| /* |
| * Copyright 2022 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "FakeEventHub.h" |
| |
| #include <android-base/thread_annotations.h> |
| #include <gtest/gtest.h> |
| #include <linux/input-event-codes.h> |
| |
| #include "TestConstants.h" |
| |
| namespace android { |
| |
| const std::string FakeEventHub::BATTERY_DEVPATH = "/sys/devices/mydevice/power_supply/mybattery"; |
| |
| FakeEventHub::~FakeEventHub() { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| delete mDevices.valueAt(i); |
| } |
| } |
| |
| void FakeEventHub::addDevice(int32_t deviceId, const std::string& name, |
| ftl::Flags<InputDeviceClass> classes, int bus) { |
| Device* device = new Device(classes); |
| device->identifier.name = name; |
| device->identifier.bus = bus; |
| mDevices.add(deviceId, device); |
| |
| enqueueEvent(ARBITRARY_TIME, READ_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0); |
| } |
| |
| void FakeEventHub::removeDevice(int32_t deviceId) { |
| delete mDevices.valueFor(deviceId); |
| mDevices.removeItem(deviceId); |
| |
| enqueueEvent(ARBITRARY_TIME, READ_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0); |
| } |
| |
| bool FakeEventHub::isDeviceEnabled(int32_t deviceId) const { |
| Device* device = getDevice(deviceId); |
| if (device == nullptr) { |
| ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__); |
| return false; |
| } |
| return device->enabled; |
| } |
| |
| status_t FakeEventHub::enableDevice(int32_t deviceId) { |
| status_t result; |
| Device* device = getDevice(deviceId); |
| if (device == nullptr) { |
| ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__); |
| return BAD_VALUE; |
| } |
| if (device->enabled) { |
| ALOGW("Duplicate call to %s, device %" PRId32 " already enabled", __func__, deviceId); |
| return OK; |
| } |
| result = device->enable(); |
| return result; |
| } |
| |
| status_t FakeEventHub::disableDevice(int32_t deviceId) { |
| Device* device = getDevice(deviceId); |
| if (device == nullptr) { |
| ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__); |
| return BAD_VALUE; |
| } |
| if (!device->enabled) { |
| ALOGW("Duplicate call to %s, device %" PRId32 " already disabled", __func__, deviceId); |
| return OK; |
| } |
| return device->disable(); |
| } |
| |
| void FakeEventHub::finishDeviceScan() { |
| enqueueEvent(ARBITRARY_TIME, READ_TIME, 0, EventHubInterface::FINISHED_DEVICE_SCAN, 0, 0); |
| } |
| |
| void FakeEventHub::addConfigurationProperty(int32_t deviceId, const char* key, const char* value) { |
| getDevice(deviceId)->configuration.addProperty(key, value); |
| } |
| |
| void FakeEventHub::addConfigurationMap(int32_t deviceId, const PropertyMap* configuration) { |
| getDevice(deviceId)->configuration.addAll(configuration); |
| } |
| |
| void FakeEventHub::addAbsoluteAxis(int32_t deviceId, int axis, int32_t minValue, int32_t maxValue, |
| int flat, int fuzz, int resolution) { |
| Device* device = getDevice(deviceId); |
| |
| RawAbsoluteAxisInfo info; |
| info.valid = true; |
| info.minValue = minValue; |
| info.maxValue = maxValue; |
| info.flat = flat; |
| info.fuzz = fuzz; |
| info.resolution = resolution; |
| device->absoluteAxes.add(axis, info); |
| } |
| |
| void FakeEventHub::addRelativeAxis(int32_t deviceId, int32_t axis) { |
| getDevice(deviceId)->relativeAxes.add(axis, true); |
| } |
| |
| void FakeEventHub::setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) { |
| getDevice(deviceId)->keyCodeStates.replaceValueFor(keyCode, state); |
| } |
| |
| void FakeEventHub::setRawLayoutInfo(int32_t deviceId, RawLayoutInfo info) { |
| getDevice(deviceId)->layoutInfo = info; |
| } |
| |
| void FakeEventHub::setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) { |
| getDevice(deviceId)->scanCodeStates.replaceValueFor(scanCode, state); |
| } |
| |
| void FakeEventHub::setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) { |
| getDevice(deviceId)->switchStates.replaceValueFor(switchCode, state); |
| } |
| |
| void FakeEventHub::setAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t value) { |
| getDevice(deviceId)->absoluteAxisValue.replaceValueFor(axis, value); |
| } |
| |
| void FakeEventHub::addKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t keyCode, |
| uint32_t flags) { |
| Device* device = getDevice(deviceId); |
| KeyInfo info; |
| info.keyCode = keyCode; |
| info.flags = flags; |
| if (scanCode) { |
| device->keysByScanCode.add(scanCode, info); |
| } |
| if (usageCode) { |
| device->keysByUsageCode.add(usageCode, info); |
| } |
| } |
| |
| void FakeEventHub::addKeyCodeMapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) { |
| getDevice(deviceId)->keyCodeMapping.insert_or_assign(fromKeyCode, toKeyCode); |
| } |
| |
| void FakeEventHub::addKeyRemapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) const { |
| Device* device = getDevice(deviceId); |
| device->keyRemapping.insert_or_assign(fromKeyCode, toKeyCode); |
| } |
| |
| void FakeEventHub::addLed(int32_t deviceId, int32_t led, bool initialState) { |
| getDevice(deviceId)->leds.add(led, initialState); |
| } |
| |
| void FakeEventHub::addSensorAxis(int32_t deviceId, int32_t absCode, |
| InputDeviceSensorType sensorType, int32_t sensorDataIndex) { |
| SensorInfo info; |
| info.sensorType = sensorType; |
| info.sensorDataIndex = sensorDataIndex; |
| getDevice(deviceId)->sensorsByAbsCode.emplace(absCode, info); |
| } |
| |
| void FakeEventHub::setMscEvent(int32_t deviceId, int32_t mscEvent) { |
| typename BitArray<MSC_MAX>::Buffer buffer; |
| buffer[mscEvent / 32] = 1 << mscEvent % 32; |
| getDevice(deviceId)->mscBitmask.loadFromBuffer(buffer); |
| } |
| |
| void FakeEventHub::addRawLightInfo(int32_t rawId, RawLightInfo&& info) { |
| mRawLightInfos.emplace(rawId, std::move(info)); |
| } |
| |
| void FakeEventHub::fakeLightBrightness(int32_t rawId, int32_t brightness) { |
| mLightBrightness.emplace(rawId, brightness); |
| } |
| |
| void FakeEventHub::fakeLightIntensities(int32_t rawId, |
| const std::unordered_map<LightColor, int32_t> intensities) { |
| mLightIntensities.emplace(rawId, std::move(intensities)); |
| } |
| |
| bool FakeEventHub::getLedState(int32_t deviceId, int32_t led) { |
| return getDevice(deviceId)->leds.valueFor(led); |
| } |
| |
| std::vector<std::string>& FakeEventHub::getExcludedDevices() { |
| return mExcludedDevices; |
| } |
| |
| void FakeEventHub::addVirtualKeyDefinition(int32_t deviceId, |
| const VirtualKeyDefinition& definition) { |
| getDevice(deviceId)->virtualKeys.push_back(definition); |
| } |
| |
| void FakeEventHub::enqueueEvent(nsecs_t when, nsecs_t readTime, int32_t deviceId, int32_t type, |
| int32_t code, int32_t value) { |
| std::scoped_lock<std::mutex> lock(mLock); |
| RawEvent event; |
| event.when = when; |
| event.readTime = readTime; |
| event.deviceId = deviceId; |
| event.type = type; |
| event.code = code; |
| event.value = value; |
| mEvents.push_back(event); |
| |
| if (type == EV_ABS) { |
| setAbsoluteAxisValue(deviceId, code, value); |
| } |
| } |
| |
| void FakeEventHub::setVideoFrames( |
| std::unordered_map<int32_t /*deviceId*/, std::vector<TouchVideoFrame>> videoFrames) { |
| mVideoFrames = std::move(videoFrames); |
| } |
| |
| void FakeEventHub::assertQueueIsEmpty() { |
| std::unique_lock<std::mutex> lock(mLock); |
| base::ScopedLockAssertion assumeLocked(mLock); |
| const bool queueIsEmpty = |
| mEventsCondition.wait_for(lock, WAIT_TIMEOUT, |
| [this]() REQUIRES(mLock) { return mEvents.size() == 0; }); |
| if (!queueIsEmpty) { |
| FAIL() << "Timed out waiting for EventHub queue to be emptied."; |
| } |
| } |
| |
| FakeEventHub::Device* FakeEventHub::getDevice(int32_t deviceId) const { |
| ssize_t index = mDevices.indexOfKey(deviceId); |
| return index >= 0 ? mDevices.valueAt(index) : nullptr; |
| } |
| |
| ftl::Flags<InputDeviceClass> FakeEventHub::getDeviceClasses(int32_t deviceId) const { |
| Device* device = getDevice(deviceId); |
| return device ? device->classes : ftl::Flags<InputDeviceClass>(0); |
| } |
| |
| InputDeviceIdentifier FakeEventHub::getDeviceIdentifier(int32_t deviceId) const { |
| Device* device = getDevice(deviceId); |
| return device ? device->identifier : InputDeviceIdentifier(); |
| } |
| |
| int32_t FakeEventHub::getDeviceControllerNumber(int32_t) const { |
| return 0; |
| } |
| |
| std::optional<PropertyMap> FakeEventHub::getConfiguration(int32_t deviceId) const { |
| Device* device = getDevice(deviceId); |
| if (device == nullptr) { |
| return {}; |
| } |
| return device->configuration; |
| } |
| |
| status_t FakeEventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, |
| RawAbsoluteAxisInfo* outAxisInfo) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| ssize_t index = device->absoluteAxes.indexOfKey(axis); |
| if (index >= 0) { |
| *outAxisInfo = device->absoluteAxes.valueAt(index); |
| return OK; |
| } |
| } |
| outAxisInfo->clear(); |
| return -1; |
| } |
| |
| bool FakeEventHub::hasRelativeAxis(int32_t deviceId, int axis) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| return device->relativeAxes.indexOfKey(axis) >= 0; |
| } |
| return false; |
| } |
| |
| bool FakeEventHub::hasInputProperty(int32_t, int) const { |
| return false; |
| } |
| |
| bool FakeEventHub::hasMscEvent(int32_t deviceId, int mscEvent) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| return mscEvent >= 0 && mscEvent <= MSC_MAX ? device->mscBitmask.test(mscEvent) : false; |
| } |
| return false; |
| } |
| |
| status_t FakeEventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, |
| int32_t metaState, int32_t* outKeycode, int32_t* outMetaState, |
| uint32_t* outFlags) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| const KeyInfo* key = getKey(device, scanCode, usageCode); |
| if (key) { |
| if (outKeycode) { |
| auto it = device->keyRemapping.find(key->keyCode); |
| *outKeycode = it != device->keyRemapping.end() ? it->second : key->keyCode; |
| } |
| if (outFlags) { |
| *outFlags = key->flags; |
| } |
| if (outMetaState) { |
| *outMetaState = metaState; |
| } |
| return OK; |
| } |
| } |
| return NAME_NOT_FOUND; |
| } |
| |
| const FakeEventHub::KeyInfo* FakeEventHub::getKey(Device* device, int32_t scanCode, |
| int32_t usageCode) const { |
| if (usageCode) { |
| ssize_t index = device->keysByUsageCode.indexOfKey(usageCode); |
| if (index >= 0) { |
| return &device->keysByUsageCode.valueAt(index); |
| } |
| } |
| if (scanCode) { |
| ssize_t index = device->keysByScanCode.indexOfKey(scanCode); |
| if (index >= 0) { |
| return &device->keysByScanCode.valueAt(index); |
| } |
| } |
| return nullptr; |
| } |
| |
| status_t FakeEventHub::mapAxis(int32_t, int32_t, AxisInfo*) const { |
| return NAME_NOT_FOUND; |
| } |
| |
| base::Result<std::pair<InputDeviceSensorType, int32_t>> FakeEventHub::mapSensor( |
| int32_t deviceId, int32_t absCode) const { |
| Device* device = getDevice(deviceId); |
| if (!device) { |
| return Errorf("Sensor device not found."); |
| } |
| auto it = device->sensorsByAbsCode.find(absCode); |
| if (it == device->sensorsByAbsCode.end()) { |
| return Errorf("Sensor map not found."); |
| } |
| const SensorInfo& info = it->second; |
| return std::make_pair(info.sensorType, info.sensorDataIndex); |
| } |
| |
| void FakeEventHub::setExcludedDevices(const std::vector<std::string>& devices) { |
| mExcludedDevices = devices; |
| } |
| |
| std::vector<RawEvent> FakeEventHub::getEvents(int) { |
| std::scoped_lock lock(mLock); |
| |
| std::vector<RawEvent> buffer; |
| std::swap(buffer, mEvents); |
| |
| mEventsCondition.notify_all(); |
| return buffer; |
| } |
| |
| std::vector<TouchVideoFrame> FakeEventHub::getVideoFrames(int32_t deviceId) { |
| auto it = mVideoFrames.find(deviceId); |
| if (it != mVideoFrames.end()) { |
| std::vector<TouchVideoFrame> frames = std::move(it->second); |
| mVideoFrames.erase(deviceId); |
| return frames; |
| } |
| return {}; |
| } |
| |
| int32_t FakeEventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| ssize_t index = device->scanCodeStates.indexOfKey(scanCode); |
| if (index >= 0) { |
| return device->scanCodeStates.valueAt(index); |
| } |
| } |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| std::optional<RawLayoutInfo> FakeEventHub::getRawLayoutInfo(int32_t deviceId) const { |
| Device* device = getDevice(deviceId); |
| return device ? device->layoutInfo : std::nullopt; |
| } |
| |
| int32_t FakeEventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| ssize_t index = device->keyCodeStates.indexOfKey(keyCode); |
| if (index >= 0) { |
| return device->keyCodeStates.valueAt(index); |
| } |
| } |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t FakeEventHub::getSwitchState(int32_t deviceId, int32_t sw) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| ssize_t index = device->switchStates.indexOfKey(sw); |
| if (index >= 0) { |
| return device->switchStates.valueAt(index); |
| } |
| } |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| status_t FakeEventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, |
| int32_t* outValue) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| ssize_t index = device->absoluteAxisValue.indexOfKey(axis); |
| if (index >= 0) { |
| *outValue = device->absoluteAxisValue.valueAt(index); |
| return OK; |
| } |
| } |
| *outValue = 0; |
| return -1; |
| } |
| |
| int32_t FakeEventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const { |
| Device* device = getDevice(deviceId); |
| if (!device) { |
| return AKEYCODE_UNKNOWN; |
| } |
| auto it = device->keyCodeMapping.find(locationKeyCode); |
| return it != device->keyCodeMapping.end() ? it->second : locationKeyCode; |
| } |
| |
| // Return true if the device has non-empty key layout. |
| bool FakeEventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes, |
| uint8_t* outFlags) const { |
| Device* device = getDevice(deviceId); |
| if (!device) return false; |
| |
| bool result = device->keysByScanCode.size() > 0 || device->keysByUsageCode.size() > 0; |
| for (size_t i = 0; i < keyCodes.size(); i++) { |
| for (size_t j = 0; j < device->keysByScanCode.size(); j++) { |
| if (keyCodes[i] == device->keysByScanCode.valueAt(j).keyCode) { |
| outFlags[i] = 1; |
| } |
| } |
| for (size_t j = 0; j < device->keysByUsageCode.size(); j++) { |
| if (keyCodes[i] == device->keysByUsageCode.valueAt(j).keyCode) { |
| outFlags[i] = 1; |
| } |
| } |
| } |
| return result; |
| } |
| |
| bool FakeEventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| ssize_t index = device->keysByScanCode.indexOfKey(scanCode); |
| return index >= 0; |
| } |
| return false; |
| } |
| |
| bool FakeEventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const { |
| Device* device = getDevice(deviceId); |
| if (!device) { |
| return false; |
| } |
| for (size_t i = 0; i < device->keysByScanCode.size(); i++) { |
| if (keyCode == device->keysByScanCode.valueAt(i).keyCode) { |
| return true; |
| } |
| } |
| for (size_t j = 0; j < device->keysByUsageCode.size(); j++) { |
| if (keyCode == device->keysByUsageCode.valueAt(j).keyCode) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool FakeEventHub::hasLed(int32_t deviceId, int32_t led) const { |
| Device* device = getDevice(deviceId); |
| return device && device->leds.indexOfKey(led) >= 0; |
| } |
| |
| void FakeEventHub::setLedState(int32_t deviceId, int32_t led, bool on) { |
| Device* device = getDevice(deviceId); |
| if (device) { |
| ssize_t index = device->leds.indexOfKey(led); |
| if (index >= 0) { |
| device->leds.replaceValueAt(led, on); |
| } else { |
| ADD_FAILURE() << "Attempted to set the state of an LED that the EventHub declared " |
| "was not present. led=" |
| << led; |
| } |
| } |
| } |
| |
| void FakeEventHub::getVirtualKeyDefinitions( |
| int32_t deviceId, std::vector<VirtualKeyDefinition>& outVirtualKeys) const { |
| outVirtualKeys.clear(); |
| |
| Device* device = getDevice(deviceId); |
| if (device) { |
| outVirtualKeys = device->virtualKeys; |
| } |
| } |
| |
| const std::shared_ptr<KeyCharacterMap> FakeEventHub::getKeyCharacterMap(int32_t) const { |
| return nullptr; |
| } |
| |
| bool FakeEventHub::setKeyboardLayoutOverlay(int32_t, std::shared_ptr<KeyCharacterMap>) { |
| return false; |
| } |
| |
| std::vector<int32_t> FakeEventHub::getVibratorIds(int32_t deviceId) const { |
| return mVibrators; |
| } |
| |
| std::optional<int32_t> FakeEventHub::getBatteryCapacity(int32_t, int32_t) const { |
| return BATTERY_CAPACITY; |
| } |
| |
| std::optional<int32_t> FakeEventHub::getBatteryStatus(int32_t, int32_t) const { |
| return BATTERY_STATUS; |
| } |
| |
| std::vector<int32_t> FakeEventHub::getRawBatteryIds(int32_t deviceId) const { |
| return {DEFAULT_BATTERY}; |
| } |
| |
| std::optional<RawBatteryInfo> FakeEventHub::getRawBatteryInfo(int32_t deviceId, |
| int32_t batteryId) const { |
| if (batteryId != DEFAULT_BATTERY) return {}; |
| static const auto BATTERY_INFO = RawBatteryInfo{.id = DEFAULT_BATTERY, |
| .name = "default battery", |
| .flags = InputBatteryClass::CAPACITY, |
| .path = BATTERY_DEVPATH}; |
| return BATTERY_INFO; |
| } |
| |
| std::vector<int32_t> FakeEventHub::getRawLightIds(int32_t deviceId) const { |
| std::vector<int32_t> ids; |
| for (const auto& [rawId, info] : mRawLightInfos) { |
| ids.push_back(rawId); |
| } |
| return ids; |
| } |
| |
| std::optional<RawLightInfo> FakeEventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const { |
| auto it = mRawLightInfos.find(lightId); |
| if (it == mRawLightInfos.end()) { |
| return std::nullopt; |
| } |
| return it->second; |
| } |
| |
| void FakeEventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) { |
| mLightBrightness.emplace(lightId, brightness); |
| } |
| |
| void FakeEventHub::setLightIntensities(int32_t deviceId, int32_t lightId, |
| std::unordered_map<LightColor, int32_t> intensities) { |
| mLightIntensities.emplace(lightId, intensities); |
| }; |
| |
| std::optional<int32_t> FakeEventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const { |
| auto lightIt = mLightBrightness.find(lightId); |
| if (lightIt == mLightBrightness.end()) { |
| return std::nullopt; |
| } |
| return lightIt->second; |
| } |
| |
| std::optional<std::unordered_map<LightColor, int32_t>> FakeEventHub::getLightIntensities( |
| int32_t deviceId, int32_t lightId) const { |
| auto lightIt = mLightIntensities.find(lightId); |
| if (lightIt == mLightIntensities.end()) { |
| return std::nullopt; |
| } |
| return lightIt->second; |
| }; |
| |
| void FakeEventHub::setSysfsRootPath(int32_t deviceId, std::string sysfsRootPath) const { |
| Device* device = getDevice(deviceId); |
| if (device == nullptr) { |
| return; |
| } |
| device->sysfsRootPath = sysfsRootPath; |
| } |
| |
| void FakeEventHub::sysfsNodeChanged(const std::string& sysfsNodePath) { |
| int32_t foundDeviceId = -1; |
| Device* foundDevice = nullptr; |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| Device* d = mDevices.valueAt(i); |
| if (sysfsNodePath.find(d->sysfsRootPath) != std::string::npos) { |
| foundDeviceId = mDevices.keyAt(i); |
| foundDevice = d; |
| } |
| } |
| if (foundDevice == nullptr) { |
| return; |
| } |
| // If device sysfs changed -> reopen the device |
| if (!mRawLightInfos.empty() && !foundDevice->classes.test(InputDeviceClass::LIGHT)) { |
| InputDeviceIdentifier identifier = foundDevice->identifier; |
| ftl::Flags<InputDeviceClass> classes = foundDevice->classes; |
| removeDevice(foundDeviceId); |
| addDevice(foundDeviceId, identifier.name, classes | InputDeviceClass::LIGHT, |
| identifier.bus); |
| } |
| } |
| |
| } // namespace android |