blob: 001938c756b5cb6c45b49b59e082268d456ef42a [file] [log] [blame]
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <common/FlagManager.h>
#include <ftl/fake_guard.h>
#include <gui/TraceUtils.h>
#include <scheduler/Fps.h>
#include <scheduler/Timer.h>
#include "VsyncSchedule.h"
#include "Utils/Dumper.h"
#include "VSyncDispatchTimerQueue.h"
#include "VSyncPredictor.h"
#include "VSyncReactor.h"
#include "../TracedOrdinal.h"
namespace android::scheduler {
class VsyncSchedule::PredictedVsyncTracer {
// Invoked from the thread of the VsyncDispatch owned by this VsyncSchedule.
constexpr auto makeVsyncCallback() {
return [this](nsecs_t, nsecs_t, nsecs_t) {
mParity = !mParity;
schedule();
};
}
public:
explicit PredictedVsyncTracer(std::shared_ptr<VsyncDispatch> dispatch)
: mRegistration(std::move(dispatch), makeVsyncCallback(), __func__) {
schedule();
}
private:
void schedule() { mRegistration.schedule({0, 0, 0}); }
TracedOrdinal<bool> mParity = {"VSYNC-predicted", 0};
VSyncCallbackRegistration mRegistration;
};
VsyncSchedule::VsyncSchedule(ftl::NonNull<DisplayModePtr> modePtr, FeatureFlags features,
RequestHardwareVsync requestHardwareVsync)
: mId(modePtr->getPhysicalDisplayId()),
mRequestHardwareVsync(std::move(requestHardwareVsync)),
mTracker(createTracker(modePtr)),
mDispatch(createDispatch(mTracker)),
mController(createController(modePtr->getPhysicalDisplayId(), *mTracker, features)),
mTracer(features.test(Feature::kTracePredictedVsync)
? std::make_unique<PredictedVsyncTracer>(mDispatch)
: nullptr) {}
VsyncSchedule::VsyncSchedule(PhysicalDisplayId id, TrackerPtr tracker, DispatchPtr dispatch,
ControllerPtr controller, RequestHardwareVsync requestHardwareVsync)
: mId(id),
mRequestHardwareVsync(std::move(requestHardwareVsync)),
mTracker(std::move(tracker)),
mDispatch(std::move(dispatch)),
mController(std::move(controller)) {}
VsyncSchedule::~VsyncSchedule() = default;
Period VsyncSchedule::period() const {
return Period::fromNs(mTracker->currentPeriod());
}
Period VsyncSchedule::minFramePeriod() const {
if (FlagManager::getInstance().vrr_config()) {
return mTracker->minFramePeriod();
}
return period();
}
TimePoint VsyncSchedule::vsyncDeadlineAfter(TimePoint timePoint,
ftl::Optional<TimePoint> lastVsyncOpt) const {
return TimePoint::fromNs(
mTracker->nextAnticipatedVSyncTimeFrom(timePoint.ns(),
lastVsyncOpt.transform(
[](TimePoint t) { return t.ns(); })));
}
void VsyncSchedule::dump(std::string& out) const {
utils::Dumper dumper(out);
{
std::lock_guard<std::mutex> lock(mHwVsyncLock);
dumper.dump("hwVsyncState", ftl::enum_string(mHwVsyncState));
ftl::FakeGuard guard(kMainThreadContext);
dumper.dump("pendingHwVsyncState", ftl::enum_string(mPendingHwVsyncState));
dumper.eol();
}
out.append("VsyncController:\n");
mController->dump(out);
out.append("VsyncDispatch:\n");
mDispatch->dump(out);
}
VsyncSchedule::TrackerPtr VsyncSchedule::createTracker(ftl::NonNull<DisplayModePtr> modePtr) {
// TODO(b/144707443): Tune constants.
constexpr size_t kHistorySize = 20;
constexpr size_t kMinSamplesForPrediction = 6;
constexpr uint32_t kDiscardOutlierPercent = 20;
return std::make_unique<VSyncPredictor>(modePtr, kHistorySize, kMinSamplesForPrediction,
kDiscardOutlierPercent);
}
VsyncSchedule::DispatchPtr VsyncSchedule::createDispatch(TrackerPtr tracker) {
using namespace std::chrono_literals;
// TODO(b/144707443): Tune constants.
constexpr std::chrono::nanoseconds kGroupDispatchWithin = 500us;
constexpr std::chrono::nanoseconds kSnapToSameVsyncWithin = 3ms;
return std::make_unique<VSyncDispatchTimerQueue>(std::make_unique<Timer>(), std::move(tracker),
kGroupDispatchWithin.count(),
kSnapToSameVsyncWithin.count());
}
VsyncSchedule::ControllerPtr VsyncSchedule::createController(PhysicalDisplayId id,
VsyncTracker& tracker,
FeatureFlags features) {
// TODO(b/144707443): Tune constants.
constexpr size_t kMaxPendingFences = 20;
const bool hasKernelIdleTimer = features.test(Feature::kKernelIdleTimer);
auto reactor = std::make_unique<VSyncReactor>(id, std::make_unique<SystemClock>(), tracker,
kMaxPendingFences, hasKernelIdleTimer);
reactor->setIgnorePresentFences(!features.test(Feature::kPresentFences));
return reactor;
}
void VsyncSchedule::onDisplayModeChanged(ftl::NonNull<DisplayModePtr> modePtr, bool force) {
std::lock_guard<std::mutex> lock(mHwVsyncLock);
mController->onDisplayModeChanged(modePtr, force);
enableHardwareVsyncLocked();
}
bool VsyncSchedule::addResyncSample(TimePoint timestamp, ftl::Optional<Period> hwcVsyncPeriod) {
bool needsHwVsync = false;
bool periodFlushed = false;
{
std::lock_guard<std::mutex> lock(mHwVsyncLock);
if (mHwVsyncState == HwVsyncState::Enabled) {
needsHwVsync = mController->addHwVsyncTimestamp(timestamp.ns(),
hwcVsyncPeriod.transform(&Period::ns),
&periodFlushed);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
constexpr bool kDisallow = false;
disableHardwareVsync(kDisallow);
}
return periodFlushed;
}
void VsyncSchedule::enableHardwareVsync() {
std::lock_guard<std::mutex> lock(mHwVsyncLock);
enableHardwareVsyncLocked();
}
void VsyncSchedule::enableHardwareVsyncLocked() {
ATRACE_CALL();
if (mHwVsyncState == HwVsyncState::Disabled) {
getTracker().resetModel();
mRequestHardwareVsync(mId, true);
mHwVsyncState = HwVsyncState::Enabled;
}
}
void VsyncSchedule::disableHardwareVsync(bool disallow) {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mHwVsyncLock);
switch (mHwVsyncState) {
case HwVsyncState::Enabled:
mRequestHardwareVsync(mId, false);
[[fallthrough]];
case HwVsyncState::Disabled:
mHwVsyncState = disallow ? HwVsyncState::Disallowed : HwVsyncState::Disabled;
break;
case HwVsyncState::Disallowed:
break;
}
}
bool VsyncSchedule::isHardwareVsyncAllowed(bool makeAllowed) {
std::lock_guard<std::mutex> lock(mHwVsyncLock);
if (makeAllowed && mHwVsyncState == HwVsyncState::Disallowed) {
mHwVsyncState = HwVsyncState::Disabled;
}
return mHwVsyncState != HwVsyncState::Disallowed;
}
void VsyncSchedule::setPendingHardwareVsyncState(bool enabled) {
mPendingHwVsyncState = enabled ? HwVsyncState::Enabled : HwVsyncState::Disabled;
}
bool VsyncSchedule::getPendingHardwareVsyncState() const {
return mPendingHwVsyncState == HwVsyncState::Enabled;
}
} // namespace android::scheduler