blob: 65725033565015bb97a0897f8377055fe6f3d9f4 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SerializedLogChunk.h"
#include <limits>
#include <android-base/stringprintf.h>
#include <android/log.h>
#include <gtest/gtest.h>
using android::base::StringPrintf;
TEST(SerializedLogChunk, smoke) {
size_t chunk_size = 10 * 4096;
auto chunk = SerializedLogChunk{chunk_size};
EXPECT_EQ(chunk_size, chunk.PruneSize());
static const char log_message[] = "log message";
size_t expected_total_len = sizeof(SerializedLogEntry) + sizeof(log_message);
ASSERT_TRUE(chunk.CanLog(expected_total_len));
EXPECT_TRUE(chunk.CanLog(chunk_size));
EXPECT_FALSE(chunk.CanLog(chunk_size + 1));
log_time time(CLOCK_REALTIME);
auto* entry = chunk.Log(1234, time, 0, 1, 2, log_message, sizeof(log_message));
ASSERT_NE(nullptr, entry);
EXPECT_EQ(1234U, entry->sequence());
EXPECT_EQ(time, entry->realtime());
EXPECT_EQ(0U, entry->uid());
EXPECT_EQ(1, entry->pid());
EXPECT_EQ(2, entry->tid());
EXPECT_EQ(sizeof(log_message), entry->msg_len());
EXPECT_STREQ(log_message, entry->msg());
EXPECT_EQ(expected_total_len, entry->total_len());
EXPECT_FALSE(chunk.CanLog(chunk_size));
EXPECT_EQ(static_cast<int>(expected_total_len), chunk.write_offset());
EXPECT_EQ(1234U, chunk.highest_sequence_number());
}
TEST(SerializedLogChunk, fill_log_exactly) {
static const char log_message[] = "this is a log message";
size_t individual_message_size = sizeof(SerializedLogEntry) + sizeof(log_message);
size_t chunk_size = individual_message_size * 3;
auto chunk = SerializedLogChunk{chunk_size};
EXPECT_EQ(chunk_size, chunk.PruneSize());
ASSERT_TRUE(chunk.CanLog(individual_message_size));
EXPECT_NE(nullptr, chunk.Log(1, log_time(), 1000, 1, 1, log_message, sizeof(log_message)));
ASSERT_TRUE(chunk.CanLog(individual_message_size));
EXPECT_NE(nullptr, chunk.Log(2, log_time(), 1000, 2, 1, log_message, sizeof(log_message)));
ASSERT_TRUE(chunk.CanLog(individual_message_size));
EXPECT_NE(nullptr, chunk.Log(3, log_time(), 1000, 3, 1, log_message, sizeof(log_message)));
EXPECT_FALSE(chunk.CanLog(1));
}
TEST(SerializedLogChunk, three_logs) {
size_t chunk_size = 10 * 4096;
auto chunk = SerializedLogChunk{chunk_size};
chunk.Log(2, log_time(0x1234, 0x5678), 0x111, 0x222, 0x333, "initial message",
strlen("initial message"));
chunk.Log(3, log_time(0x2345, 0x6789), 0x444, 0x555, 0x666, "second message",
strlen("second message"));
auto uint64_t_max = std::numeric_limits<uint64_t>::max();
auto uint32_t_max = std::numeric_limits<uint32_t>::max();
chunk.Log(uint64_t_max, log_time(uint32_t_max, uint32_t_max), uint32_t_max, uint32_t_max,
uint32_t_max, "last message", strlen("last message"));
static const char expected_buffer_data[] =
"\x11\x01\x00\x00\x22\x02\x00\x00\x33\x03\x00\x00" // UID PID TID
"\x02\x00\x00\x00\x00\x00\x00\x00" // Sequence
"\x34\x12\x00\x00\x78\x56\x00\x00" // Timestamp
"\x0F\x00initial message" // msg_len + message
"\x44\x04\x00\x00\x55\x05\x00\x00\x66\x06\x00\x00" // UID PID TID
"\x03\x00\x00\x00\x00\x00\x00\x00" // Sequence
"\x45\x23\x00\x00\x89\x67\x00\x00" // Timestamp
"\x0E\x00second message" // msg_len + message
"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" // UID PID TID
"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" // Sequence
"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" // Timestamp
"\x0C\x00last message"; // msg_len + message
for (size_t i = 0; i < chunk_size; ++i) {
if (i < sizeof(expected_buffer_data)) {
EXPECT_EQ(static_cast<uint8_t>(expected_buffer_data[i]), chunk.data()[i])
<< "position: " << i;
} else {
EXPECT_EQ(0, chunk.data()[i]) << "position: " << i;
}
}
}
// Check that the CHECK() in DecReaderRefCount() if the ref count goes bad is caught.
TEST(SerializedLogChunk, catch_DecCompressedRef_CHECK) {
size_t chunk_size = 10 * 4096;
auto chunk = SerializedLogChunk{chunk_size};
EXPECT_DEATH({ chunk.DecReaderRefCount(true); }, "");
EXPECT_DEATH({ chunk.DecReaderRefCount(false); }, "");
}
// Check that the CHECK() in ClearUidLogs() if the ref count is greater than 0 is caught.
TEST(SerializedLogChunk, catch_ClearUidLogs_CHECK) {
size_t chunk_size = 10 * 4096;
auto chunk = SerializedLogChunk{chunk_size};
chunk.IncReaderRefCount();
EXPECT_DEATH({ chunk.ClearUidLogs(1000, LOG_ID_MAIN, nullptr); }, "");
chunk.DecReaderRefCount(false);
}
class UidClearTest : public testing::TestWithParam<bool> {
protected:
template <typename Write, typename Check>
void Test(const Write& write, const Check& check, bool expected_result) {
write(chunk_);
bool finish_writing = GetParam();
if (finish_writing) {
chunk_.FinishWriting();
}
EXPECT_EQ(expected_result, chunk_.ClearUidLogs(kUidToClear, LOG_ID_MAIN, nullptr));
if (finish_writing) {
chunk_.IncReaderRefCount();
}
check(chunk_);
if (finish_writing) {
chunk_.DecReaderRefCount(false);
}
}
static constexpr size_t kChunkSize = 10 * 4096;
static constexpr uid_t kUidToClear = 1000;
static constexpr uid_t kOtherUid = 1234;
SerializedLogChunk chunk_{kChunkSize};
};
// Test that ClearUidLogs() is a no-op if there are no logs of that UID in the buffer.
TEST_P(UidClearTest, no_logs_in_chunk) {
auto write = [](SerializedLogChunk&) {};
auto check = [](SerializedLogChunk&) {};
Test(write, check, true);
}
// Test that ClearUidLogs() is a no-op if there are no logs of that UID in the buffer.
TEST_P(UidClearTest, no_logs_from_uid) {
static const char msg[] = "this is a log message";
auto write = [](SerializedLogChunk& chunk) {
chunk.Log(1, log_time(), kOtherUid, 1, 2, msg, sizeof(msg));
};
auto check = [](SerializedLogChunk& chunk) {
auto* entry = chunk.log_entry(0);
EXPECT_STREQ(msg, entry->msg());
};
Test(write, check, false);
}
// Test that ClearUidLogs() returns true if all logs in a given buffer correspond to the given UID.
TEST_P(UidClearTest, all_single) {
static const char msg[] = "this is a log message";
auto write = [](SerializedLogChunk& chunk) {
chunk.Log(1, log_time(), kUidToClear, 1, 2, msg, sizeof(msg));
};
auto check = [](SerializedLogChunk&) {};
Test(write, check, true);
}
// Test that ClearUidLogs() returns true if all logs in a given buffer correspond to the given UID.
TEST_P(UidClearTest, all_multiple) {
static const char msg[] = "this is a log message";
auto write = [](SerializedLogChunk& chunk) {
chunk.Log(2, log_time(), kUidToClear, 1, 2, msg, sizeof(msg));
chunk.Log(3, log_time(), kUidToClear, 1, 2, msg, sizeof(msg));
chunk.Log(4, log_time(), kUidToClear, 1, 2, msg, sizeof(msg));
};
auto check = [](SerializedLogChunk&) {};
Test(write, check, true);
}
static std::string MakePrintable(const uint8_t* in, size_t length) {
std::string result;
for (size_t i = 0; i < length; ++i) {
uint8_t c = in[i];
if (isprint(c)) {
result.push_back(c);
} else {
result.append(StringPrintf("\\%02x", static_cast<int>(c) & 0xFF));
}
}
return result;
}
// This test clears UID logs at the beginning and end of the buffer, as well as two back to back
// logs in the interior.
TEST_P(UidClearTest, clear_beginning_and_end) {
static const char msg1[] = "this is a log message";
static const char msg2[] = "non-cleared message";
static const char msg3[] = "back to back cleared messages";
static const char msg4[] = "second in a row gone";
static const char msg5[] = "but we save this one";
static const char msg6[] = "and this 1!";
static const char msg7[] = "the last one goes too";
auto write = [](SerializedLogChunk& chunk) {
ASSERT_NE(nullptr, chunk.Log(1, log_time(), kUidToClear, 1, 2, msg1, sizeof(msg1)));
ASSERT_NE(nullptr, chunk.Log(2, log_time(), kOtherUid, 1, 2, msg2, sizeof(msg2)));
ASSERT_NE(nullptr, chunk.Log(3, log_time(), kUidToClear, 1, 2, msg3, sizeof(msg3)));
ASSERT_NE(nullptr, chunk.Log(4, log_time(), kUidToClear, 1, 2, msg4, sizeof(msg4)));
ASSERT_NE(nullptr, chunk.Log(5, log_time(), kOtherUid, 1, 2, msg5, sizeof(msg5)));
ASSERT_NE(nullptr, chunk.Log(6, log_time(), kOtherUid, 1, 2, msg6, sizeof(msg6)));
ASSERT_NE(nullptr, chunk.Log(7, log_time(), kUidToClear, 1, 2, msg7, sizeof(msg7)));
};
auto check = [](SerializedLogChunk& chunk) {
size_t read_offset = 0;
auto* entry = chunk.log_entry(read_offset);
EXPECT_STREQ(msg2, entry->msg());
read_offset += entry->total_len();
entry = chunk.log_entry(read_offset);
EXPECT_STREQ(msg5, entry->msg());
read_offset += entry->total_len();
entry = chunk.log_entry(read_offset);
EXPECT_STREQ(msg6, entry->msg()) << MakePrintable(chunk.data(), chunk.write_offset());
read_offset += entry->total_len();
EXPECT_EQ(static_cast<int>(read_offset), chunk.write_offset());
};
Test(write, check, false);
}
// This tests the opposite case of beginning_and_end, in which we don't clear the beginning or end
// logs. There is a single log pruned in the middle instead of back to back logs.
TEST_P(UidClearTest, save_beginning_and_end) {
static const char msg1[] = "saved first message";
static const char msg2[] = "cleared interior message";
static const char msg3[] = "last message stays";
auto write = [](SerializedLogChunk& chunk) {
ASSERT_NE(nullptr, chunk.Log(1, log_time(), kOtherUid, 1, 2, msg1, sizeof(msg1)));
ASSERT_NE(nullptr, chunk.Log(2, log_time(), kUidToClear, 1, 2, msg2, sizeof(msg2)));
ASSERT_NE(nullptr, chunk.Log(3, log_time(), kOtherUid, 1, 2, msg3, sizeof(msg3)));
};
auto check = [](SerializedLogChunk& chunk) {
size_t read_offset = 0;
auto* entry = chunk.log_entry(read_offset);
EXPECT_STREQ(msg1, entry->msg());
read_offset += entry->total_len();
entry = chunk.log_entry(read_offset);
EXPECT_STREQ(msg3, entry->msg());
read_offset += entry->total_len();
EXPECT_EQ(static_cast<int>(read_offset), chunk.write_offset());
};
Test(write, check, false);
}
INSTANTIATE_TEST_CASE_P(UidClearTests, UidClearTest, testing::Values(true, false));