diff options
author | 2015-09-10 17:33:44 +0000 | |
---|---|---|
committer | 2015-09-10 17:33:44 +0000 | |
commit | 010c7fd437932e0132fc4b44de6274480573ff30 (patch) | |
tree | 36fed0c2bac11700a1d1a6ef83c5843b916379fb /compiler/optimizing/induction_var_range.cc | |
parent | 0e21e01e2283eed58332ce1ac317037c399718a3 (diff) | |
parent | d14c59564870c910bdc823081f0ed1101f599231 (diff) |
Merge "Induction variable range analysis."
Diffstat (limited to 'compiler/optimizing/induction_var_range.cc')
-rw-r--r-- | compiler/optimizing/induction_var_range.cc | 343 |
1 files changed, 343 insertions, 0 deletions
diff --git a/compiler/optimizing/induction_var_range.cc b/compiler/optimizing/induction_var_range.cc new file mode 100644 index 0000000000..bd903340ad --- /dev/null +++ b/compiler/optimizing/induction_var_range.cc @@ -0,0 +1,343 @@ +/* + * Copyright (C) 2015 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <limits.h> + +#include "induction_var_range.h" + +namespace art { + +static bool IsValidConstant32(int32_t c) { + return INT_MIN < c && c < INT_MAX; +} + +static bool IsValidConstant64(int64_t c) { + return INT_MIN < c && c < INT_MAX; +} + +/** Returns true if 32-bit addition can be done safely (and is not an unknown range). */ +static bool IsSafeAdd(int32_t c1, int32_t c2) { + if (IsValidConstant32(c1) && IsValidConstant32(c2)) { + return IsValidConstant64(static_cast<int64_t>(c1) + static_cast<int64_t>(c2)); + } + return false; +} + +/** Returns true if 32-bit subtraction can be done safely (and is not an unknown range). */ +static bool IsSafeSub(int32_t c1, int32_t c2) { + if (IsValidConstant32(c1) && IsValidConstant32(c2)) { + return IsValidConstant64(static_cast<int64_t>(c1) - static_cast<int64_t>(c2)); + } + return false; +} + +/** Returns true if 32-bit multiplication can be done safely (and is not an unknown range). */ +static bool IsSafeMul(int32_t c1, int32_t c2) { + if (IsValidConstant32(c1) && IsValidConstant32(c2)) { + return IsValidConstant64(static_cast<int64_t>(c1) * static_cast<int64_t>(c2)); + } + return false; +} + +/** Returns true if 32-bit division can be done safely (and is not an unknown range). */ +static bool IsSafeDiv(int32_t c1, int32_t c2) { + if (IsValidConstant32(c1) && IsValidConstant32(c2) && c2 != 0) { + return IsValidConstant64(static_cast<int64_t>(c1) / static_cast<int64_t>(c2)); + } + return false; +} + +/** Returns true for 32/64-bit integral constant within known range. */ +static bool IsIntAndGet(HInstruction* instruction, int32_t* value) { + if (instruction->IsIntConstant()) { + const int32_t c = instruction->AsIntConstant()->GetValue(); + if (IsValidConstant32(c)) { + *value = c; + return true; + } + } else if (instruction->IsLongConstant()) { + const int64_t c = instruction->AsLongConstant()->GetValue(); + if (IsValidConstant64(c)) { + *value = c; + return true; + } + } + return false; +} + +// +// Public class methods. +// + +InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis) + : induction_analysis_(induction_analysis) { +} + +InductionVarRange::Value InductionVarRange::GetMinInduction(HInstruction* context, + HInstruction* instruction) { + HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); + if (loop != nullptr && induction_analysis_ != nullptr) { + return GetMin(induction_analysis_->LookupInfo(loop, instruction), GetTripCount(loop, context)); + } + return Value(INT_MIN); +} + +InductionVarRange::Value InductionVarRange::GetMaxInduction(HInstruction* context, + HInstruction* instruction) { + HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); + if (loop != nullptr && induction_analysis_ != nullptr) { + return GetMax(induction_analysis_->LookupInfo(loop, instruction), GetTripCount(loop, context)); + } + return Value(INT_MAX); +} + +// +// Private class methods. +// + +HInductionVarAnalysis::InductionInfo* InductionVarRange::GetTripCount(HLoopInformation* loop, + HInstruction* context) { + // The trip-count expression is only valid when the top-test is taken at least once, + // that means, when the analyzed context appears outside the loop header itself. + // Early-exit loops are okay, since in those cases, the trip-count is conservative. + if (context->GetBlock() != loop->GetHeader()) { + HInductionVarAnalysis::InductionInfo* trip = + induction_analysis_->LookupInfo(loop, loop->GetHeader()->GetLastInstruction()); + if (trip != nullptr) { + // Wrap the trip-count representation in its own unusual NOP node, so that range analysis + // is able to determine the [0, TC - 1] interval without having to construct constants. + return induction_analysis_->CreateInvariantOp(HInductionVarAnalysis::kNop, trip, trip); + } + } + return nullptr; +} + +InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction, + int32_t fail_value) { + // Detect constants and chase the fetch a bit deeper into the HIR tree, so that it becomes + // more likely range analysis will compare the same instructions as terminal nodes. + int32_t value; + if (IsIntAndGet(instruction, &value)) { + return Value(value); + } else if (instruction->IsAdd()) { + if (IsIntAndGet(instruction->InputAt(0), &value)) { + return AddValue(Value(value), GetFetch(instruction->InputAt(1), fail_value), fail_value); + } else if (IsIntAndGet(instruction->InputAt(1), &value)) { + return AddValue(GetFetch(instruction->InputAt(0), fail_value), Value(value), fail_value); + } + } + return Value(instruction, 1, 0); +} + +InductionVarRange::Value InductionVarRange::GetMin(HInductionVarAnalysis::InductionInfo* info, + HInductionVarAnalysis::InductionInfo* trip) { + if (info != nullptr) { + switch (info->induction_class) { + case HInductionVarAnalysis::kInvariant: + // Invariants. + switch (info->operation) { + case HInductionVarAnalysis::kNop: // normalized: 0 + DCHECK_EQ(info->op_a, info->op_b); + return Value(0); + case HInductionVarAnalysis::kAdd: + return AddValue(GetMin(info->op_a, trip), GetMin(info->op_b, trip), INT_MIN); + case HInductionVarAnalysis::kSub: // second max! + return SubValue(GetMin(info->op_a, trip), GetMax(info->op_b, trip), INT_MIN); + case HInductionVarAnalysis::kNeg: // second max! + return SubValue(Value(0), GetMax(info->op_b, trip), INT_MIN); + case HInductionVarAnalysis::kMul: + return GetMul(info->op_a, info->op_b, trip, INT_MIN); + case HInductionVarAnalysis::kDiv: + return GetDiv(info->op_a, info->op_b, trip, INT_MIN); + case HInductionVarAnalysis::kFetch: + return GetFetch(info->fetch, INT_MIN); + } + break; + case HInductionVarAnalysis::kLinear: + // Minimum over linear induction a * i + b, for normalized 0 <= i < TC. + return AddValue(GetMul(info->op_a, trip, trip, INT_MIN), + GetMin(info->op_b, trip), INT_MIN); + case HInductionVarAnalysis::kWrapAround: + case HInductionVarAnalysis::kPeriodic: + // Minimum over all values in the wrap-around/periodic. + return MinValue(GetMin(info->op_a, trip), GetMin(info->op_b, trip)); + } + } + return Value(INT_MIN); +} + +InductionVarRange::Value InductionVarRange::GetMax(HInductionVarAnalysis::InductionInfo* info, + HInductionVarAnalysis::InductionInfo* trip) { + if (info != nullptr) { + switch (info->induction_class) { + case HInductionVarAnalysis::kInvariant: + // Invariants. + switch (info->operation) { + case HInductionVarAnalysis::kNop: // normalized: TC - 1 + DCHECK_EQ(info->op_a, info->op_b); + return SubValue(GetMax(info->op_b, trip), Value(1), INT_MAX); + case HInductionVarAnalysis::kAdd: + return AddValue(GetMax(info->op_a, trip), GetMax(info->op_b, trip), INT_MAX); + case HInductionVarAnalysis::kSub: // second min! + return SubValue(GetMax(info->op_a, trip), GetMin(info->op_b, trip), INT_MAX); + case HInductionVarAnalysis::kNeg: // second min! + return SubValue(Value(0), GetMin(info->op_b, trip), INT_MAX); + case HInductionVarAnalysis::kMul: + return GetMul(info->op_a, info->op_b, trip, INT_MAX); + case HInductionVarAnalysis::kDiv: + return GetDiv(info->op_a, info->op_b, trip, INT_MAX); + case HInductionVarAnalysis::kFetch: + return GetFetch(info->fetch, INT_MAX); + } + break; + case HInductionVarAnalysis::kLinear: + // Maximum over linear induction a * i + b, for normalized 0 <= i < TC. + return AddValue(GetMul(info->op_a, trip, trip, INT_MAX), + GetMax(info->op_b, trip), INT_MAX); + case HInductionVarAnalysis::kWrapAround: + case HInductionVarAnalysis::kPeriodic: + // Maximum over all values in the wrap-around/periodic. + return MaxValue(GetMax(info->op_a, trip), GetMax(info->op_b, trip)); + } + } + return Value(INT_MAX); +} + +InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1, + HInductionVarAnalysis::InductionInfo* info2, + HInductionVarAnalysis::InductionInfo* trip, + int32_t fail_value) { + Value v1_min = GetMin(info1, trip); + Value v1_max = GetMax(info1, trip); + Value v2_min = GetMin(info2, trip); + Value v2_max = GetMax(info2, trip); + if (v1_min.a_constant == 0 && v1_min.b_constant >= 0) { + // Positive range vs. positive or negative range. + if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) { + return (fail_value < 0) ? MulValue(v1_min, v2_min, fail_value) + : MulValue(v1_max, v2_max, fail_value); + } else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) { + return (fail_value < 0) ? MulValue(v1_max, v2_min, fail_value) + : MulValue(v1_min, v2_max, fail_value); + } + } else if (v1_min.a_constant == 0 && v1_min.b_constant <= 0) { + // Negative range vs. positive or negative range. + if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) { + return (fail_value < 0) ? MulValue(v1_min, v2_max, fail_value) + : MulValue(v1_max, v2_min, fail_value); + } else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) { + return (fail_value < 0) ? MulValue(v1_max, v2_max, fail_value) + : MulValue(v1_min, v2_min, fail_value); + } + } + return Value(fail_value); +} + +InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1, + HInductionVarAnalysis::InductionInfo* info2, + HInductionVarAnalysis::InductionInfo* trip, + int32_t fail_value) { + Value v1_min = GetMin(info1, trip); + Value v1_max = GetMax(info1, trip); + Value v2_min = GetMin(info2, trip); + Value v2_max = GetMax(info2, trip); + if (v1_min.a_constant == 0 && v1_min.b_constant >= 0) { + // Positive range vs. positive or negative range. + if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) { + return (fail_value < 0) ? DivValue(v1_min, v2_max, fail_value) + : DivValue(v1_max, v2_min, fail_value); + } else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) { + return (fail_value < 0) ? DivValue(v1_max, v2_max, fail_value) + : DivValue(v1_min, v2_min, fail_value); + } + } else if (v1_min.a_constant == 0 && v1_min.b_constant <= 0) { + // Negative range vs. positive or negative range. + if (v2_min.a_constant == 0 && v2_min.b_constant >= 0) { + return (fail_value < 0) ? DivValue(v1_min, v2_min, fail_value) + : DivValue(v1_max, v2_max, fail_value); + } else if (v2_max.a_constant == 0 && v2_max.b_constant <= 0) { + return (fail_value < 0) ? DivValue(v1_max, v2_min, fail_value) + : DivValue(v1_min, v2_max, fail_value); + } + } + return Value(fail_value); +} + +InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2, int32_t fail_value) { + if (IsSafeAdd(v1.b_constant, v2.b_constant)) { + const int32_t b = v1.b_constant + v2.b_constant; + if (v1.a_constant == 0) { + return Value(v2.instruction, v2.a_constant, b); + } else if (v2.a_constant == 0) { + return Value(v1.instruction, v1.a_constant, b); + } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) { + return Value(v1.instruction, v1.a_constant + v2.a_constant, b); + } + } + return Value(fail_value); +} + +InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2, int32_t fail_value) { + if (IsSafeSub(v1.b_constant, v2.b_constant)) { + const int32_t b = v1.b_constant - v2.b_constant; + if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) { + return Value(v2.instruction, -v2.a_constant, b); + } else if (v2.a_constant == 0) { + return Value(v1.instruction, v1.a_constant, b); + } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) { + return Value(v1.instruction, v1.a_constant - v2.a_constant, b); + } + } + return Value(fail_value); +} + +InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2, int32_t fail_value) { + if (v1.a_constant == 0) { + if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { + return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant); + } + } else if (v2.a_constant == 0) { + if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { + return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant); + } + } + return Value(fail_value); +} + +InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2, int32_t fail_value) { + if (v1.a_constant == 0 && v2.a_constant == 0) { + if (IsSafeDiv(v1.b_constant, v2.b_constant)) { + return Value(v1.b_constant / v2.b_constant); + } + } + return Value(fail_value); +} + +InductionVarRange::Value InductionVarRange::MinValue(Value v1, Value v2) { + if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) { + return Value(v1.instruction, v1.a_constant, std::min(v1.b_constant, v2.b_constant)); + } + return Value(INT_MIN); +} + +InductionVarRange::Value InductionVarRange::MaxValue(Value v1, Value v2) { + if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) { + return Value(v1.instruction, v1.a_constant, std::max(v1.b_constant, v2.b_constant)); + } + return Value(INT_MAX); +} + +} // namespace art |