that is, it is not split), may + // re-use the registers used by the inputs of that instruction, based on the + // location summary. + if (defined_by != nullptr) { + DCHECK(!interval->IsSplit()); + LocationSummary* locations = defined_by->GetLocations(); + if (!locations->OutputCanOverlapWithInputs()) { + HInputsRef inputs = defined_by->GetInputs(); + for (size_t i = 0; i < inputs.size(); ++i) { + size_t def_point = defined_by->GetLifetimePosition(); + // TODO: Getting the sibling at the def_point might not be quite what we want + // for fixed inputs, since the use will be *at* the def_point rather than after. + LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(def_point); + if (input_interval != nullptr && + input_interval->HasHighInterval() == interval->HasHighInterval()) { + auto it = interval_node_map_.Find(input_interval); + if (it != interval_node_map_.end()) { + InterferenceNode* input_node = it->second; + CreateCoalesceOpportunity(node, + input_node, + CoalesceKind::kAnyInput, + interval->GetStart()); + } + } + } + } + } + + // Try to prevent moves into fixed input locations. + UsePosition* use = interval->GetFirstUse(); + for (; use != nullptr && use->GetPosition() <= interval->GetStart(); use = use->GetNext()) { + // Skip past uses before the start of this interval. + } + for (; use != nullptr && use->GetPosition() <= interval->GetEnd(); use = use->GetNext()) { + HInstruction* user = use->GetUser(); + if (user == nullptr) { + // User may be null for certain intervals, such as temp intervals. + continue; + } + LocationSummary* locations = user->GetLocations(); + Location input = locations->InAt(use->GetInputIndex()); + if (input.IsRegister() || input.IsFpuRegister()) { + // TODO: Could try to handle pair interval too, but coalescing with fixed pair nodes + // is currently not supported. + InterferenceNode* fixed_node = input.IsRegister() + ? register_allocator_->physical_core_nodes_[input.reg()] + : register_allocator_->physical_fp_nodes_[input.reg()]; + CreateCoalesceOpportunity(node, + fixed_node, + CoalesceKind::kFixedInput, + user->GetLifetimePosition()); + } + } + } // for node in prunable_nodes +} - // (3) Just choose the interval based on a deterministic ordering. - return InterferenceNode::CmpPtr(lhs, rhs); +static bool IsLowDegreeNode(InterferenceNode* node, size_t num_regs) { + return node->GetOutDegree() < num_regs; } -void RegisterAllocatorGraphColor::PruneInterferenceGraph( - const ArenaVector<InterferenceNode*>& prunable_nodes, - size_t num_regs, - ArenaStdStack<InterferenceNode*>* pruned_nodes) { +static bool IsHighDegreeNode(InterferenceNode* node, size_t num_regs) { + return !IsLowDegreeNode(node, num_regs); +} + +void ColoringIteration::PruneInterferenceGraph() { + DCHECK(pruned_nodes_.empty() + && simplify_worklist_.empty() + && freeze_worklist_.empty() + && spill_worklist_.empty()); // When pruning the graph, we refer to nodes with degree less than num_regs as low degree nodes, // and all others as high degree nodes. The distinction is important: low degree nodes are // guaranteed a color, while high degree nodes are not. - // Low-degree nodes are guaranteed a color, so worklist order does not matter. - ArenaDeque<InterferenceNode*> low_degree_worklist( - coloring_attempt_allocator_->Adapter(kArenaAllocRegisterAllocator)); - - // If we have to prune from the high-degree worklist, we cannot guarantee - // the pruned node a color. So, we order the worklist by priority. - ArenaSet<InterferenceNode*, decltype(&GreaterNodePriority)> high_degree_worklist( - GreaterNodePriority, coloring_attempt_allocator_->Adapter(kArenaAllocRegisterAllocator)); - - // Build worklists. - for (InterferenceNode* node : prunable_nodes) { - DCHECK(!node->GetInterval()->HasRegister()) - << "Fixed nodes should never be pruned"; - DCHECK(!node->GetInterval()->IsSlowPathSafepoint()) - << "Safepoint nodes should never be pruned"; - if (node->GetOutDegree() < num_regs) { - low_degree_worklist.push_back(node); - } else { - high_degree_worklist.insert(node); - } - } - - // Helper function to prune an interval from the interference graph, - // which includes updating the worklists. - auto prune_node = [this, - num_regs, - &pruned_nodes, - &low_degree_worklist, - &high_degree_worklist] (InterferenceNode* node) { - DCHECK(!node->GetInterval()->HasRegister()); - pruned_nodes->push(node); - for (InterferenceNode* adjacent : node->GetAdjacentNodes()) { - DCHECK(!adjacent->GetInterval()->IsSlowPathSafepoint()) - << "Nodes should never interfere with synthesized safepoint nodes"; - if (adjacent->GetInterval()->HasRegister()) { - // No effect on pre-colored nodes; they're never pruned. + // Build worklists. Note that the coalesce worklist has already been + // filled by FindCoalesceOpportunities(). + for (InterferenceNode* node : prunable_nodes_) { + DCHECK(!node->IsPrecolored()) << "Fixed nodes should never be pruned"; + DCHECK(!node->GetInterval()->IsSlowPathSafepoint()) << "Safepoint nodes should never be pruned"; + if (IsLowDegreeNode(node, num_regs_)) { + if (node->GetCoalesceOpportunities().empty()) { + // Simplify Worklist. + node->stage = NodeStage::kSimplifyWorklist; + simplify_worklist_.push_back(node); } else { - bool was_high_degree = adjacent->GetOutDegree() >= num_regs; - DCHECK(adjacent->ContainsInterference(node)) - << "Missing incoming interference edge from non-fixed node"; - adjacent->RemoveInterference(node); - if (was_high_degree && adjacent->GetOutDegree() < num_regs) { - // This is a transition from high degree to low degree. - DCHECK_EQ(high_degree_worklist.count(adjacent), 1u); - high_degree_worklist.erase(adjacent); - low_degree_worklist.push_back(adjacent); - } + // Freeze Worklist. + node->stage = NodeStage::kFreezeWorklist; + freeze_worklist_.push_back(node); } + } else { + // Spill worklist. + node->stage = NodeStage::kSpillWorklist; + spill_worklist_.push(node); } - }; + } // Prune graph. - while (!low_degree_worklist.empty() || !high_degree_worklist.empty()) { - while (!low_degree_worklist.empty()) { - InterferenceNode* node = low_degree_worklist.front(); - // TODO: pop_back() should work as well, but it doesn't; we get a + // Note that we do not remove a node from its current worklist if it moves to another, so it may + // be in multiple worklists at once; the node's `phase` says which worklist it is really in. + while (true) { + if (!simplify_worklist_.empty()) { + // Prune low-degree nodes. + // TODO: pop_back() should work as well, but it didn't; we get a // failed check while pruning. We should look into this. - low_degree_worklist.pop_front(); - prune_node(node); - } - if (!high_degree_worklist.empty()) { - // We prune the lowest-priority node, because pruning a node earlier + InterferenceNode* node = simplify_worklist_.front(); + simplify_worklist_.pop_front(); + DCHECK_EQ(node->stage, NodeStage::kSimplifyWorklist) << "Cannot move from simplify list"; + DCHECK_LT(node->GetOutDegree(), num_regs_) << "Nodes in simplify list should be low degree"; + DCHECK(!node->IsMoveRelated()) << "Nodes in simplify list should not be move related"; + PruneNode(node); + } else if (!coalesce_worklist_.empty()) { + // Coalesce. + CoalesceOpportunity* opportunity = coalesce_worklist_.top(); + coalesce_worklist_.pop(); + if (opportunity->stage == CoalesceStage::kWorklist) { + Coalesce(opportunity); + } + } else if (!freeze_worklist_.empty()) { + // Freeze moves and prune a low-degree move-related node. + InterferenceNode* node = freeze_worklist_.front(); + freeze_worklist_.pop_front(); + if (node->stage == NodeStage::kFreezeWorklist) { + DCHECK_LT(node->GetOutDegree(), num_regs_) << "Nodes in freeze list should be low degree"; + DCHECK(node->IsMoveRelated()) << "Nodes in freeze list should be move related"; + FreezeMoves(node); + PruneNode(node); + } + } else if (!spill_worklist_.empty()) { + // We spill the lowest-priority node, because pruning a node earlier // gives it a higher chance of being spilled. - InterferenceNode* node = *high_degree_worklist.rbegin(); - high_degree_worklist.erase(node); - prune_node(node); + InterferenceNode* node = spill_worklist_.top(); + spill_worklist_.pop(); + if (node->stage == NodeStage::kSpillWorklist) { + DCHECK_GE(node->GetOutDegree(), num_regs_) << "Nodes in spill list should be high degree"; + FreezeMoves(node); + PruneNode(node); + } + } else { + // Pruning complete. + break; + } + } + DCHECK_EQ(prunable_nodes_.size(), pruned_nodes_.size()); +} + +void ColoringIteration::EnableCoalesceOpportunities(InterferenceNode* node) { + for (CoalesceOpportunity* opportunity : node->GetCoalesceOpportunities()) { + if (opportunity->stage == CoalesceStage::kActive) { + opportunity->stage = CoalesceStage::kWorklist; + coalesce_worklist_.push(opportunity); + } + } +} + +void ColoringIteration::PruneNode(InterferenceNode* node) { + DCHECK_NE(node->stage, NodeStage::kPruned); + DCHECK(!node->IsPrecolored()); + node->stage = NodeStage::kPruned; + pruned_nodes_.push(node); + + for (InterferenceNode* adj : node->GetAdjacentNodes()) { + DCHECK(!adj->GetInterval()->IsSlowPathSafepoint()) + << "Nodes should never interfere with synthesized safepoint nodes"; + DCHECK_NE(adj->stage, NodeStage::kPruned) << "Should be no interferences with pruned nodes"; + + if (adj->IsPrecolored()) { + // No effect on pre-colored nodes; they're never pruned. + } else { + // Remove the interference. + bool was_high_degree = IsHighDegreeNode(adj, num_regs_); + DCHECK(adj->ContainsInterference(node)) + << "Missing reflexive interference from non-fixed node"; + adj->RemoveInterference(node); + + // Handle transitions from high degree to low degree. + if (was_high_degree && IsLowDegreeNode(adj, num_regs_)) { + EnableCoalesceOpportunities(adj); + for (InterferenceNode* adj_adj : adj->GetAdjacentNodes()) { + EnableCoalesceOpportunities(adj_adj); + } + + DCHECK_EQ(adj->stage, NodeStage::kSpillWorklist); + if (adj->IsMoveRelated()) { + adj->stage = NodeStage::kFreezeWorklist; + freeze_worklist_.push_back(adj); + } else { + adj->stage = NodeStage::kSimplifyWorklist; + simplify_worklist_.push_back(adj); + } + } + } + } +} + +void ColoringIteration::CheckTransitionFromFreezeWorklist(InterferenceNode* node) { + if (IsLowDegreeNode(node, num_regs_) && !node->IsMoveRelated()) { + DCHECK_EQ(node->stage, NodeStage::kFreezeWorklist); + node->stage = NodeStage::kSimplifyWorklist; + simplify_worklist_.push_back(node); + } +} + +void ColoringIteration::FreezeMoves(InterferenceNode* node) { + for (CoalesceOpportunity* opportunity : node->GetCoalesceOpportunities()) { + if (opportunity->stage == CoalesceStage::kDefunct) { + // Constrained moves should remain constrained, since they will not be considered + // during last-chance coalescing. + } else { + opportunity->stage = CoalesceStage::kInactive; + } + InterferenceNode* other = opportunity->node_a->GetAlias() == node + ? opportunity->node_b->GetAlias() + : opportunity->node_a->GetAlias(); + if (other != node && other->stage == NodeStage::kFreezeWorklist) { + DCHECK(IsLowDegreeNode(node, num_regs_)); + CheckTransitionFromFreezeWorklist(other); + } + } +} + +bool ColoringIteration::PrecoloredHeuristic(InterferenceNode* from, + InterferenceNode* into) { + if (!into->IsPrecolored()) { + // The uncolored heuristic will cover this case. + return false; + } + if (from->IsPair() || into->IsPair()) { + // TODO: Merging from a pair node is currently not supported, since fixed pair nodes + // are currently represented as two single fixed nodes in the graph, and `into` is + // only one of them. (We may lose the implicit connections to the second one in a merge.) + return false; + } + + // If all adjacent nodes of `from` are "ok", then we can conservatively merge with `into`. + // Reasons an adjacent node `adj` can be "ok": + // (1) If `adj` is low degree, interference with `into` will not affect its existing + // colorable guarantee. (Notice that coalescing cannot increase its degree.) + // (2) If `adj` is pre-colored, it already interferes with `into`. See (3). + // (3) If there's already an interference with `into`, coalescing will not add interferences. + for (InterferenceNode* adj : from->GetAdjacentNodes()) { + if (IsLowDegreeNode(adj, num_regs_) || adj->IsPrecolored() || adj->ContainsInterference(into)) { + // Ok. + } else { + return false; + } + } + return true; +} + +bool ColoringIteration::UncoloredHeuristic(InterferenceNode* from, + InterferenceNode* into) { + if (into->IsPrecolored()) { + // The pre-colored heuristic will handle this case. + return false; + } + + // Arbitrary cap to improve compile time. Tests show that this has negligible affect + // on generated code. + if (from->GetOutDegree() + into->GetOutDegree() > 2 * num_regs_) { + return false; + } + + // It's safe to coalesce two nodes if the resulting node has fewer than `num_regs` neighbors + // of high degree. (Low degree neighbors can be ignored, because they will eventually be + // pruned from the interference graph in the simplify stage.) + size_t high_degree_interferences = 0; + for (InterferenceNode* adj : from->GetAdjacentNodes()) { + if (IsHighDegreeNode(adj, num_regs_)) { + high_degree_interferences += from->EdgeWeightWith(adj); + } + } + for (InterferenceNode* adj : into->GetAdjacentNodes()) { + if (IsHighDegreeNode(adj, num_regs_)) { + if (from->ContainsInterference(adj)) { + // We've already counted this adjacent node. + // Furthermore, its degree will decrease if coalescing succeeds. Thus, it's possible that + // we should not have counted it at all. (This extends the textbook Briggs coalescing test, + // but remains conservative.) + if (adj->GetOutDegree() - into->EdgeWeightWith(adj) < num_regs_) { + high_degree_interferences -= from->EdgeWeightWith(adj); + } + } else { + high_degree_interferences += into->EdgeWeightWith(adj); + } + } + } + + return high_degree_interferences < num_regs_; +} + +void ColoringIteration::Combine(InterferenceNode* from, + InterferenceNode* into) { + from->SetAlias(into); + + // Add interferences. + for (InterferenceNode* adj : from->GetAdjacentNodes()) { + bool was_low_degree = IsLowDegreeNode(adj, num_regs_); + AddPotentialInterference(adj, into, /*guaranteed_not_interfering_yet*/ false); + if (was_low_degree && IsHighDegreeNode(adj, num_regs_)) { + // This is a (temporary) transition to a high degree node. Its degree will decrease again + // when we prune `from`, but it's best to be consistent about the current worklist. + adj->stage = NodeStage::kSpillWorklist; + spill_worklist_.push(adj); + } + } + + // Add coalesce opportunities. + for (CoalesceOpportunity* opportunity : from->GetCoalesceOpportunities()) { + if (opportunity->stage != CoalesceStage::kDefunct) { + into->AddCoalesceOpportunity(opportunity); } } + EnableCoalesceOpportunities(from); + + // Prune and update worklists. + PruneNode(from); + if (IsLowDegreeNode(into, num_regs_)) { + // Coalesce(...) takes care of checking for a transition to the simplify worklist. + DCHECK_EQ(into->stage, NodeStage::kFreezeWorklist); + } else if (into->stage == NodeStage::kFreezeWorklist) { + // This is a transition to a high degree node. + into->stage = NodeStage::kSpillWorklist; + spill_worklist_.push(into); + } else { + DCHECK(into->stage == NodeStage::kSpillWorklist || into->stage == NodeStage::kPrecolored); + } +} + +void ColoringIteration::Coalesce(CoalesceOpportunity* opportunity) { + InterferenceNode* from = opportunity->node_a->GetAlias(); + InterferenceNode* into = opportunity->node_b->GetAlias(); + DCHECK_NE(from->stage, NodeStage::kPruned); + DCHECK_NE(into->stage, NodeStage::kPruned); + + if (from->IsPrecolored()) { + // If we have one pre-colored node, make sure it's the `into` node. + std::swap(from, into); + } + + if (from == into) { + // These nodes have already been coalesced. + opportunity->stage = CoalesceStage::kDefunct; + CheckTransitionFromFreezeWorklist(from); + } else if (from->IsPrecolored() || from->ContainsInterference(into)) { + // These nodes interfere. + opportunity->stage = CoalesceStage::kDefunct; + CheckTransitionFromFreezeWorklist(from); + CheckTransitionFromFreezeWorklist(into); + } else if (PrecoloredHeuristic(from, into) + || UncoloredHeuristic(from, into)) { + // We can coalesce these nodes. + opportunity->stage = CoalesceStage::kDefunct; + Combine(from, into); + CheckTransitionFromFreezeWorklist(into); + } else { + // We cannot coalesce, but we may be able to later. + opportunity->stage = CoalesceStage::kActive; + } } // Build a mask with a bit set for each register assigned to some @@ -888,35 +1783,115 @@ static std::bitset<kMaxNumRegs> BuildConflictMask(Container& intervals) { return conflict_mask; } -bool RegisterAllocatorGraphColor::ColorInterferenceGraph( - ArenaStdStack<InterferenceNode*>* pruned_nodes, - size_t num_regs) { - DCHECK_LE(num_regs, kMaxNumRegs) << "kMaxNumRegs is too small"; +bool RegisterAllocatorGraphColor::IsCallerSave(size_t reg, bool processing_core_regs) { + return processing_core_regs + ? !codegen_->IsCoreCalleeSaveRegister(reg) + : !codegen_->IsCoreCalleeSaveRegister(reg); +} + +static bool RegisterIsAligned(size_t reg) { + return reg % 2 == 0; +} + +static size_t FindFirstZeroInConflictMask(std::bitset<kMaxNumRegs> conflict_mask) { + // We use CTZ (count trailing zeros) to quickly find the lowest 0 bit. + // Note that CTZ is undefined if all bits are 0, so we special-case it. + return conflict_mask.all() ? conflict_mask.size() : CTZ(~conflict_mask.to_ulong()); +} + +bool ColoringIteration::ColorInterferenceGraph() { + DCHECK_LE(num_regs_, kMaxNumRegs) << "kMaxNumRegs is too small"; ArenaVector<LiveInterval*> colored_intervals( - coloring_attempt_allocator_->Adapter(kArenaAllocRegisterAllocator)); + allocator_->Adapter(kArenaAllocRegisterAllocator)); bool successful = true; - while (!pruned_nodes->empty()) { - InterferenceNode* node = pruned_nodes->top(); - pruned_nodes->pop(); + while (!pruned_nodes_.empty()) { + InterferenceNode* node = pruned_nodes_.top(); + pruned_nodes_.pop(); LiveInterval* interval = node->GetInterval(); - - // Search for free register(s). - // Note that the graph coloring allocator assumes that pair intervals are aligned here, - // excluding pre-colored pair intervals (which can currently be unaligned on x86). - std::bitset<kMaxNumRegs> conflict_mask = BuildConflictMask(node->GetAdjacentNodes()); size_t reg = 0; - if (interval->HasHighInterval()) { - while (reg < num_regs - 1 && (conflict_mask[reg] || conflict_mask[reg + 1])) { - reg += 2; + + InterferenceNode* alias = node->GetAlias(); + if (alias != node) { + // This node was coalesced with another. + LiveInterval* alias_interval = alias->GetInterval(); + if (alias_interval->HasRegister()) { + reg = alias_interval->GetRegister(); + DCHECK(!BuildConflictMask(node->GetAdjacentNodes())[reg]) + << "This node conflicts with the register it was coalesced with"; + } else { + DCHECK(false) << node->GetOutDegree() << " " << alias->GetOutDegree() << " " + << "Move coalescing was not conservative, causing a node to be coalesced " + << "with another node that could not be colored"; + if (interval->RequiresRegister()) { + successful = false; + } } } else { - // We use CTZ (count trailing zeros) to quickly find the lowest available register. - // Note that CTZ is undefined for 0, so we special-case it. - reg = conflict_mask.all() ? conflict_mask.size() : CTZ(~conflict_mask.to_ulong()); + // Search for free register(s). + std::bitset<kMaxNumRegs> conflict_mask = BuildConflictMask(node->GetAdjacentNodes()); + if (interval->HasHighInterval()) { + // Note that the graph coloring allocator assumes that pair intervals are aligned here, + // excluding pre-colored pair intervals (which can currently be unaligned on x86). If we + // change the alignment requirements here, we will have to update the algorithm (e.g., + // be more conservative about the weight of edges adjacent to pair nodes.) + while (reg < num_regs_ - 1 && (conflict_mask[reg] || conflict_mask[reg + 1])) { + reg += 2; + } + + // Try to use a caller-save register first. + for (size_t i = 0; i < num_regs_ - 1; i += 2) { + bool low_caller_save = register_allocator_->IsCallerSave(i, processing_core_regs_); + bool high_caller_save = register_allocator_->IsCallerSave(i + 1, processing_core_regs_); + if (!conflict_mask[i] && !conflict_mask[i + 1]) { + if (low_caller_save && high_caller_save) { + reg = i; + break; + } else if (low_caller_save || high_caller_save) { + reg = i; + // Keep looking to try to get both parts in caller-save registers. + } + } + } + } else { + // Not a pair interval. + reg = FindFirstZeroInConflictMask(conflict_mask); + + // Try to use caller-save registers first. + for (size_t i = 0; i < num_regs_; ++i) { + if (!conflict_mask[i] && register_allocator_->IsCallerSave(i, processing_core_regs_)) { + reg = i; + break; + } + } + } + + // Last-chance coalescing. + for (CoalesceOpportunity* opportunity : node->GetCoalesceOpportunities()) { + if (opportunity->stage == CoalesceStage::kDefunct) { + continue; + } + LiveInterval* other_interval = opportunity->node_a->GetAlias() == node + ? opportunity->node_b->GetAlias()->GetInterval() + : opportunity->node_a->GetAlias()->GetInterval(); + if (other_interval->HasRegister()) { + size_t coalesce_register = other_interval->GetRegister(); + if (interval->HasHighInterval()) { + if (!conflict_mask[coalesce_register] && + !conflict_mask[coalesce_register + 1] && + RegisterIsAligned(coalesce_register)) { + reg = coalesce_register; + break; + } + } else if (!conflict_mask[coalesce_register]) { + reg = coalesce_register; + break; + } + } + } } - if (reg < (interval->HasHighInterval() ? num_regs - 1 : num_regs)) { + if (reg < (interval->HasHighInterval() ? num_regs_ - 1 : num_regs_)) { // Assign register. DCHECK(!interval->HasRegister()); interval->SetRegister(reg); @@ -930,12 +1905,12 @@ bool RegisterAllocatorGraphColor::ColorInterferenceGraph( // The interference graph is too dense to color. Make it sparser by // splitting this live interval. successful = false; - SplitAtRegisterUses(interval); + register_allocator_->SplitAtRegisterUses(interval); // We continue coloring, because there may be additional intervals that cannot // be colored, and that we should split. } else { // Spill. - AllocateSpillSlotFor(interval); + register_allocator_->AllocateSpillSlotFor(interval); } } diff --git a/compiler/optimizing/register_allocator_graph_color.h b/compiler/optimizing/register_allocator_graph_color.h index 0b5af96b40..9dddcea685 100644 --- a/compiler/optimizing/register_allocator_graph_color.h +++ b/compiler/optimizing/register_allocator_graph_color.h @@ -34,6 +34,8 @@ class HParallelMove; class Location; class SsaLivenessAnalysis; class InterferenceNode; +struct CoalesceOpportunity; +enum class CoalesceKind; /** * A graph coloring register allocator. @@ -60,6 +62,25 @@ class InterferenceNode; * sparser, so that future coloring attempts may succeed. * - If the node does not require a register, we simply assign it a location on the stack. * + * If iterative move coalescing is enabled, the algorithm also attempts to conservatively + * combine nodes in the graph that would prefer to have the same color. (For example, the output + * of a phi instruction would prefer to have the same register as at least one of its inputs.) + * There are several additional steps involved with this: + * - We look for coalesce opportunities by examining each live interval, a step similar to that + * used by linear scan when looking for register hints. + * - When pruning the graph, we maintain a worklist of coalesce opportunities, as well as a worklist + * of low degree nodes that have associated coalesce opportunities. Only when we run out of + * coalesce opportunities do we start pruning coalesce-associated nodes. + * - When pruning a node, if any nodes transition from high degree to low degree, we add + * associated coalesce opportunities to the worklist, since these opportunities may now succeed. + * - Whether two nodes can be combined is decided by two different heuristics--one used when + * coalescing uncolored nodes, and one used for coalescing an uncolored node with a colored node. + * It is vital that we only combine two nodes if the node that remains is guaranteed to receive + * a color. This is because additionally spilling is more costly than failing to coalesce. + * - Even if nodes are not coalesced while pruning, we keep the coalesce opportunities around + * to be used as last-chance register hints when coloring. If nothing else, we try to use + * caller-save registers before callee-save registers. + * * A good reference for graph coloring register allocation is * "Modern Compiler Implementation in Java" (Andrew W. Appel, 2nd Edition). */ @@ -67,7 +88,8 @@ class RegisterAllocatorGraphColor : public RegisterAllocator { public: RegisterAllocatorGraphColor(ArenaAllocator* allocator, CodeGenerator* codegen, - const SsaLivenessAnalysis& analysis); + const SsaLivenessAnalysis& analysis, + bool iterative_move_coalescing = true); ~RegisterAllocatorGraphColor() OVERRIDE {} void AllocateRegisters() OVERRIDE; @@ -116,26 +138,7 @@ class RegisterAllocatorGraphColor : public RegisterAllocator { void BlockRegister(Location location, size_t start, size_t end); void BlockRegisters(size_t start, size_t end, bool caller_save_only = false); - // Use the intervals collected from instructions to construct an - // interference graph mapping intervals to adjacency lists. - // Also, collect synthesized safepoint nodes, used to keep - // track of live intervals across safepoints. - void BuildInterferenceGraph(const ArenaVector<LiveInterval*>& intervals, - ArenaVector<InterferenceNode*>* prunable_nodes, - ArenaVector<InterferenceNode*>* safepoints); - - // Prune nodes from the interference graph to be colored later. Build - // a stack (pruned_nodes) containing these intervals in an order determined - // by various heuristics. - void PruneInterferenceGraph(const ArenaVector<InterferenceNode*>& prunable_nodes, - size_t num_registers, - ArenaStdStack<InterferenceNode*>* pruned_nodes); - - // Process pruned_intervals to color the interference graph, spilling when - // necessary. Return true if successful. Else, split some intervals to make - // the interference graph sparser. - bool ColorInterferenceGraph(ArenaStdStack<InterferenceNode*>* pruned_nodes, - size_t num_registers); + bool IsCallerSave(size_t reg, bool processing_core_regs); // Return the maximum number of registers live at safepoints, // based on the outgoing interference edges of safepoint nodes. @@ -145,6 +148,10 @@ class RegisterAllocatorGraphColor : public RegisterAllocator { // and make sure it's ready to be spilled to the stack. void AllocateSpillSlotFor(LiveInterval* interval); + // Whether iterative move coalescing should be performed. Iterative move coalescing + // improves code quality, but increases compile time. + const bool iterative_move_coalescing_; + // Live intervals, split by kind (core and floating point). // These should not contain high intervals, as those are represented by // the corresponding low interval throughout register allocation. @@ -157,10 +164,10 @@ class RegisterAllocatorGraphColor : public RegisterAllocator { // Safepoints, saved for special handling while processing instructions. ArenaVector<HInstruction*> safepoints_; - // Live intervals for specific registers. These become pre-colored nodes + // Interference nodes representing specific registers. These are "pre-colored" nodes // in the interference graph. - ArenaVector<LiveInterval*> physical_core_intervals_; - ArenaVector<LiveInterval*> physical_fp_intervals_; + ArenaVector<InterferenceNode*> physical_core_nodes_; + ArenaVector<InterferenceNode*> physical_fp_nodes_; // Allocated stack slot counters. size_t int_spill_slot_counter_; @@ -184,10 +191,7 @@ class RegisterAllocatorGraphColor : public RegisterAllocator { size_t max_safepoint_live_core_regs_; size_t max_safepoint_live_fp_regs_; - // An arena allocator used for a single graph coloring attempt. - // Many data structures are cleared between graph coloring attempts, so we reduce - // total memory usage by using a new arena allocator for each attempt. - ArenaAllocator* coloring_attempt_allocator_; + friend class ColoringIteration; DISALLOW_COPY_AND_ASSIGN(RegisterAllocatorGraphColor); }; diff --git a/compiler/optimizing/ssa_liveness_analysis.h b/compiler/optimizing/ssa_liveness_analysis.h index 346753b775..92788fe6b8 100644 --- a/compiler/optimizing/ssa_liveness_analysis.h +++ b/compiler/optimizing/ssa_liveness_analysis.h @@ -514,7 +514,9 @@ class LiveInterval : public ArenaObject<kArenaAllocSsaLiveness> { // Whether the interval requires a register rather than a stack location. // If needed for performance, this could be cached. - bool RequiresRegister() const { return FirstRegisterUse() != kNoLifetime; } + bool RequiresRegister() const { + return !HasRegister() && FirstRegisterUse() != kNoLifetime; + } size_t FirstUseAfter(size_t position) const { if (is_temp_) { |