diff options
| author | 2017-02-02 11:23:02 +0000 | |
|---|---|---|
| committer | 2017-02-02 11:23:03 +0000 | |
| commit | 2cf7d5e53e94ceb2bccb06f251fd3df26e126011 (patch) | |
| tree | 5f6998dcafc4cdf489ed150f7f3d9547e813ca3d /compiler/optimizing/scheduler.cc | |
| parent | caebca9d2a00059c11ecc5f055c25eacf0630392 (diff) | |
| parent | 22aa54bf8469689c7c6c33f15ff4df2ffba8fa15 (diff) | |
Merge "AArch64: Add HInstruction scheduling support."
Diffstat (limited to 'compiler/optimizing/scheduler.cc')
| -rw-r--r-- | compiler/optimizing/scheduler.cc | 610 |
1 files changed, 610 insertions, 0 deletions
diff --git a/compiler/optimizing/scheduler.cc b/compiler/optimizing/scheduler.cc new file mode 100644 index 0000000000..d65d20cf43 --- /dev/null +++ b/compiler/optimizing/scheduler.cc @@ -0,0 +1,610 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <string> + +#include "prepare_for_register_allocation.h" +#include "scheduler.h" + +#ifdef ART_ENABLE_CODEGEN_arm64 +#include "scheduler_arm64.h" +#endif + +namespace art { + +void SchedulingGraph::AddDependency(SchedulingNode* node, + SchedulingNode* dependency, + bool is_data_dependency) { + if (node == nullptr || dependency == nullptr) { + // A `nullptr` node indicates an instruction out of scheduling range (eg. in + // an other block), so we do not need to add a dependency edge to the graph. + return; + } + + if (is_data_dependency) { + if (!HasImmediateDataDependency(node, dependency)) { + node->AddDataPredecessor(dependency); + } + } else if (!HasImmediateOtherDependency(node, dependency)) { + node->AddOtherPredecessor(dependency); + } +} + +static bool MayHaveReorderingDependency(SideEffects node, SideEffects other) { + // Read after write. + if (node.MayDependOn(other)) { + return true; + } + + // Write after read. + if (other.MayDependOn(node)) { + return true; + } + + // Memory write after write. + if (node.DoesAnyWrite() && other.DoesAnyWrite()) { + return true; + } + + return false; +} + + +// Check whether `node` depends on `other`, taking into account `SideEffect` +// information and `CanThrow` information. +static bool HasSideEffectDependency(const HInstruction* node, const HInstruction* other) { + if (MayHaveReorderingDependency(node->GetSideEffects(), other->GetSideEffects())) { + return true; + } + + if (other->CanThrow() && node->GetSideEffects().DoesAnyWrite()) { + return true; + } + + if (other->GetSideEffects().DoesAnyWrite() && node->CanThrow()) { + return true; + } + + if (other->CanThrow() && node->CanThrow()) { + return true; + } + + // Check side-effect dependency between ArrayGet and BoundsCheck. + if (node->IsArrayGet() && other->IsBoundsCheck() && node->InputAt(1) == other) { + return true; + } + + return false; +} + +void SchedulingGraph::AddDependencies(HInstruction* instruction, bool is_scheduling_barrier) { + SchedulingNode* instruction_node = GetNode(instruction); + + // Define-use dependencies. + for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { + AddDataDependency(GetNode(use.GetUser()), instruction_node); + } + + // Scheduling barrier dependencies. + DCHECK(!is_scheduling_barrier || contains_scheduling_barrier_); + if (contains_scheduling_barrier_) { + // A barrier depends on instructions after it. And instructions before the + // barrier depend on it. + for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) { + SchedulingNode* other_node = GetNode(other); + bool other_is_barrier = other_node->IsSchedulingBarrier(); + if (is_scheduling_barrier || other_is_barrier) { + AddOtherDependency(other_node, instruction_node); + } + if (other_is_barrier) { + // This other scheduling barrier guarantees ordering of instructions after + // it, so avoid creating additional useless dependencies in the graph. + // For example if we have + // instr_1 + // barrier_2 + // instr_3 + // barrier_4 + // instr_5 + // we only create the following non-data dependencies + // 1 -> 2 + // 2 -> 3 + // 2 -> 4 + // 3 -> 4 + // 4 -> 5 + // and do not create + // 1 -> 4 + // 2 -> 5 + // Note that in this example we could also avoid creating the dependency + // `2 -> 4`. But if we remove `instr_3` that dependency is required to + // order the barriers. So we generate it to avoid a special case. + break; + } + } + } + + // Side effect dependencies. + if (!instruction->GetSideEffects().DoesNothing() || instruction->CanThrow()) { + for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) { + SchedulingNode* other_node = GetNode(other); + if (other_node->IsSchedulingBarrier()) { + // We have reached a scheduling barrier so we can stop further + // processing. + DCHECK(HasImmediateOtherDependency(other_node, instruction_node)); + break; + } + if (HasSideEffectDependency(other, instruction)) { + AddOtherDependency(other_node, instruction_node); + } + } + } + + // Environment dependencies. + // We do not need to process those if the instruction is a scheduling barrier, + // since the barrier already has non-data dependencies on all following + // instructions. + if (!is_scheduling_barrier) { + for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) { + // Note that here we could stop processing if the environment holder is + // across a scheduling barrier. But checking this would likely require + // more work than simply iterating through environment uses. + AddOtherDependency(GetNode(use.GetUser()->GetHolder()), instruction_node); + } + } +} + +bool SchedulingGraph::HasImmediateDataDependency(const SchedulingNode* node, + const SchedulingNode* other) const { + return ContainsElement(node->GetDataPredecessors(), other); +} + +bool SchedulingGraph::HasImmediateDataDependency(const HInstruction* instruction, + const HInstruction* other_instruction) const { + const SchedulingNode* node = GetNode(instruction); + const SchedulingNode* other = GetNode(other_instruction); + if (node == nullptr || other == nullptr) { + // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their + // corresponding SchedulingNode in the graph, and tell whether there is a dependency. + // Otherwise there is no dependency from SchedulingGraph's perspective, for example, + // instruction and other_instruction are in different basic blocks. + return false; + } + return HasImmediateDataDependency(node, other); +} + +bool SchedulingGraph::HasImmediateOtherDependency(const SchedulingNode* node, + const SchedulingNode* other) const { + return ContainsElement(node->GetOtherPredecessors(), other); +} + +bool SchedulingGraph::HasImmediateOtherDependency(const HInstruction* instruction, + const HInstruction* other_instruction) const { + const SchedulingNode* node = GetNode(instruction); + const SchedulingNode* other = GetNode(other_instruction); + if (node == nullptr || other == nullptr) { + // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their + // corresponding SchedulingNode in the graph, and tell whether there is a dependency. + // Otherwise there is no dependency from SchedulingGraph's perspective, for example, + // instruction and other_instruction are in different basic blocks. + return false; + } + return HasImmediateOtherDependency(node, other); +} + +static const std::string InstructionTypeId(const HInstruction* instruction) { + std::string id; + Primitive::Type type = instruction->GetType(); + if (type == Primitive::kPrimNot) { + id.append("l"); + } else { + id.append(Primitive::Descriptor(instruction->GetType())); + } + // Use lower-case to be closer to the `HGraphVisualizer` output. + id[0] = std::tolower(id[0]); + id.append(std::to_string(instruction->GetId())); + return id; +} + +// Ideally we would reuse the graph visualizer code, but it is not available +// from here and it is not worth moving all that code only for our use. +static void DumpAsDotNode(std::ostream& output, const SchedulingNode* node) { + const HInstruction* instruction = node->GetInstruction(); + // Use the instruction typed id as the node identifier. + std::string instruction_id = InstructionTypeId(instruction); + output << instruction_id << "[shape=record, label=\"" + << instruction_id << ' ' << instruction->DebugName() << " ["; + // List the instruction's inputs in its description. When visualizing the + // graph this helps differentiating data inputs from other dependencies. + const char* seperator = ""; + for (const HInstruction* input : instruction->GetInputs()) { + output << seperator << InstructionTypeId(input); + seperator = ","; + } + output << "]"; + // Other properties of the node. + output << "\\ninternal_latency: " << node->GetInternalLatency(); + output << "\\ncritical_path: " << node->GetCriticalPath(); + if (node->IsSchedulingBarrier()) { + output << "\\n(barrier)"; + } + output << "\"];\n"; + // We want program order to go from top to bottom in the graph output, so we + // reverse the edges and specify `dir=back`. + for (const SchedulingNode* predecessor : node->GetDataPredecessors()) { + const HInstruction* predecessor_instruction = predecessor->GetInstruction(); + output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n " + << "[label=\"" << predecessor->GetLatency() << "\",dir=back]\n"; + } + for (const SchedulingNode* predecessor : node->GetOtherPredecessors()) { + const HInstruction* predecessor_instruction = predecessor->GetInstruction(); + output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n " + << "[dir=back,color=blue]\n"; + } +} + +void SchedulingGraph::DumpAsDotGraph(const std::string& description, + const ArenaVector<SchedulingNode*>& initial_candidates) { + // TODO(xueliang): ideally we should move scheduling information into HInstruction, after that + // we should move this dotty graph dump feature to visualizer, and have a compiler option for it. + std::ofstream output("scheduling_graphs.dot", std::ofstream::out | std::ofstream::app); + // Description of this graph, as a comment. + output << "// " << description << "\n"; + // Start the dot graph. Use an increasing index for easier differentiation. + output << "digraph G {\n"; + for (const auto& entry : nodes_map_) { + DumpAsDotNode(output, entry.second); + } + // Create a fake 'end_of_scheduling' node to help visualization of critical_paths. + for (auto node : initial_candidates) { + const HInstruction* instruction = node->GetInstruction(); + output << InstructionTypeId(instruction) << ":s -> end_of_scheduling:n " + << "[label=\"" << node->GetLatency() << "\",dir=back]\n"; + } + // End of the dot graph. + output << "}\n"; + output.close(); +} + +SchedulingNode* CriticalPathSchedulingNodeSelector::SelectMaterializedCondition( + ArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) const { + // Schedule condition inputs that can be materialized immediately before their use. + // In following example, after we've scheduled HSelect, we want LessThan to be scheduled + // immediately, because it is a materialized condition, and will be emitted right before HSelect + // in codegen phase. + // + // i20 HLessThan [...] HLessThan HAdd HAdd + // i21 HAdd [...] ===> | | | + // i22 HAdd [...] +----------+---------+ + // i23 HSelect [i21, i22, i20] HSelect + + if (prev_select_ == nullptr) { + return nullptr; + } + + const HInstruction* instruction = prev_select_->GetInstruction(); + const HCondition* condition = nullptr; + DCHECK(instruction != nullptr); + + if (instruction->IsIf()) { + condition = instruction->AsIf()->InputAt(0)->AsCondition(); + } else if (instruction->IsSelect()) { + condition = instruction->AsSelect()->GetCondition()->AsCondition(); + } + + SchedulingNode* condition_node = (condition != nullptr) ? graph.GetNode(condition) : nullptr; + + if ((condition_node != nullptr) && + condition->HasOnlyOneNonEnvironmentUse() && + ContainsElement(*nodes, condition_node)) { + DCHECK(!condition_node->HasUnscheduledSuccessors()); + // Remove the condition from the list of candidates and schedule it. + RemoveElement(*nodes, condition_node); + return condition_node; + } + + return nullptr; +} + +SchedulingNode* CriticalPathSchedulingNodeSelector::PopHighestPriorityNode( + ArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) { + DCHECK(!nodes->empty()); + SchedulingNode* select_node = nullptr; + + // Optimize for materialized condition and its emit before use scenario. + select_node = SelectMaterializedCondition(nodes, graph); + + if (select_node == nullptr) { + // Get highest priority node based on critical path information. + select_node = (*nodes)[0]; + size_t select = 0; + for (size_t i = 1, e = nodes->size(); i < e; i++) { + SchedulingNode* check = (*nodes)[i]; + SchedulingNode* candidate = (*nodes)[select]; + select_node = GetHigherPrioritySchedulingNode(candidate, check); + if (select_node == check) { + select = i; + } + } + DeleteNodeAtIndex(nodes, select); + } + + prev_select_ = select_node; + return select_node; +} + +SchedulingNode* CriticalPathSchedulingNodeSelector::GetHigherPrioritySchedulingNode( + SchedulingNode* candidate, SchedulingNode* check) const { + uint32_t candidate_path = candidate->GetCriticalPath(); + uint32_t check_path = check->GetCriticalPath(); + // First look at the critical_path. + if (check_path != candidate_path) { + return check_path < candidate_path ? check : candidate; + } + // If both critical paths are equal, schedule instructions with a higher latency + // first in program order. + return check->GetLatency() < candidate->GetLatency() ? check : candidate; +} + +void HScheduler::Schedule(HGraph* graph) { + for (HBasicBlock* block : graph->GetReversePostOrder()) { + if (IsSchedulable(block)) { + Schedule(block); + } + } +} + +void HScheduler::Schedule(HBasicBlock* block) { + ArenaVector<SchedulingNode*> scheduling_nodes(arena_->Adapter(kArenaAllocScheduler)); + + // Build the scheduling graph. + scheduling_graph_.Clear(); + for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { + HInstruction* instruction = it.Current(); + SchedulingNode* node = scheduling_graph_.AddNode(instruction, IsSchedulingBarrier(instruction)); + CalculateLatency(node); + scheduling_nodes.push_back(node); + } + + if (scheduling_graph_.Size() <= 1) { + scheduling_graph_.Clear(); + return; + } + + cursor_ = block->GetLastInstruction(); + + // Find the initial candidates for scheduling. + candidates_.clear(); + for (SchedulingNode* node : scheduling_nodes) { + if (!node->HasUnscheduledSuccessors()) { + node->MaybeUpdateCriticalPath(node->GetLatency()); + candidates_.push_back(node); + } + } + + ArenaVector<SchedulingNode*> initial_candidates(arena_->Adapter(kArenaAllocScheduler)); + if (kDumpDotSchedulingGraphs) { + // Remember the list of initial candidates for debug output purposes. + initial_candidates.assign(candidates_.begin(), candidates_.end()); + } + + // Schedule all nodes. + while (!candidates_.empty()) { + Schedule(selector_->PopHighestPriorityNode(&candidates_, scheduling_graph_)); + } + + if (kDumpDotSchedulingGraphs) { + // Dump the graph in `dot` format. + HGraph* graph = block->GetGraph(); + std::stringstream description; + description << graph->GetDexFile().PrettyMethod(graph->GetMethodIdx()) + << " B" << block->GetBlockId(); + scheduling_graph_.DumpAsDotGraph(description.str(), initial_candidates); + } +} + +void HScheduler::Schedule(SchedulingNode* scheduling_node) { + // Check whether any of the node's predecessors will be valid candidates after + // this node is scheduled. + uint32_t path_to_node = scheduling_node->GetCriticalPath(); + for (SchedulingNode* predecessor : scheduling_node->GetDataPredecessors()) { + predecessor->MaybeUpdateCriticalPath( + path_to_node + predecessor->GetInternalLatency() + predecessor->GetLatency()); + predecessor->DecrementNumberOfUnscheduledSuccessors(); + if (!predecessor->HasUnscheduledSuccessors()) { + candidates_.push_back(predecessor); + } + } + for (SchedulingNode* predecessor : scheduling_node->GetOtherPredecessors()) { + // Do not update the critical path. + // The 'other' (so 'non-data') dependencies (usually) do not represent a + // 'material' dependency of nodes on others. They exist for program + // correctness. So we do not use them to compute the critical path. + predecessor->DecrementNumberOfUnscheduledSuccessors(); + if (!predecessor->HasUnscheduledSuccessors()) { + candidates_.push_back(predecessor); + } + } + + Schedule(scheduling_node->GetInstruction()); +} + +// Move an instruction after cursor instruction inside one basic block. +static void MoveAfterInBlock(HInstruction* instruction, HInstruction* cursor) { + DCHECK_EQ(instruction->GetBlock(), cursor->GetBlock()); + DCHECK_NE(cursor, cursor->GetBlock()->GetLastInstruction()); + DCHECK(!instruction->IsControlFlow()); + DCHECK(!cursor->IsControlFlow()); + instruction->MoveBefore(cursor->GetNext(), /* do_checks */ false); +} + +void HScheduler::Schedule(HInstruction* instruction) { + if (instruction == cursor_) { + cursor_ = cursor_->GetPrevious(); + } else { + MoveAfterInBlock(instruction, cursor_); + } +} + +bool HScheduler::IsSchedulable(const HInstruction* instruction) const { + // We want to avoid exhaustively listing all instructions, so we first check + // for instruction categories that we know are safe. + if (instruction->IsControlFlow() || + instruction->IsConstant()) { + return true; + } + // Currently all unary and binary operations are safe to schedule, so avoid + // checking for each of them individually. + // Since nothing prevents a new scheduling-unsafe HInstruction to subclass + // HUnaryOperation (or HBinaryOperation), check in debug mode that we have + // the exhaustive lists here. + if (instruction->IsUnaryOperation()) { + DCHECK(instruction->IsBooleanNot() || + instruction->IsNot() || + instruction->IsNeg()) << "unexpected instruction " << instruction->DebugName(); + return true; + } + if (instruction->IsBinaryOperation()) { + DCHECK(instruction->IsAdd() || + instruction->IsAnd() || + instruction->IsCompare() || + instruction->IsCondition() || + instruction->IsDiv() || + instruction->IsMul() || + instruction->IsOr() || + instruction->IsRem() || + instruction->IsRor() || + instruction->IsShl() || + instruction->IsShr() || + instruction->IsSub() || + instruction->IsUShr() || + instruction->IsXor()) << "unexpected instruction " << instruction->DebugName(); + return true; + } + // The scheduler should not see any of these. + DCHECK(!instruction->IsParallelMove()) << "unexpected instruction " << instruction->DebugName(); + // List of instructions explicitly excluded: + // HClearException + // HClinitCheck + // HDeoptimize + // HLoadClass + // HLoadException + // HMemoryBarrier + // HMonitorOperation + // HNativeDebugInfo + // HThrow + // HTryBoundary + // TODO: Some of the instructions above may be safe to schedule (maybe as + // scheduling barriers). + return instruction->IsArrayGet() || + instruction->IsArraySet() || + instruction->IsArrayLength() || + instruction->IsBoundType() || + instruction->IsBoundsCheck() || + instruction->IsCheckCast() || + instruction->IsClassTableGet() || + instruction->IsCurrentMethod() || + instruction->IsDivZeroCheck() || + instruction->IsInstanceFieldGet() || + instruction->IsInstanceFieldSet() || + instruction->IsInstanceOf() || + instruction->IsInvokeInterface() || + instruction->IsInvokeStaticOrDirect() || + instruction->IsInvokeUnresolved() || + instruction->IsInvokeVirtual() || + instruction->IsLoadString() || + instruction->IsNewArray() || + instruction->IsNewInstance() || + instruction->IsNullCheck() || + instruction->IsPackedSwitch() || + instruction->IsParameterValue() || + instruction->IsPhi() || + instruction->IsReturn() || + instruction->IsReturnVoid() || + instruction->IsSelect() || + instruction->IsStaticFieldGet() || + instruction->IsStaticFieldSet() || + instruction->IsSuspendCheck() || + instruction->IsTypeConversion() || + instruction->IsUnresolvedInstanceFieldGet() || + instruction->IsUnresolvedInstanceFieldSet() || + instruction->IsUnresolvedStaticFieldGet() || + instruction->IsUnresolvedStaticFieldSet(); +} + +bool HScheduler::IsSchedulable(const HBasicBlock* block) const { + // We may be only interested in loop blocks. + if (only_optimize_loop_blocks_ && !block->IsInLoop()) { + return false; + } + if (block->GetTryCatchInformation() != nullptr) { + // Do not schedule blocks that are part of try-catch. + // Because scheduler cannot see if catch block has assumptions on the instruction order in + // the try block. In following example, if we enable scheduler for the try block, + // MulitiplyAccumulate may be scheduled before DivZeroCheck, + // which can result in an incorrect value in the catch block. + // try { + // a = a/b; // DivZeroCheck + // // Div + // c = c*d+e; // MulitiplyAccumulate + // } catch {System.out.print(c); } + return false; + } + // Check whether all instructions in this block are schedulable. + for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { + if (!IsSchedulable(it.Current())) { + return false; + } + } + return true; +} + +bool HScheduler::IsSchedulingBarrier(const HInstruction* instr) const { + return instr->IsControlFlow() || + // Don't break calling convention. + instr->IsParameterValue() || + // Code generation of goto relies on SuspendCheck's position. + instr->IsSuspendCheck(); +} + +void HInstructionScheduling::Run(bool only_optimize_loop_blocks, + bool schedule_randomly) { + // Avoid compilation error when compiling for unsupported instruction set. + UNUSED(only_optimize_loop_blocks); + UNUSED(schedule_randomly); + switch (instruction_set_) { +#ifdef ART_ENABLE_CODEGEN_arm64 + case kArm64: { + // Phase-local allocator that allocates scheduler internal data structures like + // scheduling nodes, internel nodes map, dependencies, etc. + ArenaAllocator arena_allocator(graph_->GetArena()->GetArenaPool()); + + CriticalPathSchedulingNodeSelector critical_path_selector; + RandomSchedulingNodeSelector random_selector; + SchedulingNodeSelector* selector = schedule_randomly + ? static_cast<SchedulingNodeSelector*>(&random_selector) + : static_cast<SchedulingNodeSelector*>(&critical_path_selector); + + arm64::HSchedulerARM64 scheduler(&arena_allocator, selector); + scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks); + scheduler.Schedule(graph_); + break; + } +#endif + default: + break; + } +} + +} // namespace art |