blob: dd83fdefc3d9366da8abf6c2d1931d4bc7ac9a1f [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorDevice.h"
#include "android/hardware/sensors/2.0/types.h"
#include "android/hardware/sensors/2.1/types.h"
#include "convertV2_1.h"
#include "AidlSensorHalWrapper.h"
#include "HidlSensorHalWrapper.h"
#include <android-base/logging.h>
#include <android/util/ProtoOutputStream.h>
#include <cutils/atomic.h>
#include <frameworks/base/core/proto/android/service/sensor_service.proto.h>
#include <hardware/sensors-base.h>
#include <hardware/sensors.h>
#include <sensors/convert.h>
#include <utils/Errors.h>
#include <utils/Singleton.h>
#include <chrono>
#include <cinttypes>
#include <cstddef>
#include <thread>
#include <mutex>
#include <condition_variable>
using namespace android::hardware::sensors;
using android::util::ProtoOutputStream;
namespace android {
// ---------------------------------------------------------------------------
ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice)
namespace {
template <typename EnumType>
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
return static_cast<typename std::underlying_type<EnumType>::type>(value);
}
// Used internally by the framework to wake the Event FMQ. These values must start after
// the last value of EventQueueFlagBits
enum EventQueueFlagBitsInternal : uint32_t {
INTERNAL_WAKE = 1 << 16,
};
enum DevicePrivateBase : int32_t {
DEVICE_PRIVATE_BASE = 65536,
};
} // anonymous namespace
SensorDevice::SensorDevice() : mInHalBypassMode(false) {
if (!connectHalService()) {
return;
}
initializeSensorList();
mIsDirectReportSupported = (mHalWrapper->unregisterDirectChannel(-1) != INVALID_OPERATION);
}
void SensorDevice::initializeSensorList() {
if (mHalWrapper == nullptr) {
return;
}
auto list = mHalWrapper->getSensorsList();
const size_t count = list.size();
mActivationCount.setCapacity(count);
Info model;
for (size_t i = 0; i < count; i++) {
sensor_t sensor = list[i];
if (sensor.type < DEVICE_PRIVATE_BASE) {
sensor.resolution = SensorDeviceUtils::resolutionForSensor(sensor);
// Some sensors don't have a default resolution and will be left at 0.
// Don't crash in this case since CTS will verify that devices don't go to
// production with a resolution of 0.
if (sensor.resolution != 0) {
float quantizedRange = sensor.maxRange;
SensorDeviceUtils::quantizeValue(&quantizedRange, sensor.resolution,
/*factor=*/1);
// Only rewrite maxRange if the requantization produced a "significant"
// change, which is fairly arbitrarily defined as resolution / 8.
// Smaller deltas are permitted, as they may simply be due to floating
// point representation error, etc.
if (fabsf(sensor.maxRange - quantizedRange) > sensor.resolution / 8) {
ALOGW("%s's max range %.12f is not a multiple of the resolution "
"%.12f - updated to %.12f",
sensor.name, sensor.maxRange, sensor.resolution, quantizedRange);
sensor.maxRange = quantizedRange;
}
} else {
// Don't crash here or the device will go into a crashloop.
ALOGW("%s should have a non-zero resolution", sensor.name);
}
}
// Check and clamp power if it is 0 (or close)
constexpr float MIN_POWER_MA = 0.001; // 1 microAmp
if (sensor.power < MIN_POWER_MA) {
ALOGI("%s's reported power %f invalid, clamped to %f", sensor.name, sensor.power,
MIN_POWER_MA);
sensor.power = MIN_POWER_MA;
}
mSensorList.push_back(sensor);
mActivationCount.add(list[i].handle, model);
// Only disable all sensors on HAL 1.0 since HAL 2.0
// handles this in its initialize method
if (!mHalWrapper->supportsMessageQueues()) {
mHalWrapper->activate(list[i].handle, 0 /* enabled */);
}
}
}
SensorDevice::~SensorDevice() {}
bool SensorDevice::connectHalService() {
std::unique_ptr<ISensorHalWrapper> aidl_wrapper = std::make_unique<AidlSensorHalWrapper>();
if (aidl_wrapper->connect(this)) {
mHalWrapper = std::move(aidl_wrapper);
return true;
}
std::unique_ptr<ISensorHalWrapper> hidl_wrapper = std::make_unique<HidlSensorHalWrapper>();
if (hidl_wrapper->connect(this)) {
mHalWrapper = std::move(hidl_wrapper);
return true;
}
// TODO: check aidl connection;
return false;
}
void SensorDevice::prepareForReconnect() {
mHalWrapper->prepareForReconnect();
}
void SensorDevice::reconnect() {
Mutex::Autolock _l(mLock);
auto previousActivations = mActivationCount;
auto previousSensorList = mSensorList;
mActivationCount.clear();
mSensorList.clear();
if (mHalWrapper->connect(this)) {
initializeSensorList();
if (sensorHandlesChanged(previousSensorList, mSensorList)) {
LOG_ALWAYS_FATAL("Sensor handles changed, cannot re-enable sensors.");
} else {
reactivateSensors(previousActivations);
}
}
mHalWrapper->mReconnecting = false;
}
bool SensorDevice::sensorHandlesChanged(const std::vector<sensor_t>& oldSensorList,
const std::vector<sensor_t>& newSensorList) {
bool didChange = false;
if (oldSensorList.size() != newSensorList.size()) {
ALOGI("Sensor list size changed from %zu to %zu", oldSensorList.size(),
newSensorList.size());
didChange = true;
}
for (size_t i = 0; i < newSensorList.size() && !didChange; i++) {
bool found = false;
const sensor_t& newSensor = newSensorList[i];
for (size_t j = 0; j < oldSensorList.size() && !found; j++) {
const sensor_t& prevSensor = oldSensorList[j];
if (prevSensor.handle == newSensor.handle) {
found = true;
if (!sensorIsEquivalent(prevSensor, newSensor)) {
ALOGI("Sensor %s not equivalent to previous version", newSensor.name);
didChange = true;
}
}
}
if (!found) {
// Could not find the new sensor in the old list of sensors, the lists must
// have changed.
ALOGI("Sensor %s (handle %d) did not exist before", newSensor.name, newSensor.handle);
didChange = true;
}
}
return didChange;
}
bool SensorDevice::sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor) {
bool equivalent = true;
if (prevSensor.handle != newSensor.handle ||
(strcmp(prevSensor.vendor, newSensor.vendor) != 0) ||
(strcmp(prevSensor.stringType, newSensor.stringType) != 0) ||
(strcmp(prevSensor.requiredPermission, newSensor.requiredPermission) != 0) ||
(prevSensor.version != newSensor.version) || (prevSensor.type != newSensor.type) ||
(std::abs(prevSensor.maxRange - newSensor.maxRange) > 0.001f) ||
(std::abs(prevSensor.resolution - newSensor.resolution) > 0.001f) ||
(std::abs(prevSensor.power - newSensor.power) > 0.001f) ||
(prevSensor.minDelay != newSensor.minDelay) ||
(prevSensor.fifoReservedEventCount != newSensor.fifoReservedEventCount) ||
(prevSensor.fifoMaxEventCount != newSensor.fifoMaxEventCount) ||
(prevSensor.maxDelay != newSensor.maxDelay) || (prevSensor.flags != newSensor.flags)) {
equivalent = false;
}
return equivalent;
}
void SensorDevice::reactivateSensors(const DefaultKeyedVector<int, Info>& previousActivations) {
for (size_t i = 0; i < mSensorList.size(); i++) {
int handle = mSensorList[i].handle;
ssize_t activationIndex = previousActivations.indexOfKey(handle);
if (activationIndex < 0 || previousActivations[activationIndex].numActiveClients() <= 0) {
continue;
}
const Info& info = previousActivations[activationIndex];
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& batchParams = info.batchParams[j];
status_t res = batchLocked(info.batchParams.keyAt(j), handle, 0 /* flags */,
batchParams.mTSample, batchParams.mTBatch);
if (res == NO_ERROR) {
activateLocked(info.batchParams.keyAt(j), handle, true /* enabled */);
}
}
}
}
void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) {
// not need to check mSensors because this is is only called after successful poll()
if (connected) {
Info model;
mActivationCount.add(handle, model);
mHalWrapper->activate(handle, 0 /* enabled */);
} else {
mActivationCount.removeItem(handle);
}
}
std::string SensorDevice::dump() const {
if (mHalWrapper == nullptr) return "HAL not initialized\n";
String8 result;
result.appendFormat("Total %zu h/w sensors, %zu running %zu disabled clients:\n",
mSensorList.size(), mActivationCount.size(), mDisabledClients.size());
Mutex::Autolock _l(mLock);
for (const auto& s : mSensorList) {
int32_t handle = s.handle;
const Info& info = mActivationCount.valueFor(handle);
if (info.numActiveClients() == 0) continue;
result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size());
result.append("sampling_period(ms) = {");
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
result.appendFormat("%.1f%s%s", params.mTSample / 1e6f,
isClientDisabledLocked(info.batchParams.keyAt(j)) ? "(disabled)"
: "",
(j < info.batchParams.size() - 1) ? ", " : "");
}
result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f);
result.append("batching_period(ms) = {");
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
result.appendFormat("%.1f%s%s", params.mTBatch / 1e6f,
isClientDisabledLocked(info.batchParams.keyAt(j)) ? "(disabled)"
: "",
(j < info.batchParams.size() - 1) ? ", " : "");
}
result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f);
}
return result.c_str();
}
/**
* Dump debugging information as android.service.SensorDeviceProto protobuf message using
* ProtoOutputStream.
*
* See proto definition and some notes about ProtoOutputStream in
* frameworks/base/core/proto/android/service/sensor_service.proto
*/
void SensorDevice::dump(ProtoOutputStream* proto) const {
using namespace service::SensorDeviceProto;
if (mHalWrapper == nullptr) {
proto->write(INITIALIZED, false);
return;
}
proto->write(INITIALIZED, true);
proto->write(TOTAL_SENSORS, int(mSensorList.size()));
proto->write(ACTIVE_SENSORS, int(mActivationCount.size()));
Mutex::Autolock _l(mLock);
for (const auto& s : mSensorList) {
int32_t handle = s.handle;
const Info& info = mActivationCount.valueFor(handle);
if (info.numActiveClients() == 0) continue;
uint64_t token = proto->start(SENSORS);
proto->write(SensorProto::HANDLE, handle);
proto->write(SensorProto::ACTIVE_COUNT, int(info.batchParams.size()));
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
proto->write(SensorProto::SAMPLING_PERIOD_MS, params.mTSample / 1e6f);
proto->write(SensorProto::BATCHING_PERIOD_MS, params.mTBatch / 1e6f);
}
proto->write(SensorProto::SAMPLING_PERIOD_SELECTED, info.bestBatchParams.mTSample / 1e6f);
proto->write(SensorProto::BATCHING_PERIOD_SELECTED, info.bestBatchParams.mTBatch / 1e6f);
proto->end(token);
}
}
ssize_t SensorDevice::getSensorList(sensor_t const** list) {
*list = &mSensorList[0];
return mSensorList.size();
}
status_t SensorDevice::initCheck() const {
return mHalWrapper != nullptr ? NO_ERROR : NO_INIT;
}
ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) {
if (mHalWrapper == nullptr) return NO_INIT;
ssize_t eventsRead = 0;
if (mInHalBypassMode) [[unlikely]] {
eventsRead = getHalBypassInjectedEvents(buffer, count);
} else {
if (mHalWrapper->supportsMessageQueues()) {
eventsRead = mHalWrapper->pollFmq(buffer, count);
} else if (mHalWrapper->supportsPolling()) {
eventsRead = mHalWrapper->poll(buffer, count);
} else {
ALOGE("Must support polling or FMQ");
eventsRead = -1;
}
}
if (eventsRead > 0) {
for (ssize_t i = 0; i < eventsRead; i++) {
float resolution = getResolutionForSensor(buffer[i].sensor);
android::SensorDeviceUtils::quantizeSensorEventValues(&buffer[i], resolution);
if (buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
struct dynamic_sensor_meta_event& dyn = buffer[i].dynamic_sensor_meta;
if (dyn.connected) {
std::unique_lock<std::mutex> lock(mDynamicSensorsMutex);
// Give MAX_DYN_SENSOR_WAIT_SEC for onDynamicSensorsConnected to be invoked
// since it can be received out of order from this event due to a bug in the
// HIDL spec that marks it as oneway.
auto it = mConnectedDynamicSensors.find(dyn.handle);
if (it == mConnectedDynamicSensors.end()) {
mDynamicSensorsCv.wait_for(lock, MAX_DYN_SENSOR_WAIT, [&, dyn] {
return mConnectedDynamicSensors.find(dyn.handle) !=
mConnectedDynamicSensors.end();
});
it = mConnectedDynamicSensors.find(dyn.handle);
CHECK(it != mConnectedDynamicSensors.end());
}
dyn.sensor = &it->second;
}
}
}
}
return eventsRead;
}
void SensorDevice::onDynamicSensorsConnected(const std::vector<sensor_t>& dynamicSensorsAdded) {
std::unique_lock<std::mutex> lock(mDynamicSensorsMutex);
// Allocate a sensor_t structure for each dynamic sensor added and insert
// it into the dictionary of connected dynamic sensors keyed by handle.
for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) {
const sensor_t& sensor = dynamicSensorsAdded[i];
auto it = mConnectedDynamicSensors.find(sensor.handle);
CHECK(it == mConnectedDynamicSensors.end());
mConnectedDynamicSensors.insert(std::make_pair(sensor.handle, sensor));
}
mDynamicSensorsCv.notify_all();
}
void SensorDevice::onDynamicSensorsDisconnected(
const std::vector<int32_t>& /* dynamicSensorHandlesRemoved */) {
// TODO: Currently dynamic sensors do not seem to be removed
}
void SensorDevice::writeWakeLockHandled(uint32_t count) {
if (mHalWrapper != nullptr && mHalWrapper->supportsMessageQueues()) {
mHalWrapper->writeWakeLockHandled(count);
}
}
void SensorDevice::autoDisable(void* ident, int handle) {
Mutex::Autolock _l(mLock);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return;
}
Info& info(mActivationCount.editValueAt(activationIndex));
info.removeBatchParamsForIdent(ident);
if (info.numActiveClients() == 0) {
info.isActive = false;
}
}
status_t SensorDevice::activate(void* ident, int handle, int enabled) {
if (mHalWrapper == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
return activateLocked(ident, handle, enabled);
}
status_t SensorDevice::activateLocked(void* ident, int handle, int enabled) {
bool activateHardware = false;
status_t err(NO_ERROR);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return BAD_VALUE;
}
Info& info(mActivationCount.editValueAt(activationIndex));
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu", ident,
handle, enabled, info.batchParams.size());
if (enabled) {
ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident));
if (isClientDisabledLocked(ident)) {
ALOGW("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d", ident,
handle);
return NO_ERROR;
}
if (info.batchParams.indexOfKey(ident) >= 0) {
if (info.numActiveClients() > 0 && !info.isActive) {
activateHardware = true;
}
} else {
// Log error. Every activate call should be preceded by a batch() call.
ALOGE("\t >>>ERROR: activate called without batch");
}
} else {
ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident));
// If a connected dynamic sensor is deactivated, remove it from the
// dictionary.
auto it = mConnectedDynamicSensors.find(handle);
if (it != mConnectedDynamicSensors.end()) {
mConnectedDynamicSensors.erase(it);
}
if (info.removeBatchParamsForIdent(ident) >= 0) {
if (info.numActiveClients() == 0) {
// This is the last connection, we need to de-activate the underlying h/w sensor.
activateHardware = true;
} else {
// Call batch for this sensor with the previously calculated best effort
// batch_rate and timeout. One of the apps has unregistered for sensor
// events, and the best effort batch parameters might have changed.
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64,
handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
mHalWrapper->batch(handle, info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch);
}
} else {
// sensor wasn't enabled for this ident
}
if (isClientDisabledLocked(ident)) {
return NO_ERROR;
}
}
if (activateHardware) {
err = doActivateHardwareLocked(handle, enabled);
if (err != NO_ERROR && enabled) {
// Failure when enabling the sensor. Clean up on failure.
info.removeBatchParamsForIdent(ident);
} else {
// Update the isActive flag if there is no error. If there is an error when disabling a
// sensor, still set the flag to false since the batch parameters have already been
// removed. This ensures that everything remains in-sync.
info.isActive = enabled;
}
}
return err;
}
status_t SensorDevice::doActivateHardwareLocked(int handle, bool enabled) {
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle,
enabled);
status_t err = mHalWrapper->activate(handle, enabled);
ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle,
strerror(-err));
return err;
}
status_t SensorDevice::batch(void* ident, int handle, int flags, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
if (mHalWrapper == nullptr) return NO_INIT;
if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) {
samplingPeriodNs = MINIMUM_EVENTS_PERIOD;
}
if (maxBatchReportLatencyNs < 0) {
maxBatchReportLatencyNs = 0;
}
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64
" timeout=%" PRId64,
ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
Mutex::Autolock _l(mLock);
return batchLocked(ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
}
status_t SensorDevice::batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return BAD_VALUE;
}
Info& info(mActivationCount.editValueAt(activationIndex));
if (info.batchParams.indexOfKey(ident) < 0) {
BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs);
info.batchParams.add(ident, params);
} else {
// A batch has already been called with this ident. Update the batch parameters.
info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs);
}
status_t err = updateBatchParamsLocked(handle, info);
if (err != NO_ERROR) {
ALOGE("sensor batch failed 0x%08x %" PRId64 " %" PRId64 " err=%s", handle,
info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch, strerror(-err));
info.removeBatchParamsForIdent(ident);
}
return err;
}
status_t SensorDevice::updateBatchParamsLocked(int handle, Info& info) {
BatchParams prevBestBatchParams = info.bestBatchParams;
// Find the minimum of all timeouts and batch_rates for this sensor.
info.selectBatchParams();
ALOGD_IF(DEBUG_CONNECTIONS,
"\t>>> curr_period=%" PRId64 " min_period=%" PRId64 " curr_timeout=%" PRId64
" min_timeout=%" PRId64,
prevBestBatchParams.mTSample, info.bestBatchParams.mTSample,
prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch);
status_t err(NO_ERROR);
// If the min period or min timeout has changed since the last batch call, call batch.
if (prevBestBatchParams != info.bestBatchParams && info.numActiveClients() > 0) {
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle,
info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
err = mHalWrapper->batch(handle, info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch);
}
return err;
}
status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) {
return batch(ident, handle, 0, samplingPeriodNs, 0);
}
int SensorDevice::getHalDeviceVersion() const {
if (mHalWrapper == nullptr) return -1;
return SENSORS_DEVICE_API_VERSION_1_4;
}
status_t SensorDevice::flush(void* ident, int handle) {
if (mHalWrapper == nullptr) return NO_INIT;
if (isClientDisabled(ident)) return INVALID_OPERATION;
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle);
return mHalWrapper->flush(handle);
}
bool SensorDevice::isClientDisabled(void* ident) const {
Mutex::Autolock _l(mLock);
return isClientDisabledLocked(ident);
}
bool SensorDevice::isClientDisabledLocked(void* ident) const {
return mDisabledClients.count(ident) > 0;
}
std::vector<void*> SensorDevice::getDisabledClientsLocked() const {
std::vector<void*> vec;
for (const auto& it : mDisabledClients) {
vec.push_back(it.first);
}
return vec;
}
void SensorDevice::addDisabledReasonForIdentLocked(void* ident, DisabledReason reason) {
mDisabledClients[ident] |= 1 << reason;
}
void SensorDevice::removeDisabledReasonForIdentLocked(void* ident, DisabledReason reason) {
if (isClientDisabledLocked(ident)) {
mDisabledClients[ident] &= ~(1 << reason);
if (mDisabledClients[ident] == 0) {
mDisabledClients.erase(ident);
}
}
}
void SensorDevice::setUidStateForConnection(void* ident, SensorService::UidState state) {
Mutex::Autolock _l(mLock);
if (state == SensorService::UID_STATE_ACTIVE) {
removeDisabledReasonForIdentLocked(ident, DisabledReason::DISABLED_REASON_UID_IDLE);
} else {
addDisabledReasonForIdentLocked(ident, DisabledReason::DISABLED_REASON_UID_IDLE);
}
for (size_t i = 0; i < mActivationCount.size(); ++i) {
int handle = mActivationCount.keyAt(i);
Info& info = mActivationCount.editValueAt(i);
if (info.hasBatchParamsForIdent(ident)) {
updateBatchParamsLocked(handle, info);
bool disable = info.numActiveClients() == 0 && info.isActive;
bool enable = info.numActiveClients() > 0 && !info.isActive;
if ((enable || disable) && doActivateHardwareLocked(handle, enable) == NO_ERROR) {
info.isActive = enable;
}
}
}
}
bool SensorDevice::isSensorActive(int handle) const {
Mutex::Autolock _l(mLock);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
return false;
}
return mActivationCount.valueAt(activationIndex).isActive;
}
void SensorDevice::onMicSensorAccessChanged(void* ident, int handle, nsecs_t samplingPeriodNs) {
Mutex::Autolock _l(mLock);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return;
}
Info& info(mActivationCount.editValueAt(activationIndex));
if (info.hasBatchParamsForIdent(ident)) {
ssize_t index = info.batchParams.indexOfKey(ident);
BatchParams& params = info.batchParams.editValueAt(index);
params.mTSample = samplingPeriodNs;
}
}
void SensorDevice::enableAllSensors() {
if (mHalWrapper == nullptr) return;
Mutex::Autolock _l(mLock);
for (void* client : getDisabledClientsLocked()) {
removeDisabledReasonForIdentLocked(client,
DisabledReason::DISABLED_REASON_SERVICE_RESTRICTED);
}
for (size_t i = 0; i < mActivationCount.size(); ++i) {
Info& info = mActivationCount.editValueAt(i);
if (info.batchParams.isEmpty()) continue;
info.selectBatchParams();
const int sensor_handle = mActivationCount.keyAt(i);
ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ",
sensor_handle);
status_t err = mHalWrapper->batch(sensor_handle, info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch);
ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err));
if (err == NO_ERROR) {
err = mHalWrapper->activate(sensor_handle, 1 /* enabled */);
ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err));
}
if (err == NO_ERROR) {
info.isActive = true;
}
}
}
void SensorDevice::disableAllSensors() {
if (mHalWrapper == nullptr) return;
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mActivationCount.size(); ++i) {
Info& info = mActivationCount.editValueAt(i);
// Check if this sensor has been activated previously and disable it.
if (info.batchParams.size() > 0) {
const int sensor_handle = mActivationCount.keyAt(i);
ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ",
sensor_handle);
mHalWrapper->activate(sensor_handle, 0 /* enabled */);
// Add all the connections that were registered for this sensor to the disabled
// clients list.
for (size_t j = 0; j < info.batchParams.size(); ++j) {
addDisabledReasonForIdentLocked(info.batchParams.keyAt(j),
DisabledReason::DISABLED_REASON_SERVICE_RESTRICTED);
ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j));
}
info.isActive = false;
}
}
}
status_t SensorDevice::injectSensorData(const sensors_event_t* injected_sensor_event) {
if (mHalWrapper == nullptr) return NO_INIT;
ALOGD_IF(DEBUG_CONNECTIONS,
"sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f",
injected_sensor_event->sensor, injected_sensor_event->timestamp,
injected_sensor_event->data[0], injected_sensor_event->data[1],
injected_sensor_event->data[2], injected_sensor_event->data[3],
injected_sensor_event->data[4], injected_sensor_event->data[5]);
if (mInHalBypassMode) {
std::lock_guard _l(mHalBypassLock);
mHalBypassInjectedEventQueue.push(*injected_sensor_event);
mHalBypassCV.notify_one();
return OK;
}
return mHalWrapper->injectSensorData(injected_sensor_event);
}
status_t SensorDevice::setMode(uint32_t mode) {
if (mHalWrapper == nullptr) return NO_INIT;
if (mode == SensorService::Mode::HAL_BYPASS_REPLAY_DATA_INJECTION) {
if (!mInHalBypassMode) {
std::lock_guard _l(mHalBypassLock);
while (!mHalBypassInjectedEventQueue.empty()) {
// flush any stale events from the injected event queue
mHalBypassInjectedEventQueue.pop();
}
mInHalBypassMode = true;
}
return OK;
} else {
if (mInHalBypassMode) {
// We are transitioning out of HAL Bypass mode. We need to notify the reader thread
// (specifically getHalBypassInjectedEvents()) of this change in state so that it is not
// stuck waiting on more injected events to come and therefore preventing events coming
// from the HAL from being read.
std::lock_guard _l(mHalBypassLock);
mInHalBypassMode = false;
mHalBypassCV.notify_one();
}
}
return mHalWrapper->setOperationMode(static_cast<SensorService::Mode>(mode));
}
int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) {
if (mHalWrapper == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
int32_t channelHandle;
status_t status = mHalWrapper->registerDirectChannel(memory, &channelHandle);
if (status != OK) {
channelHandle = -1;
}
return channelHandle;
}
void SensorDevice::unregisterDirectChannel(int32_t channelHandle) {
mHalWrapper->unregisterDirectChannel(channelHandle);
}
int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
const struct sensors_direct_cfg_t* config) {
if (mHalWrapper == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
return mHalWrapper->configureDirectChannel(sensorHandle, channelHandle, config);
}
// ---------------------------------------------------------------------------
int SensorDevice::Info::numActiveClients() const {
SensorDevice& device(SensorDevice::getInstance());
int num = 0;
for (size_t i = 0; i < batchParams.size(); ++i) {
if (!device.isClientDisabledLocked(batchParams.keyAt(i))) {
++num;
}
}
return num;
}
status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
ssize_t index = batchParams.indexOfKey(ident);
if (index < 0) {
ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64 " timeout=%" PRId64
") failed (%s)",
ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index));
return BAD_INDEX;
}
BatchParams& params = batchParams.editValueAt(index);
params.mTSample = samplingPeriodNs;
params.mTBatch = maxBatchReportLatencyNs;
return NO_ERROR;
}
void SensorDevice::Info::selectBatchParams() {
BatchParams bestParams; // default to max Tsample and max Tbatch
SensorDevice& device(SensorDevice::getInstance());
for (size_t i = 0; i < batchParams.size(); ++i) {
if (device.isClientDisabledLocked(batchParams.keyAt(i))) {
continue;
}
bestParams.merge(batchParams[i]);
}
// if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly.
if (bestParams.mTBatch <= bestParams.mTSample) {
bestParams.mTBatch = 0;
}
bestBatchParams = bestParams;
}
ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) {
ssize_t idx = batchParams.removeItem(ident);
if (idx >= 0) {
selectBatchParams();
}
return idx;
}
void SensorDevice::notifyConnectionDestroyed(void* ident) {
Mutex::Autolock _l(mLock);
mDisabledClients.erase(ident);
}
bool SensorDevice::isDirectReportSupported() const {
return mIsDirectReportSupported;
}
float SensorDevice::getResolutionForSensor(int sensorHandle) {
for (size_t i = 0; i < mSensorList.size(); i++) {
if (sensorHandle == mSensorList[i].handle) {
return mSensorList[i].resolution;
}
}
auto it = mConnectedDynamicSensors.find(sensorHandle);
if (it != mConnectedDynamicSensors.end()) {
return it->second.resolution;
}
return 0;
}
ssize_t SensorDevice::getHalBypassInjectedEvents(sensors_event_t* buffer,
size_t maxNumEventsToRead) {
std::unique_lock _l(mHalBypassLock);
if (mHalBypassInjectedEventQueue.empty()) {
// if the injected event queue is empty, block and wait till there are events to process
// or if we are no longer in HAL Bypass mode so that this method is not called in a tight
// loop. Otherwise, continue copying the injected events into the supplied buffer.
mHalBypassCV.wait(_l, [this] {
return (!mHalBypassInjectedEventQueue.empty() || !mInHalBypassMode);
});
}
size_t eventsToRead = std::min(mHalBypassInjectedEventQueue.size(), maxNumEventsToRead);
for (size_t i = 0; i < eventsToRead; i++) {
buffer[i] = mHalBypassInjectedEventQueue.front();
mHalBypassInjectedEventQueue.pop();
}
return eventsToRead;
}
// ---------------------------------------------------------------------------
}; // namespace android