blob: 2f9dfeaff77518c29b7645bf46397fabada6672a [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra"
#undef LOG_TAG
#define LOG_TAG "VSyncPredictor"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <algorithm>
#include <chrono>
#include <sstream>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <common/FlagManager.h>
#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <ftl/concat.h>
#include <gui/TraceUtils.h>
#include <utils/Log.h>
#include "RefreshRateSelector.h"
#include "VSyncPredictor.h"
namespace android::scheduler {
using base::StringAppendF;
static auto constexpr kMaxPercent = 100u;
namespace {
nsecs_t getVsyncFixup(VSyncPredictor::Model model, Period minFramePeriod, nsecs_t vsyncTime,
std::optional<nsecs_t> lastVsyncOpt) {
const auto threshold = model.slope / 2;
if (FlagManager::getInstance().vrr_config() && lastVsyncOpt) {
const auto vsyncDiff = vsyncTime - *lastVsyncOpt;
if (vsyncDiff >= threshold && vsyncDiff <= minFramePeriod.ns() - threshold) {
const auto vsyncFixup = *lastVsyncOpt + minFramePeriod.ns() - vsyncTime;
ATRACE_FORMAT_INSTANT("minFramePeriod violation. next in %.2f which is %.2f from prev. "
"adjust by %.2f",
static_cast<float>(vsyncTime - TimePoint::now().ns()) / 1e6f,
static_cast<float>(vsyncTime - *lastVsyncOpt) / 1e6f,
static_cast<float>(vsyncFixup) / 1e6f);
return vsyncFixup;
}
}
return 0;
}
} // namespace
VSyncPredictor::~VSyncPredictor() = default;
VSyncPredictor::VSyncPredictor(std::unique_ptr<Clock> clock, ftl::NonNull<DisplayModePtr> modePtr,
size_t historySize, size_t minimumSamplesForPrediction,
uint32_t outlierTolerancePercent)
: mClock(std::move(clock)),
mId(modePtr->getPhysicalDisplayId()),
mTraceOn(property_get_bool("debug.sf.vsp_trace", false)),
kHistorySize(historySize),
kMinimumSamplesForPrediction(minimumSamplesForPrediction),
kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
mDisplayModePtr(modePtr) {
resetModel();
}
inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
if (CC_UNLIKELY(mTraceOn)) {
traceInt64(name, value);
}
}
inline void VSyncPredictor::traceInt64(const char* name, int64_t value) const {
ATRACE_INT64(ftl::Concat(ftl::truncated<14>(name), " ", mId.value).c_str(), value);
}
inline size_t VSyncPredictor::next(size_t i) const {
return (i + 1) % mTimestamps.size();
}
nsecs_t VSyncPredictor::idealPeriod() const {
return mDisplayModePtr->getVsyncRate().getPeriodNsecs();
}
bool VSyncPredictor::validate(nsecs_t timestamp) const {
if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
return true;
}
const auto aValidTimestamp = mTimestamps[mLastTimestampIndex];
const auto percent =
(timestamp - aValidTimestamp) % idealPeriod() * kMaxPercent / idealPeriod();
if (percent >= kOutlierTolerancePercent &&
percent <= (kMaxPercent - kOutlierTolerancePercent)) {
ATRACE_FORMAT_INSTANT("timestamp is not aligned with model");
return false;
}
const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(),
[timestamp](nsecs_t a, nsecs_t b) {
return std::abs(timestamp - a) < std::abs(timestamp - b);
});
const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / idealPeriod();
if (distancePercent < kOutlierTolerancePercent) {
// duplicate timestamp
ATRACE_FORMAT_INSTANT("duplicate timestamp");
return false;
}
return true;
}
nsecs_t VSyncPredictor::currentPeriod() const {
std::lock_guard lock(mMutex);
return mRateMap.find(idealPeriod())->second.slope;
}
Period VSyncPredictor::minFramePeriod() const {
if (!FlagManager::getInstance().vrr_config()) {
return Period::fromNs(currentPeriod());
}
std::lock_guard lock(mMutex);
return minFramePeriodLocked();
}
Period VSyncPredictor::minFramePeriodLocked() const {
const auto idealPeakRefreshPeriod = mDisplayModePtr->getPeakFps().getPeriodNsecs();
const auto numPeriods = static_cast<int>(std::round(static_cast<float>(idealPeakRefreshPeriod) /
static_cast<float>(idealPeriod())));
const auto slope = mRateMap.find(idealPeriod())->second.slope;
return Period::fromNs(slope * numPeriods);
}
bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
ATRACE_CALL();
std::lock_guard lock(mMutex);
if (!validate(timestamp)) {
// VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
// don't insert this ts into mTimestamps ringbuffer. If we are still
// in the learning phase we should just clear all timestamps and start
// over.
if (mTimestamps.size() < kMinimumSamplesForPrediction) {
// Add the timestamp to mTimestamps before clearing it so we could
// update mKnownTimestamp based on the new timestamp.
mTimestamps.push_back(timestamp);
clearTimestamps();
} else if (!mTimestamps.empty()) {
mKnownTimestamp =
std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
} else {
mKnownTimestamp = timestamp;
}
ATRACE_FORMAT_INSTANT("timestamp rejected. mKnownTimestamp was %.2fms ago",
(mClock->now() - *mKnownTimestamp) / 1e6f);
return false;
}
if (mTimestamps.size() != kHistorySize) {
mTimestamps.push_back(timestamp);
mLastTimestampIndex = next(mLastTimestampIndex);
} else {
mLastTimestampIndex = next(mLastTimestampIndex);
mTimestamps[mLastTimestampIndex] = timestamp;
}
traceInt64If("VSP-ts", timestamp);
const size_t numSamples = mTimestamps.size();
if (numSamples < kMinimumSamplesForPrediction) {
mRateMap[idealPeriod()] = {idealPeriod(), 0};
return true;
}
// This is a 'simple linear regression' calculation of Y over X, with Y being the
// vsync timestamps, and X being the ordinal of vsync count.
// The calculated slope is the vsync period.
// Formula for reference:
// Sigma_i: means sum over all timestamps.
// mean(variable): statistical mean of variable.
// X: snapped ordinal of the timestamp
// Y: vsync timestamp
//
// Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
// slope = -------------------------------------------
// Sigma_i ( X_i - mean(X) ) ^ 2
//
// intercept = mean(Y) - slope * mean(X)
//
std::vector<nsecs_t> vsyncTS(numSamples);
std::vector<nsecs_t> ordinals(numSamples);
// Normalizing to the oldest timestamp cuts down on error in calculating the intercept.
const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end());
auto it = mRateMap.find(idealPeriod());
auto const currentPeriod = it->second.slope;
// The mean of the ordinals must be precise for the intercept calculation, so scale them up for
// fixed-point arithmetic.
constexpr int64_t kScalingFactor = 1000;
nsecs_t meanTS = 0;
nsecs_t meanOrdinal = 0;
for (size_t i = 0; i < numSamples; i++) {
const auto timestamp = mTimestamps[i] - oldestTS;
vsyncTS[i] = timestamp;
meanTS += timestamp;
const auto ordinal = currentPeriod == 0
? 0
: (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor;
ordinals[i] = ordinal;
meanOrdinal += ordinal;
}
meanTS /= numSamples;
meanOrdinal /= numSamples;
for (size_t i = 0; i < numSamples; i++) {
vsyncTS[i] -= meanTS;
ordinals[i] -= meanOrdinal;
}
nsecs_t top = 0;
nsecs_t bottom = 0;
for (size_t i = 0; i < numSamples; i++) {
top += vsyncTS[i] * ordinals[i];
bottom += ordinals[i] * ordinals[i];
}
if (CC_UNLIKELY(bottom == 0)) {
it->second = {idealPeriod(), 0};
clearTimestamps();
return false;
}
nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
auto const percent = std::abs(anticipatedPeriod - idealPeriod()) * kMaxPercent / idealPeriod();
if (percent >= kOutlierTolerancePercent) {
it->second = {idealPeriod(), 0};
clearTimestamps();
return false;
}
traceInt64If("VSP-period", anticipatedPeriod);
traceInt64If("VSP-intercept", intercept);
it->second = {anticipatedPeriod, intercept};
ALOGV("model update ts %" PRIu64 ": %" PRId64 " slope: %" PRId64 " intercept: %" PRId64,
mId.value, timestamp, anticipatedPeriod, intercept);
return true;
}
nsecs_t VSyncPredictor::snapToVsync(nsecs_t timePoint) const {
auto const [slope, intercept] = getVSyncPredictionModelLocked();
if (mTimestamps.empty()) {
traceInt64("VSP-mode", 1);
auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
auto const numPeriodsOut = ((timePoint - knownTimestamp) / idealPeriod()) + 1;
return knownTimestamp + numPeriodsOut * idealPeriod();
}
auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());
// See b/145667109, the ordinal calculation must take into account the intercept.
auto const zeroPoint = oldest + intercept;
auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
auto const prediction = (ordinalRequest * slope) + intercept + oldest;
traceInt64("VSP-mode", 0);
traceInt64If("VSP-timePoint", timePoint);
traceInt64If("VSP-prediction", prediction);
auto const printer = [&, slope = slope, intercept = intercept] {
std::stringstream str;
str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
<< prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
<< "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
return str.str();
};
ALOGV("%s", printer().c_str());
LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
printer().c_str());
return prediction;
}
nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint,
std::optional<nsecs_t> lastVsyncOpt) {
ATRACE_CALL();
std::lock_guard lock(mMutex);
const auto now = TimePoint::fromNs(mClock->now());
purgeTimelines(now);
std::optional<TimePoint> vsyncOpt;
for (auto& timeline : mTimelines) {
vsyncOpt = timeline.nextAnticipatedVSyncTimeFrom(getVSyncPredictionModelLocked(),
minFramePeriodLocked(),
snapToVsync(timePoint), mMissedVsync,
lastVsyncOpt);
if (vsyncOpt) {
break;
}
}
LOG_ALWAYS_FATAL_IF(!vsyncOpt);
if (*vsyncOpt > mLastCommittedVsync) {
mLastCommittedVsync = *vsyncOpt;
ATRACE_FORMAT_INSTANT("mLastCommittedVsync in %.2fms",
float(mLastCommittedVsync.ns() - mClock->now()) / 1e6f);
}
return vsyncOpt->ns();
}
/*
* Returns whether a given vsync timestamp is in phase with a frame rate.
* If the frame rate is not a divisor of the refresh rate, it is always considered in phase.
* For example, if the vsync timestamps are (16.6,33.3,50.0,66.6):
* isVSyncInPhase(16.6, 30) = true
* isVSyncInPhase(33.3, 30) = false
* isVSyncInPhase(50.0, 30) = true
*/
bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) {
if (timePoint == 0) {
return true;
}
std::lock_guard lock(mMutex);
const auto model = getVSyncPredictionModelLocked();
const nsecs_t period = model.slope;
const nsecs_t justBeforeTimePoint = timePoint - period / 2;
const auto now = TimePoint::fromNs(mClock->now());
const auto vsync = snapToVsync(justBeforeTimePoint);
purgeTimelines(now);
for (auto& timeline : mTimelines) {
if (timeline.validUntil() && timeline.validUntil()->ns() > vsync) {
return timeline.isVSyncInPhase(model, vsync, frameRate);
}
}
// The last timeline should always be valid
return mTimelines.back().isVSyncInPhase(model, vsync, frameRate);
}
void VSyncPredictor::setRenderRate(Fps renderRate) {
ATRACE_FORMAT("%s %s", __func__, to_string(renderRate).c_str());
ALOGV("%s %s: RenderRate %s ", __func__, to_string(mId).c_str(), to_string(renderRate).c_str());
std::lock_guard lock(mMutex);
mRenderRateOpt = renderRate;
mTimelines.back().freeze(TimePoint::fromNs(mLastCommittedVsync.ns() + mIdealPeriod.ns() / 2));
mTimelines.emplace_back(mIdealPeriod, renderRate);
purgeTimelines(TimePoint::fromNs(mClock->now()));
}
void VSyncPredictor::setDisplayModePtr(ftl::NonNull<DisplayModePtr> modePtr) {
LOG_ALWAYS_FATAL_IF(mId != modePtr->getPhysicalDisplayId(),
"mode does not belong to the display");
ATRACE_FORMAT("%s %s", __func__, to_string(*modePtr).c_str());
const auto timeout = modePtr->getVrrConfig()
? modePtr->getVrrConfig()->notifyExpectedPresentConfig
: std::nullopt;
ALOGV("%s %s: DisplayMode %s notifyExpectedPresentTimeout %s", __func__, to_string(mId).c_str(),
to_string(*modePtr).c_str(),
timeout ? std::to_string(timeout->timeoutNs).c_str() : "N/A");
std::lock_guard lock(mMutex);
mDisplayModePtr = modePtr;
traceInt64("VSP-setPeriod", modePtr->getVsyncRate().getPeriodNsecs());
static constexpr size_t kSizeLimit = 30;
if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
mRateMap.erase(mRateMap.begin());
}
if (mRateMap.find(idealPeriod()) == mRateMap.end()) {
mRateMap[idealPeriod()] = {idealPeriod(), 0};
}
clearTimestamps();
}
Duration VSyncPredictor::ensureMinFrameDurationIsKept(TimePoint expectedPresentTime,
TimePoint lastConfirmedPresentTime) {
ATRACE_CALL();
const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
const auto threshold = currentPeriod / 2;
const auto minFramePeriod = minFramePeriodLocked().ns();
auto prev = lastConfirmedPresentTime.ns();
for (auto& current : mPastExpectedPresentTimes) {
if (CC_UNLIKELY(mTraceOn)) {
ATRACE_FORMAT_INSTANT("current %.2f past last signaled fence",
static_cast<float>(current.ns() - lastConfirmedPresentTime.ns()) /
1e6f);
}
const auto minPeriodViolation = current.ns() - prev + threshold < minFramePeriod;
if (minPeriodViolation) {
ATRACE_NAME("minPeriodViolation");
current = TimePoint::fromNs(prev + minFramePeriod);
prev = current.ns();
} else {
break;
}
}
if (!mPastExpectedPresentTimes.empty()) {
const auto phase = Duration(mPastExpectedPresentTimes.back() - expectedPresentTime);
if (phase > 0ns) {
for (auto& timeline : mTimelines) {
timeline.shiftVsyncSequence(phase);
}
mPastExpectedPresentTimes.clear();
return phase;
}
}
return 0ns;
}
void VSyncPredictor::onFrameBegin(TimePoint expectedPresentTime,
TimePoint lastConfirmedPresentTime) {
ATRACE_NAME("VSyncPredictor::onFrameBegin");
std::lock_guard lock(mMutex);
if (!mDisplayModePtr->getVrrConfig()) return;
if (CC_UNLIKELY(mTraceOn)) {
ATRACE_FORMAT_INSTANT("vsync is %.2f past last signaled fence",
static_cast<float>(expectedPresentTime.ns() -
lastConfirmedPresentTime.ns()) /
1e6f);
}
const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
const auto threshold = currentPeriod / 2;
mPastExpectedPresentTimes.push_back(expectedPresentTime);
while (!mPastExpectedPresentTimes.empty()) {
const auto front = mPastExpectedPresentTimes.front().ns();
const bool frontIsBeforeConfirmed = front < lastConfirmedPresentTime.ns() + threshold;
if (frontIsBeforeConfirmed) {
if (CC_UNLIKELY(mTraceOn)) {
ATRACE_FORMAT_INSTANT("Discarding old vsync - %.2f before last signaled fence",
static_cast<float>(lastConfirmedPresentTime.ns() - front) /
1e6f);
}
mPastExpectedPresentTimes.pop_front();
} else {
break;
}
}
const auto phase = ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime);
if (phase > 0ns) {
mMissedVsync = {expectedPresentTime, minFramePeriodLocked()};
}
}
void VSyncPredictor::onFrameMissed(TimePoint expectedPresentTime) {
ATRACE_NAME("VSyncPredictor::onFrameMissed");
std::lock_guard lock(mMutex);
if (!mDisplayModePtr->getVrrConfig()) return;
// We don't know when the frame is going to be presented, so we assume it missed one vsync
const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
const auto lastConfirmedPresentTime =
TimePoint::fromNs(expectedPresentTime.ns() + currentPeriod);
const auto phase = ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime);
if (phase > 0ns) {
mMissedVsync = {expectedPresentTime, Duration::fromNs(0)};
}
}
VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const {
std::lock_guard lock(mMutex);
return VSyncPredictor::getVSyncPredictionModelLocked();
}
VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const {
return mRateMap.find(idealPeriod())->second;
}
void VSyncPredictor::clearTimestamps() {
ATRACE_CALL();
if (!mTimestamps.empty()) {
auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
if (mKnownTimestamp) {
mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
} else {
mKnownTimestamp = maxRb;
}
mTimestamps.clear();
mLastTimestampIndex = 0;
}
mTimelines.clear();
mLastCommittedVsync = TimePoint::fromNs(0);
mIdealPeriod = Period::fromNs(idealPeriod());
mTimelines.emplace_back(mIdealPeriod, mRenderRateOpt);
}
bool VSyncPredictor::needsMoreSamples() const {
std::lock_guard lock(mMutex);
return mTimestamps.size() < kMinimumSamplesForPrediction;
}
void VSyncPredictor::resetModel() {
std::lock_guard lock(mMutex);
mRateMap[idealPeriod()] = {idealPeriod(), 0};
clearTimestamps();
}
void VSyncPredictor::dump(std::string& result) const {
std::lock_guard lock(mMutex);
StringAppendF(&result, "\tmDisplayModePtr=%s\n", to_string(*mDisplayModePtr).c_str());
StringAppendF(&result, "\tRefresh Rate Map:\n");
for (const auto& [period, periodInterceptTuple] : mRateMap) {
StringAppendF(&result,
"\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
period / 1e6f, periodInterceptTuple.slope / 1e6f,
periodInterceptTuple.intercept);
}
StringAppendF(&result, "\tmTimelines.size()=%zu\n", mTimelines.size());
}
void VSyncPredictor::purgeTimelines(android::TimePoint now) {
while (mTimelines.size() > 1) {
const auto validUntilOpt = mTimelines.front().validUntil();
if (validUntilOpt && *validUntilOpt < now) {
mTimelines.pop_front();
} else {
break;
}
}
LOG_ALWAYS_FATAL_IF(mTimelines.empty());
LOG_ALWAYS_FATAL_IF(mTimelines.back().validUntil().has_value());
}
VSyncPredictor::VsyncTimeline::VsyncTimeline(Period idealPeriod, std::optional<Fps> renderRateOpt)
: mIdealPeriod(idealPeriod), mRenderRateOpt(renderRateOpt) {}
void VSyncPredictor::VsyncTimeline::freeze(TimePoint lastVsync) {
LOG_ALWAYS_FATAL_IF(mValidUntil.has_value());
ATRACE_FORMAT_INSTANT("renderRate %s valid for %.2f",
mRenderRateOpt ? to_string(*mRenderRateOpt).c_str() : "NA",
float(lastVsync.ns() - TimePoint::now().ns()) / 1e6f);
mValidUntil = lastVsync;
}
std::optional<TimePoint> VSyncPredictor::VsyncTimeline::nextAnticipatedVSyncTimeFrom(
Model model, Period minFramePeriod, nsecs_t vsync, MissedVsync missedVsync,
std::optional<nsecs_t> lastVsyncOpt) {
ATRACE_FORMAT("renderRate %s", mRenderRateOpt ? to_string(*mRenderRateOpt).c_str() : "NA");
const auto threshold = model.slope / 2;
const auto lastFrameMissed =
lastVsyncOpt && std::abs(*lastVsyncOpt - missedVsync.vsync.ns()) < threshold;
nsecs_t vsyncTime = snapToVsyncAlignedWithRenderRate(model, vsync);
nsecs_t vsyncFixupTime = 0;
if (FlagManager::getInstance().vrr_config() && lastFrameMissed) {
vsyncTime += missedVsync.fixup.ns();
ATRACE_FORMAT_INSTANT("lastFrameMissed");
} else {
vsyncFixupTime = getVsyncFixup(model, minFramePeriod, vsyncTime, lastVsyncOpt);
vsyncTime += vsyncFixupTime;
}
ATRACE_FORMAT_INSTANT("vsync in %.2fms", float(vsyncTime - TimePoint::now().ns()) / 1e6f);
if (mValidUntil && vsyncTime > mValidUntil->ns()) {
ATRACE_FORMAT_INSTANT("no longer valid for vsync in %.2f",
static_cast<float>(vsyncTime - TimePoint::now().ns()) / 1e6f);
return std::nullopt;
}
if (vsyncFixupTime > 0) {
shiftVsyncSequence(Duration::fromNs(vsyncFixupTime));
}
return TimePoint::fromNs(vsyncTime);
}
auto VSyncPredictor::VsyncTimeline::getVsyncSequenceLocked(Model model, nsecs_t vsync)
-> VsyncSequence {
if (!mLastVsyncSequence) return {vsync, 0};
const auto [lastVsyncTime, lastVsyncSequence] = *mLastVsyncSequence;
const auto vsyncSequence = lastVsyncSequence +
static_cast<int64_t>(std::round((vsync - lastVsyncTime) /
static_cast<float>(model.slope)));
return {vsync, vsyncSequence};
}
nsecs_t VSyncPredictor::VsyncTimeline::snapToVsyncAlignedWithRenderRate(Model model,
nsecs_t vsync) {
// update the mLastVsyncSequence for reference point
mLastVsyncSequence = getVsyncSequenceLocked(model, vsync);
const auto renderRatePhase = [&]() -> int {
if (!mRenderRateOpt) return 0;
const auto divisor =
RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod.ns()),
*mRenderRateOpt);
if (divisor <= 1) return 0;
int mod = mLastVsyncSequence->seq % divisor;
if (mod == 0) return 0;
// This is actually a bug fix, but guarded with vrr_config since we found it with this
// config
if (FlagManager::getInstance().vrr_config()) {
if (mod < 0) mod += divisor;
}
return divisor - mod;
}();
if (renderRatePhase == 0) {
return mLastVsyncSequence->vsyncTime;
}
return mLastVsyncSequence->vsyncTime + model.slope * renderRatePhase;
}
bool VSyncPredictor::VsyncTimeline::isVSyncInPhase(Model model, nsecs_t vsync, Fps frameRate) {
const auto getVsyncIn = [](TimePoint now, nsecs_t timePoint) -> float {
return ticks<std::milli, float>(TimePoint::fromNs(timePoint) - now);
};
Fps displayFps = mRenderRateOpt ? *mRenderRateOpt : Fps::fromPeriodNsecs(mIdealPeriod.ns());
const auto divisor = RefreshRateSelector::getFrameRateDivisor(displayFps, frameRate);
const auto now = TimePoint::now();
if (divisor <= 1) {
return true;
}
const auto vsyncSequence = getVsyncSequenceLocked(model, vsync);
ATRACE_FORMAT_INSTANT("vsync in: %.2f sequence: %" PRId64 " divisor: %zu",
getVsyncIn(now, vsyncSequence.vsyncTime), vsyncSequence.seq, divisor);
return vsyncSequence.seq % divisor == 0;
}
void VSyncPredictor::VsyncTimeline::shiftVsyncSequence(Duration phase) {
if (mLastVsyncSequence) {
ATRACE_FORMAT_INSTANT("adjusting vsync by %.2f", static_cast<float>(phase.ns()) / 1e6f);
mLastVsyncSequence->vsyncTime += phase.ns();
}
}
} // namespace android::scheduler
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wextra"