blob: 1693ed52974102e3de0ca782d9416ce3ba12d010 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "installd"
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <unistd.h>
#include <array>
#include <iomanip>
#include <mutex>
#include <unordered_set>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/no_destructor.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <async_safe/log.h>
#include <cutils/fs.h>
#include <cutils/properties.h>
#include <cutils/sched_policy.h>
#include <log/log.h> // TODO: Move everything to base/logging.
#include <openssl/sha.h>
#include <private/android_filesystem_config.h>
#include <processgroup/processgroup.h>
#include <selinux/android.h>
#include <server_configurable_flags/get_flags.h>
#include <system/thread_defs.h>
#include <utils/Mutex.h>
#include <ziparchive/zip_archive.h>
#include "dexopt.h"
#include "dexopt_return_codes.h"
#include "execv_helper.h"
#include "globals.h"
#include "installd_constants.h"
#include "installd_deps.h"
#include "otapreopt_utils.h"
#include "restorable_file.h"
#include "run_dex2oat.h"
#include "unique_file.h"
#include "utils.h"
using android::base::Basename;
using android::base::EndsWith;
using android::base::GetBoolProperty;
using android::base::GetProperty;
using android::base::ReadFdToString;
using android::base::ReadFully;
using android::base::StringPrintf;
using android::base::WriteFully;
using android::base::borrowed_fd;
using android::base::unique_fd;
namespace {
// Timeout for short operations, such as merging profiles.
constexpr int kShortTimeoutMs = 60000; // 1 minute.
// Timeout for long operations, such as compilation. This should be smaller than the Package Manager
// watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that the operation will be
// aborted before that watchdog would take down the system server.
constexpr int kLongTimeoutMs = 570000; // 9.5 minutes.
class DexOptStatus {
public:
// Check if dexopt is cancelled and fork if it is not cancelled.
// cancelled is set to true if cancelled. Otherwise it will be set to false.
// If it is not cancelled, it will return the return value of fork() call.
// If cancelled, fork will not happen and it will return -1.
pid_t check_cancellation_and_fork(/* out */ bool *cancelled) {
std::lock_guard<std::mutex> lock(dexopt_lock_);
if (dexopt_blocked_) {
*cancelled = true;
return -1;
}
pid_t pid = fork();
*cancelled = false;
if (pid > 0) { // parent
dexopt_pids_.insert(pid);
}
return pid;
}
// Returns true if pid was killed (is in killed list). It could have finished if killing
// happened after the process is finished.
bool check_if_killed_and_remove_dexopt_pid(pid_t pid) {
std::lock_guard<std::mutex> lock(dexopt_lock_);
dexopt_pids_.erase(pid);
if (dexopt_killed_pids_.erase(pid) == 1) {
return true;
}
return false;
}
// Tells whether dexopt is blocked or not.
bool is_dexopt_blocked() {
std::lock_guard<std::mutex> lock(dexopt_lock_);
return dexopt_blocked_;
}
// Enable or disable dexopt blocking.
void control_dexopt_blocking(bool block) {
std::lock_guard<std::mutex> lock(dexopt_lock_);
dexopt_blocked_ = block;
if (!block) {
return;
}
// Blocked, also kill currently running tasks
for (auto pid : dexopt_pids_) {
LOG(INFO) << "control_dexopt_blocking kill pid:" << pid;
kill(pid, SIGKILL);
dexopt_killed_pids_.insert(pid);
}
dexopt_pids_.clear();
}
private:
std::mutex dexopt_lock_;
// when true, dexopt is blocked and will not run.
bool dexopt_blocked_ GUARDED_BY(dexopt_lock_) = false;
// PIDs of child process while runinng dexopt.
// If the child process is finished, it should be removed.
std::unordered_set<pid_t> dexopt_pids_ GUARDED_BY(dexopt_lock_);
// PIDs of child processes killed by cancellation.
std::unordered_set<pid_t> dexopt_killed_pids_ GUARDED_BY(dexopt_lock_);
};
android::base::NoDestructor<DexOptStatus> dexopt_status_;
} // namespace
namespace android {
namespace installd {
// Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below.
struct FreeDelete {
// NOTE: Deleting a const object is valid but free() takes a non-const pointer.
void operator()(const void* ptr) const {
free(const_cast<void*>(ptr));
}
};
// Alias for std::unique_ptr<> that uses the C function free() to delete objects.
template <typename T>
using UniqueCPtr = std::unique_ptr<T, FreeDelete>;
static unique_fd invalid_unique_fd() {
return unique_fd(-1);
}
static bool is_debug_runtime() {
return android::base::GetProperty("persist.sys.dalvik.vm.lib.2", "") == "libartd.so";
}
static bool is_debuggable_build() {
return android::base::GetBoolProperty("ro.debuggable", false);
}
static bool clear_profile(const std::string& profile) {
unique_fd ufd(open(profile.c_str(), O_WRONLY | O_NOFOLLOW | O_CLOEXEC));
if (ufd.get() < 0) {
if (errno != ENOENT) {
PLOG(WARNING) << "Could not open profile " << profile;
return false;
} else {
// Nothing to clear. That's ok.
return true;
}
}
if (flock(ufd.get(), LOCK_EX | LOCK_NB) != 0) {
if (errno != EWOULDBLOCK) {
PLOG(WARNING) << "Error locking profile " << profile;
}
// This implies that the app owning this profile is running
// (and has acquired the lock).
//
// If we can't acquire the lock bail out since clearing is useless anyway
// (the app will write again to the profile).
//
// Note:
// This does not impact the this is not an issue for the profiling correctness.
// In case this is needed because of an app upgrade, profiles will still be
// eventually cleared by the app itself due to checksum mismatch.
// If this is needed because profman advised, then keeping the data around
// until the next run is again not an issue.
//
// If the app attempts to acquire a lock while we've held one here,
// it will simply skip the current write cycle.
return false;
}
bool truncated = ftruncate(ufd.get(), 0) == 0;
if (!truncated) {
PLOG(WARNING) << "Could not truncate " << profile;
}
if (flock(ufd.get(), LOCK_UN) != 0) {
PLOG(WARNING) << "Error unlocking profile " << profile;
}
return truncated;
}
// Clear the reference profile for the given location.
// The location is the profile name for primary apks or the dex path for secondary dex files.
static bool clear_reference_profile(const std::string& package_name, const std::string& location,
bool is_secondary_dex) {
return clear_profile(create_reference_profile_path(package_name, location, is_secondary_dex));
}
// Clear the reference profile for the given location.
// The location is the profile name for primary apks or the dex path for secondary dex files.
static bool clear_current_profile(const std::string& package_name, const std::string& location,
userid_t user, bool is_secondary_dex) {
return clear_profile(create_current_profile_path(user, package_name, location,
is_secondary_dex));
}
// Clear the reference profile for the primary apk of the given package.
// The location is the profile name for primary apks or the dex path for secondary dex files.
bool clear_primary_reference_profile(const std::string& package_name,
const std::string& location) {
return clear_reference_profile(package_name, location, /*is_secondary_dex*/false);
}
// Clear all current profile for the primary apk of the given package.
// The location is the profile name for primary apks or the dex path for secondary dex files.
bool clear_primary_current_profiles(const std::string& package_name, const std::string& location) {
bool success = true;
// For secondary dex files, we don't really need the user but we use it for validity checks.
std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr);
for (auto user : users) {
success &= clear_current_profile(package_name, location, user, /*is_secondary_dex*/false);
}
return success;
}
// Clear the current profile for the primary apk of the given package and user.
bool clear_primary_current_profile(const std::string& package_name, const std::string& location,
userid_t user) {
return clear_current_profile(package_name, location, user, /*is_secondary_dex*/false);
}
// Determines which binary we should use for execution (the debug or non-debug version).
// e.g. dex2oatd vs dex2oat
static const char* select_execution_binary(const char* binary, const char* debug_binary,
bool background_job_compile) {
return select_execution_binary(
binary,
debug_binary,
background_job_compile,
is_debug_runtime(),
(android::base::GetProperty("ro.build.version.codename", "") == "REL"),
is_debuggable_build());
}
// Determines which binary we should use for execution (the debug or non-debug version).
// e.g. dex2oatd vs dex2oat
// This is convenient method which is much easier to test because it doesn't read
// system properties.
const char* select_execution_binary(
const char* binary,
const char* debug_binary,
bool background_job_compile,
bool is_debug_runtime,
bool is_release,
bool is_debuggable_build) {
// Do not use debug binaries for release candidates (to give more soak time).
bool is_debug_bg_job = background_job_compile && is_debuggable_build && !is_release;
// If the runtime was requested to use libartd.so, we'll run the debug version - assuming
// the file is present (it may not be on images with very little space available).
bool useDebug = (is_debug_runtime || is_debug_bg_job) && (access(debug_binary, X_OK) == 0);
return useDebug ? debug_binary : binary;
}
// Namespace for Android Runtime flags applied during boot time.
static const char* RUNTIME_NATIVE_BOOT_NAMESPACE = "runtime_native_boot";
// Feature flag name for running the JIT in Zygote experiment, b/119800099.
static const char* ENABLE_JITZYGOTE_IMAGE = "enable_apex_image";
// Phenotype property name for enabling profiling the boot class path.
static const char* PROFILE_BOOT_CLASS_PATH = "profilebootclasspath";
static bool IsBootClassPathProfilingEnable() {
std::string profile_boot_class_path = GetProperty("dalvik.vm.profilebootclasspath", "");
profile_boot_class_path =
server_configurable_flags::GetServerConfigurableFlag(
RUNTIME_NATIVE_BOOT_NAMESPACE,
PROFILE_BOOT_CLASS_PATH,
/*default_value=*/ profile_boot_class_path);
return profile_boot_class_path == "true";
}
/*
* Whether dexopt should use a swap file when compiling an APK.
*
* If kAlwaysProvideSwapFile, do this on all devices (dex2oat will make a more informed decision
* itself, anyways).
*
* Otherwise, read "dalvik.vm.dex2oat-swap". If the property exists, return whether it is "true".
*
* Otherwise, return true if this is a low-mem device.
*
* Otherwise, return default value.
*/
static bool kAlwaysProvideSwapFile = false;
static bool kDefaultProvideSwapFile = true;
static bool ShouldUseSwapFileForDexopt() {
if (kAlwaysProvideSwapFile) {
return true;
}
// Check the "override" property. If it exists, return value == "true".
std::string dex2oat_prop_buf = GetProperty("dalvik.vm.dex2oat-swap", "");
if (!dex2oat_prop_buf.empty()) {
return dex2oat_prop_buf == "true";
}
// Shortcut for default value. This is an implementation optimization for the process sketched
// above. If the default value is true, we can avoid to check whether this is a low-mem device,
// as low-mem is never returning false. The compiler will optimize this away if it can.
if (kDefaultProvideSwapFile) {
return true;
}
if (GetBoolProperty("ro.config.low_ram", false)) {
return true;
}
// Default value must be false here.
return kDefaultProvideSwapFile;
}
static void SetDex2OatScheduling(bool set_to_bg) {
if (set_to_bg) {
if (!SetTaskProfiles(0, {"Dex2OatBootComplete"})) {
LOG(ERROR) << "Failed to set dex2oat task profile";
exit(DexoptReturnCodes::kSetSchedPolicy);
}
if (setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_BACKGROUND) < 0) {
PLOG(ERROR) << "setpriority failed";
exit(DexoptReturnCodes::kSetPriority);
}
}
}
static unique_fd create_profile(uid_t uid, const std::string& profile, int32_t flags, mode_t mode) {
unique_fd fd(TEMP_FAILURE_RETRY(open(profile.c_str(), flags, mode)));
if (fd.get() < 0) {
if (errno != EEXIST) {
PLOG(ERROR) << "Failed to create profile " << profile;
return invalid_unique_fd();
}
}
// Profiles should belong to the app; make sure of that by giving ownership to
// the app uid. If we cannot do that, there's no point in returning the fd
// since dex2oat/profman will fail with SElinux denials.
if (fchown(fd.get(), uid, uid) < 0) {
PLOG(ERROR) << "Could not chown profile " << profile;
return invalid_unique_fd();
}
return fd;
}
static unique_fd open_profile(uid_t uid, const std::string& profile, int32_t flags, mode_t mode) {
// Do not follow symlinks when opening a profile:
// - primary profiles should not contain symlinks in their paths
// - secondary dex paths should have been already resolved and validated
flags |= O_NOFOLLOW;
// Check if we need to create the profile
// Reference profiles and snapshots are created on the fly; so they might not exist beforehand.
unique_fd fd;
if ((flags & O_CREAT) != 0) {
fd = create_profile(uid, profile, flags, mode);
} else {
fd.reset(TEMP_FAILURE_RETRY(open(profile.c_str(), flags)));
}
if (fd.get() < 0) {
if (errno != ENOENT) {
// Profiles might be missing for various reasons. For example, in a
// multi-user environment, the profile directory for one user can be created
// after we start a merge. In this case the current profile for that user
// will not be found.
// Also, the secondary dex profiles might be deleted by the app at any time,
// so we can't we need to prepare if they are missing.
PLOG(ERROR) << "Failed to open profile " << profile;
}
return invalid_unique_fd();
} else {
// If we just create the file we need to set its mode because on Android
// open has a mask that only allows owner access.
if ((flags & O_CREAT) != 0) {
if (fchmod(fd.get(), mode) != 0) {
PLOG(ERROR) << "Could not set mode " << std::hex << mode << std::dec
<< " on profile" << profile;
// Not a terminal failure.
}
}
}
return fd;
}
static unique_fd open_current_profile(uid_t uid, userid_t user, const std::string& package_name,
const std::string& location, bool is_secondary_dex) {
std::string profile = create_current_profile_path(user, package_name, location,
is_secondary_dex);
return open_profile(uid, profile, O_RDONLY, /*mode=*/ 0);
}
static unique_fd open_reference_profile(uid_t uid, const std::string& package_name,
const std::string& location, bool read_write, bool is_secondary_dex) {
std::string profile = create_reference_profile_path(package_name, location, is_secondary_dex);
if (read_write && GetBoolProperty("dalvik.vm.useartservice", false)) {
// ART Service doesn't use flock and instead assumes profile files are
// immutable, so ensure we don't open a file for writing when it's
// active.
// TODO(b/251921228): Normally installd isn't called at all in that
// case, but OTA is still an exception that uses the legacy code.
LOG(ERROR) << "Opening ref profile " << profile
<< " for writing is unsafe when ART Service is enabled.";
return invalid_unique_fd();
}
return open_profile(
uid,
profile,
read_write ? (O_CREAT | O_RDWR) : O_RDONLY,
S_IRUSR | S_IWUSR | S_IRGRP); // so that ART can also read it when apps run.
}
static UniqueFile open_reference_profile_as_unique_file(uid_t uid, const std::string& package_name,
const std::string& location,
bool is_secondary_dex) {
std::string profile_path = create_reference_profile_path(package_name, location,
is_secondary_dex);
unique_fd ufd = open_profile(uid, profile_path, O_RDONLY,
S_IRUSR | S_IWUSR |
S_IRGRP); // so that ART can also read it when apps run.
return UniqueFile(ufd.release(), profile_path, [](const std::string& path) {
clear_profile(path);
});
}
static unique_fd open_snapshot_profile(uid_t uid, const std::string& package_name,
const std::string& location) {
std::string profile = create_snapshot_profile_path(package_name, location);
return open_profile(uid, profile, O_CREAT | O_RDWR | O_TRUNC, S_IRUSR | S_IWUSR);
}
static void open_profile_files(uid_t uid, const std::string& package_name,
const std::string& location, bool is_secondary_dex,
/*out*/ std::vector<unique_fd>* profiles_fd, /*out*/ unique_fd* reference_profile_fd) {
// Open the reference profile in read-write mode as profman might need to save the merge.
*reference_profile_fd = open_reference_profile(uid, package_name, location,
/*read_write*/ true, is_secondary_dex);
// For secondary dex files, we don't really need the user but we use it for validity checks.
// Note: the user owning the dex file should be the current user.
std::vector<userid_t> users;
if (is_secondary_dex){
users.push_back(multiuser_get_user_id(uid));
} else {
users = get_known_users(/*volume_uuid*/ nullptr);
}
for (auto user : users) {
unique_fd profile_fd = open_current_profile(uid, user, package_name, location,
is_secondary_dex);
// Add to the lists only if both fds are valid.
if (profile_fd.get() >= 0) {
profiles_fd->push_back(std::move(profile_fd));
}
}
}
// Cleans up an output file specified by a file descriptor. This function should be called whenever
// a subprocess that modifies a system-managed file crashes.
// If the subprocess crashes while it's writing to the file, the file is likely corrupted, so we
// should remove it.
// If the subprocess times out and is killed while it's acquiring a flock on the file, there is
// probably a deadlock, so it's also good to remove the file so that later operations won't
// encounter the same problem. It's safe to do so because the process that is holding the flock will
// still have access to the file until the file descriptor is closed.
// Note that we can't do `clear_reference_profile` here even if the fd points to a reference profile
// because that also requires a flock and is therefore likely to be stuck in the second case.
static bool cleanup_output_fd(int fd) {
std::string path;
bool ret = remove_file_at_fd(fd, &path);
if (ret) {
LOG(INFO) << "Removed file at path " << path;
}
return ret;
}
static constexpr int PROFMAN_BIN_RETURN_CODE_SUCCESS = 0;
static constexpr int PROFMAN_BIN_RETURN_CODE_COMPILE = 1;
static constexpr int PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION_NOT_ENOUGH_DELTA = 2;
static constexpr int PROFMAN_BIN_RETURN_CODE_BAD_PROFILES = 3;
static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_IO = 4;
static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING = 5;
static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_DIFFERENT_VERSIONS = 6;
static constexpr int PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION_EMPTY_PROFILES = 7;
class RunProfman : public ExecVHelper {
public:
template <typename T, typename U>
void SetupArgs(const std::vector<T>& profile_fds,
const unique_fd& reference_profile_fd,
const std::vector<U>& apk_fds,
const std::vector<std::string>& dex_locations,
bool copy_and_update,
bool for_snapshot,
bool for_boot_image) {
// TODO(calin): Assume for now we run in the bg compile job (which is in
// most of the invocation). With the current data flow, is not very easy or
// clean to discover this in RunProfman (it will require quite a messy refactoring).
const char* profman_bin = select_execution_binary(
kProfmanPath, kProfmanDebugPath, /*background_job_compile=*/ true);
if (copy_and_update) {
CHECK_EQ(1u, profile_fds.size());
CHECK_EQ(1u, apk_fds.size());
}
if (reference_profile_fd != -1) {
AddArg("--reference-profile-file-fd=" + std::to_string(reference_profile_fd.get()));
}
for (const T& fd : profile_fds) {
AddArg("--profile-file-fd=" + std::to_string(fd.get()));
}
for (const U& fd : apk_fds) {
AddArg("--apk-fd=" + std::to_string(fd.get()));
}
for (const std::string& dex_location : dex_locations) {
AddArg("--dex-location=" + dex_location);
}
if (copy_and_update) {
AddArg("--copy-and-update-profile-key");
}
if (for_snapshot) {
AddArg("--force-merge");
}
if (for_boot_image) {
AddArg("--boot-image-merge");
}
// The percent won't exceed 100, otherwise, don't set it and use the
// default one set in profman.
uint32_t min_new_classes_percent_change = ::android::base::GetUintProperty<uint32_t>(
"dalvik.vm.bgdexopt.new-classes-percent",
/*default*/std::numeric_limits<uint32_t>::max());
if (min_new_classes_percent_change <= 100) {
AddArg("--min-new-classes-percent-change=" +
std::to_string(min_new_classes_percent_change));
}
// The percent won't exceed 100, otherwise, don't set it and use the
// default one set in profman.
uint32_t min_new_methods_percent_change = ::android::base::GetUintProperty<uint32_t>(
"dalvik.vm.bgdexopt.new-methods-percent",
/*default*/std::numeric_limits<uint32_t>::max());
if (min_new_methods_percent_change <= 100) {
AddArg("--min-new-methods-percent-change=" +
std::to_string(min_new_methods_percent_change));
}
// Do not add after dex2oat_flags, they should override others for debugging.
PrepareArgs(profman_bin);
}
void SetupMerge(const std::vector<unique_fd>& profiles_fd,
const unique_fd& reference_profile_fd,
const std::vector<unique_fd>& apk_fds = std::vector<unique_fd>(),
const std::vector<std::string>& dex_locations = std::vector<std::string>(),
bool for_snapshot = false,
bool for_boot_image = false) {
SetupArgs(profiles_fd,
reference_profile_fd,
apk_fds,
dex_locations,
/*copy_and_update=*/ false,
for_snapshot,
for_boot_image);
}
void SetupCopyAndUpdate(const unique_fd& profile_fd,
const unique_fd& reference_profile_fd,
const unique_fd& apk_fd,
const std::string& dex_location) {
SetupArgs(std::vector<borrowed_fd>{profile_fd},
reference_profile_fd,
std::vector<borrowed_fd>{apk_fd},
{dex_location},
/*copy_and_update=*/true,
/*for_snapshot*/false,
/*for_boot_image*/false);
}
void SetupDump(const std::vector<unique_fd>& profiles_fd, const unique_fd& reference_profile_fd,
const std::vector<std::string>& dex_locations,
const std::vector<unique_fd>& apk_fds, bool dump_classes_and_methods,
const unique_fd& output_fd) {
if (dump_classes_and_methods) {
AddArg("--dump-classes-and-methods");
} else {
AddArg("--dump-only");
}
AddArg(StringPrintf("--dump-output-to-fd=%d", output_fd.get()));
SetupArgs(profiles_fd,
reference_profile_fd,
apk_fds,
dex_locations,
/*copy_and_update=*/false,
/*for_snapshot*/false,
/*for_boot_image*/false);
}
using ExecVHelper::Exec; // To suppress -Wno-overloaded-virtual
void Exec() {
ExecVHelper::Exec(DexoptReturnCodes::kProfmanExec);
}
};
static int analyze_profiles(uid_t uid, const std::string& package_name,
const std::string& location, bool is_secondary_dex) {
std::vector<unique_fd> profiles_fd;
unique_fd reference_profile_fd;
open_profile_files(uid, package_name, location, is_secondary_dex,
&profiles_fd, &reference_profile_fd);
if (profiles_fd.empty() || (reference_profile_fd.get() < 0)) {
// Skip profile guided compilation because no profiles were found.
// Or if the reference profile info couldn't be opened.
return PROFILES_ANALYSIS_DONT_OPTIMIZE_EMPTY_PROFILES;
}
RunProfman profman_merge;
const std::vector<unique_fd>& apk_fds = std::vector<unique_fd>();
const std::vector<std::string>& dex_locations = std::vector<std::string>();
profman_merge.SetupMerge(
profiles_fd,
reference_profile_fd,
apk_fds,
dex_locations,
/* for_snapshot= */ false,
IsBootClassPathProfilingEnable());
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(uid);
profman_merge.Exec();
}
/* parent */
int return_code = wait_child_with_timeout(pid, kShortTimeoutMs);
bool need_to_compile = false;
bool empty_profiles = false;
bool should_clear_current_profiles = false;
bool should_clear_reference_profile = false;
if (!WIFEXITED(return_code)) {
LOG(WARNING) << "profman failed for location " << location << ": " << return_code;
cleanup_output_fd(reference_profile_fd.get());
} else {
return_code = WEXITSTATUS(return_code);
switch (return_code) {
case PROFMAN_BIN_RETURN_CODE_COMPILE:
need_to_compile = true;
should_clear_current_profiles = true;
should_clear_reference_profile = false;
break;
case PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION_NOT_ENOUGH_DELTA:
need_to_compile = false;
should_clear_current_profiles = false;
should_clear_reference_profile = false;
break;
case PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION_EMPTY_PROFILES:
need_to_compile = false;
empty_profiles = true;
should_clear_current_profiles = false;
should_clear_reference_profile = false;
break;
case PROFMAN_BIN_RETURN_CODE_BAD_PROFILES:
LOG(WARNING) << "Bad profiles for location " << location;
need_to_compile = false;
should_clear_current_profiles = true;
should_clear_reference_profile = true;
break;
case PROFMAN_BIN_RETURN_CODE_ERROR_IO: // fall-through
case PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING:
// Temporary IO problem (e.g. locking). Ignore but log a warning.
LOG(WARNING) << "IO error while reading profiles for location " << location;
need_to_compile = false;
should_clear_current_profiles = false;
should_clear_reference_profile = false;
break;
case PROFMAN_BIN_RETURN_CODE_ERROR_DIFFERENT_VERSIONS:
need_to_compile = false;
should_clear_current_profiles = true;
should_clear_reference_profile = true;
break;
default:
// Unknown return code or error. Unlink profiles.
LOG(WARNING) << "Unexpected error code while processing profiles for location "
<< location << ": " << return_code;
need_to_compile = false;
should_clear_current_profiles = true;
should_clear_reference_profile = true;
break;
}
}
if (should_clear_current_profiles) {
if (is_secondary_dex) {
// For secondary dex files, the owning user is the current user.
clear_current_profile(package_name, location, multiuser_get_user_id(uid),
is_secondary_dex);
} else {
clear_primary_current_profiles(package_name, location);
}
}
if (should_clear_reference_profile) {
clear_reference_profile(package_name, location, is_secondary_dex);
}
int result = 0;
if (need_to_compile) {
result = PROFILES_ANALYSIS_OPTIMIZE;
} else if (empty_profiles) {
result = PROFILES_ANALYSIS_DONT_OPTIMIZE_EMPTY_PROFILES;
} else {
result = PROFILES_ANALYSIS_DONT_OPTIMIZE_SMALL_DELTA;
}
return result;
}
// Decides if profile guided compilation is needed or not based on existing profiles.
// The analysis is done for a single profile name (which corresponds to a single code path).
//
// Returns PROFILES_ANALYSIS_OPTIMIZE if there is enough information in the current profiles
// that makes it worth to recompile the package.
// If the return value is PROFILES_ANALYSIS_OPTIMIZE all the current profiles would have been
// merged into the reference profiles accessible with open_reference_profile().
//
// Return PROFILES_ANALYSIS_DONT_OPTIMIZE_SMALL_DELTA if the package should not optimize.
// As a special case returns PROFILES_ANALYSIS_DONT_OPTIMIZE_EMPTY_PROFILES if all profiles are
// empty.
int analyze_primary_profiles(uid_t uid, const std::string& package_name,
const std::string& profile_name) {
return analyze_profiles(uid, package_name, profile_name, /*is_secondary_dex*/false);
}
bool dump_profiles(int32_t uid, const std::string& pkgname, const std::string& profile_name,
const std::string& code_path, bool dump_classes_and_methods) {
std::vector<unique_fd> profile_fds;
unique_fd reference_profile_fd;
std::string out_file_name = StringPrintf("/data/misc/profman/%s-%s.txt",
pkgname.c_str(), profile_name.c_str());
open_profile_files(uid, pkgname, profile_name, /*is_secondary_dex*/false,
&profile_fds, &reference_profile_fd);
const bool has_reference_profile = (reference_profile_fd.get() != -1);
const bool has_profiles = !profile_fds.empty();
if (!has_reference_profile && !has_profiles) {
LOG(ERROR) << "profman dump: no profiles to dump for " << pkgname;
return false;
}
unique_fd output_fd(open(out_file_name.c_str(),
O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW, 0644));
if (fchmod(output_fd, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) < 0) {
LOG(ERROR) << "installd cannot chmod file for dump_profile" << out_file_name;
return false;
}
std::vector<std::string> dex_locations;
std::vector<unique_fd> apk_fds;
unique_fd apk_fd(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW));
if (apk_fd == -1) {
PLOG(ERROR) << "installd cannot open " << code_path.c_str();
return false;
}
dex_locations.push_back(Basename(code_path));
apk_fds.push_back(std::move(apk_fd));
RunProfman profman_dump;
profman_dump.SetupDump(profile_fds, reference_profile_fd, dex_locations, apk_fds,
dump_classes_and_methods, output_fd);
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(uid);
profman_dump.Exec();
}
/* parent */
int return_code = wait_child_with_timeout(pid, kShortTimeoutMs);
if (!WIFEXITED(return_code)) {
LOG(WARNING) << "profman failed for package " << pkgname << ": " << return_code;
cleanup_output_fd(output_fd.get());
return false;
}
return true;
}
bool copy_system_profile(const std::string& system_profile,
uid_t packageUid, const std::string& package_name, const std::string& profile_name) {
unique_fd in_fd(open(system_profile.c_str(), O_RDONLY | O_NOFOLLOW | O_CLOEXEC));
unique_fd out_fd(open_reference_profile(packageUid,
package_name,
profile_name,
/*read_write*/ true,
/*secondary*/ false));
if (in_fd.get() < 0) {
PLOG(WARNING) << "Could not open profile " << system_profile;
return false;
}
if (out_fd.get() < 0) {
PLOG(WARNING) << "Could not open profile " << package_name;
return false;
}
// As a security measure we want to write the profile information with the reduced capabilities
// of the package user id. So we fork and drop capabilities in the child.
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(packageUid);
if (flock(out_fd.get(), LOCK_EX | LOCK_NB) != 0) {
if (errno != EWOULDBLOCK) {
async_safe_format_log(ANDROID_LOG_WARN, LOG_TAG, "Error locking profile %s: %d",
package_name.c_str(), errno);
}
// This implies that the app owning this profile is running
// (and has acquired the lock).
//
// The app never acquires the lock for the reference profiles of primary apks.
// Only dex2oat from installd will do that. Since installd is single threaded
// we should not see this case. Nevertheless be prepared for it.
async_safe_format_log(ANDROID_LOG_WARN, LOG_TAG, "Failed to flock %s: %d",
package_name.c_str(), errno);
return false;
}
bool truncated = ftruncate(out_fd.get(), 0) == 0;
if (!truncated) {
async_safe_format_log(ANDROID_LOG_WARN, LOG_TAG, "Could not truncate %s: %d",
package_name.c_str(), errno);
}
// Copy over data.
static constexpr size_t kBufferSize = 4 * 1024;
char buffer[kBufferSize];
while (true) {
ssize_t bytes = read(in_fd.get(), buffer, kBufferSize);
if (bytes == 0) {
break;
}
write(out_fd.get(), buffer, bytes);
}
if (flock(out_fd.get(), LOCK_UN) != 0) {
async_safe_format_log(ANDROID_LOG_WARN, LOG_TAG, "Error unlocking profile %s: %d",
package_name.c_str(), errno);
}
// Use _exit since we don't want to run the global destructors in the child.
// b/62597429
_exit(0);
}
/* parent */
int return_code = wait_child_with_timeout(pid, kShortTimeoutMs);
if (!WIFEXITED(return_code)) {
cleanup_output_fd(out_fd.get());
return false;
}
return return_code == 0;
}
static std::string replace_file_extension(const std::string& oat_path, const std::string& new_ext) {
// A standard dalvik-cache entry. Replace ".dex" with `new_ext`.
if (EndsWith(oat_path, ".dex")) {
std::string new_path = oat_path;
new_path.replace(new_path.length() - strlen(".dex"), strlen(".dex"), new_ext);
CHECK(EndsWith(new_path, new_ext));
return new_path;
}
// An odex entry. Not that this may not be an extension, e.g., in the OTA
// case (where the base name will have an extension for the B artifact).
size_t odex_pos = oat_path.rfind(".odex");
if (odex_pos != std::string::npos) {
std::string new_path = oat_path;
new_path.replace(odex_pos, strlen(".odex"), new_ext);
CHECK_NE(new_path.find(new_ext), std::string::npos);
return new_path;
}
// Don't know how to handle this.
return "";
}
// Translate the given oat path to an art (app image) path. An empty string
// denotes an error.
static std::string create_image_filename(const std::string& oat_path) {
return replace_file_extension(oat_path, ".art");
}
// Translate the given oat path to a vdex path. An empty string denotes an error.
static std::string create_vdex_filename(const std::string& oat_path) {
return replace_file_extension(oat_path, ".vdex");
}
static int open_output_file(const char* file_name, bool recreate, int permissions) {
int flags = O_RDWR | O_CREAT;
if (recreate) {
if (unlink(file_name) < 0) {
if (errno != ENOENT) {
PLOG(ERROR) << "open_output_file: Couldn't unlink " << file_name;
}
}
flags |= O_EXCL;
}
return open(file_name, flags, permissions);
}
static bool set_permissions_and_ownership(
int fd, bool is_public, int uid, const char* path, bool is_secondary_dex) {
// Primary apks are owned by the system. Secondary dex files are owned by the app.
int owning_uid = is_secondary_dex ? uid : AID_SYSTEM;
if (fchmod(fd,
S_IRUSR|S_IWUSR|S_IRGRP |
(is_public ? S_IROTH : 0)) < 0) {
ALOGE("installd cannot chmod '%s' during dexopt\n", path);
return false;
} else if (fchown(fd, owning_uid, uid) < 0) {
ALOGE("installd cannot chown '%s' during dexopt\n", path);
return false;
}
return true;
}
static bool IsOutputDalvikCache(const char* oat_dir) {
// InstallerConnection.java (which invokes installd) transforms Java null arguments
// into '!'. Play it safe by handling it both.
// TODO: ensure we never get null.
// TODO: pass a flag instead of inferring if the output is dalvik cache.
return oat_dir == nullptr || oat_dir[0] == '!';
}
// Best-effort check whether we can fit the the path into our buffers.
// Note: the cache path will require an additional 5 bytes for ".swap", but we'll try to run
// without a swap file, if necessary. Reference profiles file also add an extra ".prof"
// extension to the cache path (5 bytes).
// TODO(calin): move away from char* buffers and PKG_PATH_MAX.
static bool validate_dex_path_size(const std::string& dex_path) {
if (dex_path.size() >= (PKG_PATH_MAX - 8)) {
LOG(ERROR) << "dex_path too long: " << dex_path;
return false;
}
return true;
}
static bool create_oat_out_path(const char* apk_path, const char* instruction_set,
const char* oat_dir, bool is_secondary_dex, /*out*/ char* out_oat_path) {
if (!validate_dex_path_size(apk_path)) {
return false;
}
if (!IsOutputDalvikCache(oat_dir)) {
// Oat dirs for secondary dex files are already validated.
if (!is_secondary_dex && validate_apk_path(oat_dir)) {
ALOGE("cannot validate apk path with oat_dir '%s'\n", oat_dir);
return false;
}
if (!calculate_oat_file_path(out_oat_path, oat_dir, apk_path, instruction_set)) {
return false;
}
} else {
if (!create_cache_path(out_oat_path, apk_path, instruction_set)) {
return false;
}
}
return true;
}
// (re)Creates the app image if needed.
RestorableFile maybe_open_app_image(const std::string& out_oat_path, bool generate_app_image,
bool is_public, int uid, bool is_secondary_dex) {
const std::string image_path = create_image_filename(out_oat_path);
if (image_path.empty()) {
// Happens when the out_oat_path has an unknown extension.
return RestorableFile();
}
// Not enabled, exit.
if (!generate_app_image) {
RestorableFile::RemoveAllFiles(image_path);
return RestorableFile();
}
std::string app_image_format = GetProperty("dalvik.vm.appimageformat", "");
if (app_image_format.empty()) {
RestorableFile::RemoveAllFiles(image_path);
return RestorableFile();
}
// If the app is already running and we modify the image file, it can cause crashes
// (b/27493510).
RestorableFile image_file = RestorableFile::CreateWritableFile(image_path,
/*permissions*/ 0600);
if (image_file.fd() < 0) {
// Could not create application image file. Go on since we can compile without it.
LOG(ERROR) << "installd could not create '" << image_path
<< "' for image file during dexopt";
// If we have a valid image file path but cannot create tmp file, reset it.
image_file.reset();
} else if (!set_permissions_and_ownership(
image_file.fd(), is_public, uid, image_path.c_str(), is_secondary_dex)) {
ALOGE("installd cannot set owner '%s' for image during dexopt\n", image_path.c_str());
image_file.reset();
}
return image_file;
}
// Creates the dexopt swap file if necessary and return its fd.
// Returns -1 if there's no need for a swap or in case of errors.
unique_fd maybe_open_dexopt_swap_file(const std::string& out_oat_path) {
if (!ShouldUseSwapFileForDexopt()) {
return invalid_unique_fd();
}
auto swap_file_name = out_oat_path + ".swap";
unique_fd swap_fd(open_output_file(
swap_file_name.c_str(), /*recreate*/true, /*permissions*/0600));
if (swap_fd.get() < 0) {
// Could not create swap file. Optimistically go on and hope that we can compile
// without it.
ALOGE("installd could not create '%s' for swap during dexopt\n", swap_file_name.c_str());
} else {
// Immediately unlink. We don't really want to hit flash.
if (unlink(swap_file_name.c_str()) < 0) {
PLOG(ERROR) << "Couldn't unlink swap file " << swap_file_name;
}
}
return swap_fd;
}
// Opens the reference profiles if needed.
// Note that the reference profile might not exist so it's OK if the fd will be -1.
UniqueFile maybe_open_reference_profile(const std::string& pkgname,
const std::string& dex_path, const char* profile_name, bool profile_guided,
bool is_public, int uid, bool is_secondary_dex) {
// If we are not profile guided compilation, or we are compiling system server
// do not bother to open the profiles; we won't be using them.
if (!profile_guided || (pkgname[0] == '*')) {
return UniqueFile();
}
// If this is a secondary dex path which is public do not open the profile.
// We cannot compile public secondary dex paths with profiles. That's because
// it will expose how the dex files are used by their owner.
//
// Note that the PackageManager is responsible to set the is_public flag for
// primary apks and we do not check it here. In some cases, e.g. when
// compiling with a public profile from the .dm file the PackageManager will
// set is_public toghether with the profile guided compilation.
if (is_secondary_dex && is_public) {
return UniqueFile();
}
// Open reference profile in read only mode as dex2oat does not get write permissions.
std::string location;
if (is_secondary_dex) {
location = dex_path;
} else {
if (profile_name == nullptr) {
// This path is taken for system server re-compilation lunched from ZygoteInit.
return UniqueFile();
} else {
location = profile_name;
}
}
return open_reference_profile_as_unique_file(uid, pkgname, location, is_secondary_dex);
}
// Opens the vdex files and assigns the input fd to in_vdex_wrapper and the output fd to
// out_vdex_wrapper. Returns true for success or false in case of errors.
bool open_vdex_files_for_dex2oat(const char* apk_path, const char* out_oat_path, int dexopt_needed,
const char* instruction_set, bool is_public, int uid,
bool is_secondary_dex, bool profile_guided,
UniqueFile* in_vdex_wrapper, RestorableFile* out_vdex_wrapper) {
CHECK(in_vdex_wrapper != nullptr);
CHECK(out_vdex_wrapper != nullptr);
// Open the existing VDEX. We do this before creating the new output VDEX, which will
// unlink the old one.
char in_odex_path[PKG_PATH_MAX];
int dexopt_action = abs(dexopt_needed);
bool is_odex_location = dexopt_needed < 0;
// Infer the name of the output VDEX.
const std::string out_vdex_path_str = create_vdex_filename(out_oat_path);
if (out_vdex_path_str.empty()) {
return false;
}
// Create work file first. All files will be deleted when it fails.
*out_vdex_wrapper = RestorableFile::CreateWritableFile(out_vdex_path_str,
/*permissions*/ 0644);
if (out_vdex_wrapper->fd() < 0) {
ALOGE("installd cannot open vdex '%s' during dexopt\n", out_vdex_path_str.c_str());
return false;
}
bool update_vdex_in_place = false;
if (dexopt_action != DEX2OAT_FROM_SCRATCH) {
// Open the possibly existing vdex. If none exist, we pass -1 to dex2oat for input-vdex-fd.
const char* path = nullptr;
if (is_odex_location) {
if (calculate_odex_file_path(in_odex_path, apk_path, instruction_set)) {
path = in_odex_path;
} else {
ALOGE("installd cannot compute input vdex location for '%s'\n", apk_path);
return false;
}
} else {
path = out_oat_path;
}
std::string in_vdex_path_str = create_vdex_filename(path);
if (in_vdex_path_str.empty()) {
ALOGE("installd cannot compute input vdex location for '%s'\n", path);
return false;
}
// We can update in place when all these conditions are met:
// 1) The vdex location to write to is the same as the vdex location to read (vdex files
// on /system typically cannot be updated in place).
// 2) We dex2oat due to boot image change, because we then know the existing vdex file
// cannot be currently used by a running process.
// 3) We are not doing a profile guided compilation, because dexlayout requires two
// different vdex files to operate.
update_vdex_in_place =
(in_vdex_path_str == out_vdex_path_str) &&
(dexopt_action == DEX2OAT_FOR_BOOT_IMAGE) &&
!profile_guided;
if (update_vdex_in_place) {
// dex2oat marks it invalid anyway. So delete it and set work file fd.
unlink(in_vdex_path_str.c_str());
// Open the file read-write to be able to update it.
in_vdex_wrapper->reset(out_vdex_wrapper->fd(), in_vdex_path_str);
// Disable auto close for the in wrapper fd (it will be done when destructing the out
// wrapper).
in_vdex_wrapper->DisableAutoClose();
} else {
in_vdex_wrapper->reset(open(in_vdex_path_str.c_str(), O_RDONLY, 0),
in_vdex_path_str);
}
}
if (!set_permissions_and_ownership(out_vdex_wrapper->fd(), is_public, uid,
out_vdex_path_str.c_str(), is_secondary_dex)) {
ALOGE("installd cannot set owner '%s' for vdex during dexopt\n", out_vdex_path_str.c_str());
return false;
}
// If we got here we successfully opened the vdex files.
return true;
}
// Opens the output oat file for the given apk.
RestorableFile open_oat_out_file(const char* apk_path, const char* oat_dir, bool is_public, int uid,
const char* instruction_set, bool is_secondary_dex) {
char out_oat_path[PKG_PATH_MAX];
if (!create_oat_out_path(apk_path, instruction_set, oat_dir, is_secondary_dex, out_oat_path)) {
return RestorableFile();
}
RestorableFile oat = RestorableFile::CreateWritableFile(out_oat_path, /*permissions*/ 0644);
if (oat.fd() < 0) {
PLOG(ERROR) << "installd cannot open output during dexopt" << out_oat_path;
} else if (!set_permissions_and_ownership(
oat.fd(), is_public, uid, out_oat_path, is_secondary_dex)) {
ALOGE("installd cannot set owner '%s' for output during dexopt\n", out_oat_path);
oat.reset();
}
return oat;
}
// Creates RDONLY fds for oat and vdex files, if exist.
// Returns false if it fails to create oat out path for the given apk path.
// Note that the method returns true even if the files could not be opened.
bool maybe_open_oat_and_vdex_file(const std::string& apk_path,
const std::string& oat_dir,
const std::string& instruction_set,
bool is_secondary_dex,
unique_fd* oat_file_fd,
unique_fd* vdex_file_fd) {
char oat_path[PKG_PATH_MAX];
if (!create_oat_out_path(apk_path.c_str(),
instruction_set.c_str(),
oat_dir.c_str(),
is_secondary_dex,
oat_path)) {
LOG(ERROR) << "Could not create oat out path for "
<< apk_path << " with oat dir " << oat_dir;
return false;
}
oat_file_fd->reset(open(oat_path, O_RDONLY));
if (oat_file_fd->get() < 0) {
PLOG(INFO) << "installd cannot open oat file during dexopt" << oat_path;
}
std::string vdex_filename = create_vdex_filename(oat_path);
vdex_file_fd->reset(open(vdex_filename.c_str(), O_RDONLY));
if (vdex_file_fd->get() < 0) {
PLOG(INFO) << "installd cannot open vdex file during dexopt" << vdex_filename;
}
return true;
}
// Runs (execv) dexoptanalyzer on the given arguments.
// The analyzer will check if the dex_file needs to be (re)compiled to match the compiler_filter.
// If this is for a profile guided compilation, profile_was_updated will tell whether or not
// the profile has changed.
class RunDexoptAnalyzer : public ExecVHelper {
public:
RunDexoptAnalyzer(const std::string& dex_file,
int vdex_fd,
int oat_fd,
int zip_fd,
const std::string& instruction_set,
const std::string& compiler_filter,
int profile_analysis_result,
bool downgrade,
const char* class_loader_context,
const std::string& class_loader_context_fds) {
CHECK_GE(zip_fd, 0);
// We always run the analyzer in the background job.
const char* dexoptanalyzer_bin = select_execution_binary(
kDexoptanalyzerPath, kDexoptanalyzerDebugPath, /*background_job_compile=*/ true);
std::string dex_file_arg = "--dex-file=" + dex_file;
std::string oat_fd_arg = "--oat-fd=" + std::to_string(oat_fd);
std::string vdex_fd_arg = "--vdex-fd=" + std::to_string(vdex_fd);
std::string zip_fd_arg = "--zip-fd=" + std::to_string(zip_fd);
std::string isa_arg = "--isa=" + instruction_set;
std::string compiler_filter_arg = "--compiler-filter=" + compiler_filter;
std::string profile_analysis_arg = "--profile-analysis-result="
+ std::to_string(profile_analysis_result);
const char* downgrade_flag = "--downgrade";
std::string class_loader_context_arg = "--class-loader-context=";
if (class_loader_context != nullptr) {
class_loader_context_arg += class_loader_context;
}
std::string class_loader_context_fds_arg = "--class-loader-context-fds=";
if (!class_loader_context_fds.empty()) {
class_loader_context_fds_arg += class_loader_context_fds;
}
// program name, dex file, isa, filter
AddArg(dex_file_arg);
AddArg(isa_arg);
AddArg(compiler_filter_arg);
if (oat_fd >= 0) {
AddArg(oat_fd_arg);
}
if (vdex_fd >= 0) {
AddArg(vdex_fd_arg);
}
AddArg(zip_fd_arg);
AddArg(profile_analysis_arg);
if (downgrade) {
AddArg(downgrade_flag);
}
if (class_loader_context != nullptr) {
AddArg(class_loader_context_arg);
if (!class_loader_context_fds.empty()) {
AddArg(class_loader_context_fds_arg);
}
}
// On-device signing related. odsign sets the system property odsign.verification.success if
// AOT artifacts have the expected signatures.
const bool trust_art_apex_data_files =
::android::base::GetBoolProperty("odsign.verification.success", false);
if (!trust_art_apex_data_files) {
AddRuntimeArg("-Xdeny-art-apex-data-files");
}
PrepareArgs(dexoptanalyzer_bin);
}
// Dexoptanalyzer mode which flattens the given class loader context and
// prints a list of its dex files in that flattened order.
RunDexoptAnalyzer(const char* class_loader_context) {
CHECK(class_loader_context != nullptr);
// We always run the analyzer in the background job.
const char* dexoptanalyzer_bin = select_execution_binary(
kDexoptanalyzerPath, kDexoptanalyzerDebugPath, /*background_job_compile=*/ true);
AddArg("--flatten-class-loader-context");
AddArg(std::string("--class-loader-context=") + class_loader_context);
PrepareArgs(dexoptanalyzer_bin);
}
};
// Prepares the oat dir for the secondary dex files.
static bool prepare_secondary_dex_oat_dir(const std::string& dex_path, int uid,
const char* instruction_set) {
unsigned long dirIndex = dex_path.rfind('/');
if (dirIndex == std::string::npos) {
LOG(ERROR ) << "Unexpected dir structure for secondary dex " << dex_path;
return false;
}
std::string dex_dir = dex_path.substr(0, dirIndex);
// Create oat file output directory.
mode_t oat_dir_mode = S_IRWXU | S_IRWXG | S_IXOTH;
if (prepare_app_cache_dir(dex_dir, "oat", oat_dir_mode, uid, uid) != 0) {
LOG(ERROR) << "Could not prepare oat dir for secondary dex: " << dex_path;
return false;
}
char oat_dir[PKG_PATH_MAX];
snprintf(oat_dir, PKG_PATH_MAX, "%s/oat", dex_dir.c_str());
if (prepare_app_cache_dir(oat_dir, instruction_set, oat_dir_mode, uid, uid) != 0) {
LOG(ERROR) << "Could not prepare oat/isa dir for secondary dex: " << dex_path;
return false;
}
return true;
}
// Return codes for identifying the reason why dexoptanalyzer was not invoked when processing
// secondary dex files. This return codes are returned by the child process created for
// analyzing secondary dex files in process_secondary_dex_dexopt.
enum DexoptAnalyzerSkipCodes {
// The dexoptanalyzer was not invoked because of validation or IO errors.
// Specific errors are encoded in the name.
kSecondaryDexDexoptAnalyzerSkippedValidatePath = 200,
kSecondaryDexDexoptAnalyzerSkippedOpenZip = 201,
kSecondaryDexDexoptAnalyzerSkippedPrepareDir = 202,
kSecondaryDexDexoptAnalyzerSkippedOpenOutput = 203,
kSecondaryDexDexoptAnalyzerSkippedFailExec = 204,
// The dexoptanalyzer was not invoked because the dex file does not exist anymore.
kSecondaryDexDexoptAnalyzerSkippedNoFile = 205,
};
// Verifies the result of analyzing secondary dex files from process_secondary_dex_dexopt.
// If the result is valid returns true and sets dexopt_needed_out to a valid value.
// Returns false for errors or unexpected result values.
// The result is expected to be either one of SECONDARY_DEX_* codes or a valid exit code
// of dexoptanalyzer.
static bool process_secondary_dexoptanalyzer_result(const std::string& dex_path, int result,
int* dexopt_needed_out, std::string* error_msg) {
// The result values are defined in dexoptanalyzer.
switch (result) {
case 0: // dexoptanalyzer: no_dexopt_needed
*dexopt_needed_out = NO_DEXOPT_NEEDED; return true;
case 1: // dexoptanalyzer: dex2oat_from_scratch
*dexopt_needed_out = DEX2OAT_FROM_SCRATCH; return true;
case 4: // dexoptanalyzer: dex2oat_for_bootimage_odex
*dexopt_needed_out = -DEX2OAT_FOR_BOOT_IMAGE; return true;
case 5: // dexoptanalyzer: dex2oat_for_filter_odex
*dexopt_needed_out = -DEX2OAT_FOR_FILTER; return true;
case 2: // dexoptanalyzer: dex2oat_for_bootimage_oat
case 3: // dexoptanalyzer: dex2oat_for_filter_oat
*error_msg = StringPrintf("Dexoptanalyzer return the status of an oat file."
" Expected odex file status for secondary dex %s"
" : dexoptanalyzer result=%d",
dex_path.c_str(),
result);
return false;
}
// Use a second switch for enum switch-case analysis.
switch (static_cast<DexoptAnalyzerSkipCodes>(result)) {
case kSecondaryDexDexoptAnalyzerSkippedNoFile:
// If the file does not exist there's no need for dexopt.
*dexopt_needed_out = NO_DEXOPT_NEEDED;
return true;
case kSecondaryDexDexoptAnalyzerSkippedValidatePath:
*error_msg = "Dexoptanalyzer path validation failed";
return false;
case kSecondaryDexDexoptAnalyzerSkippedOpenZip:
*error_msg = "Dexoptanalyzer open zip failed";
return false;
case kSecondaryDexDexoptAnalyzerSkippedPrepareDir:
*error_msg = "Dexoptanalyzer dir preparation failed";
return false;
case kSecondaryDexDexoptAnalyzerSkippedOpenOutput:
*error_msg = "Dexoptanalyzer open output failed";
return false;
case kSecondaryDexDexoptAnalyzerSkippedFailExec:
*error_msg = "Dexoptanalyzer failed to execute";
return false;
}
*error_msg = StringPrintf("Unexpected result from analyzing secondary dex %s result=%d",
dex_path.c_str(),
result);
return false;
}
enum SecondaryDexAccess {
kSecondaryDexAccessReadOk = 0,
kSecondaryDexAccessDoesNotExist = 1,
kSecondaryDexAccessPermissionError = 2,
kSecondaryDexAccessIOError = 3
};
static SecondaryDexAccess check_secondary_dex_access(const std::string& dex_path) {
// Check if the path exists and can be read. If not, there's nothing to do.
if (access(dex_path.c_str(), R_OK) == 0) {
return kSecondaryDexAccessReadOk;
} else {
if (errno == ENOENT) {
async_safe_format_log(ANDROID_LOG_INFO, LOG_TAG,
"Secondary dex does not exist: %s", dex_path.c_str());
return kSecondaryDexAccessDoesNotExist;
} else {
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG,
"Could not access secondary dex: %s (%d)", dex_path.c_str(), errno);
return errno == EACCES
? kSecondaryDexAccessPermissionError
: kSecondaryDexAccessIOError;
}
}
}
static bool is_file_public(const std::string& filename) {
struct stat file_stat;
if (stat(filename.c_str(), &file_stat) == 0) {
return (file_stat.st_mode & S_IROTH) != 0;
}
return false;
}
// Create the oat file structure for the secondary dex 'dex_path' and assign
// the individual path component to the 'out_' parameters.
static bool create_secondary_dex_oat_layout(const std::string& dex_path, const std::string& isa,
char* out_oat_dir, char* out_oat_isa_dir, char* out_oat_path, std::string* error_msg) {
size_t dirIndex = dex_path.rfind('/');
if (dirIndex == std::string::npos) {
*error_msg = std::string("Unexpected dir structure for dex file ").append(dex_path);
return false;
}
// TODO(calin): we have similar computations in at lest 3 other places
// (InstalldNativeService, otapropt and dexopt). Unify them and get rid of snprintf by
// using string append.
std::string apk_dir = dex_path.substr(0, dirIndex);
snprintf(out_oat_dir, PKG_PATH_MAX, "%s/oat", apk_dir.c_str());
snprintf(out_oat_isa_dir, PKG_PATH_MAX, "%s/%s", out_oat_dir, isa.c_str());
if (!create_oat_out_path(dex_path.c_str(), isa.c_str(), out_oat_dir,
/*is_secondary_dex*/true, out_oat_path)) {
*error_msg = std::string("Could not create oat path for secondary dex ").append(dex_path);
return false;
}
return true;
}
// Validate that the dexopt_flags contain a valid storage flag and convert that to an installd
// recognized storage flags (FLAG_STORAGE_CE or FLAG_STORAGE_DE).
static bool validate_dexopt_storage_flags(int dexopt_flags,
int* out_storage_flag,
std::string* error_msg) {
if ((dexopt_flags & DEXOPT_STORAGE_CE) != 0) {
*out_storage_flag = FLAG_STORAGE_CE;
if ((dexopt_flags & DEXOPT_STORAGE_DE) != 0) {
*error_msg = "Ambiguous secondary dex storage flag. Both, CE and DE, flags are set";
return false;
}
} else if ((dexopt_flags & DEXOPT_STORAGE_DE) != 0) {
*out_storage_flag = FLAG_STORAGE_DE;
} else {
*error_msg = "Secondary dex storage flag must be set";
return false;
}
return true;
}
static bool get_class_loader_context_dex_paths(const char* class_loader_context, int uid,
/* out */ std::vector<std::string>* context_dex_paths) {
if (class_loader_context == nullptr) {
return true;
}
LOG(DEBUG) << "Getting dex paths for context " << class_loader_context;
// Pipe to get the hash result back from our child process.
unique_fd pipe_read, pipe_write;
if (!Pipe(&pipe_read, &pipe_write)) {
PLOG(ERROR) << "Failed to create pipe";
return false;
}
pid_t pid = fork();
if (pid == 0) {
// child -- drop privileges before continuing.
drop_capabilities(uid);
// Route stdout to `pipe_write`
while ((dup2(pipe_write, STDOUT_FILENO) == -1) && (errno == EINTR)) {}
pipe_write.reset();
pipe_read.reset();
RunDexoptAnalyzer run_dexopt_analyzer(class_loader_context);
run_dexopt_analyzer.Exec(kSecondaryDexDexoptAnalyzerSkippedFailExec);
}
/* parent */
pipe_write.reset();
std::string str_dex_paths;
if (!ReadFdToString(pipe_read, &str_dex_paths)) {
PLOG(ERROR) << "Failed to read from pipe";
return false;
}
pipe_read.reset();
int return_code = wait_child_with_timeout(pid, kShortTimeoutMs);
if (!WIFEXITED(return_code)) {
PLOG(ERROR) << "Error waiting for child dexoptanalyzer process";
return false;
}
constexpr int kFlattenClassLoaderContextSuccess = 50;
return_code = WEXITSTATUS(return_code);
if (return_code != kFlattenClassLoaderContextSuccess) {
LOG(ERROR) << "Dexoptanalyzer could not flatten class loader context, code=" << return_code;
return false;
}
if (!str_dex_paths.empty()) {
*context_dex_paths = android::base::Split(str_dex_paths, ":");
}
return true;
}
static int open_dex_paths(const std::vector<std::string>& dex_paths,
/* out */ std::vector<unique_fd>* zip_fds, /* out */ std::string* error_msg) {
for (const std::string& dex_path : dex_paths) {
zip_fds->emplace_back(open(dex_path.c_str(), O_RDONLY));
if (zip_fds->back().get() < 0) {
*error_msg = StringPrintf(
"installd cannot open '%s' for input during dexopt", dex_path.c_str());
if (errno == ENOENT) {
return kSecondaryDexDexoptAnalyzerSkippedNoFile;
} else {
return kSecondaryDexDexoptAnalyzerSkippedOpenZip;
}
}
}
return 0;
}
static std::string join_fds(const std::vector<unique_fd>& fds) {
std::stringstream ss;
bool is_first = true;
for (const unique_fd& fd : fds) {
if (is_first) {
is_first = false;
} else {
ss << ":";
}
ss << fd.get();
}
return ss.str();
}
void control_dexopt_blocking(bool block) {
dexopt_status_->control_dexopt_blocking(block);
}
bool is_dexopt_blocked() {
return dexopt_status_->is_dexopt_blocked();
}
enum SecondaryDexOptProcessResult {
kSecondaryDexOptProcessOk = 0,
kSecondaryDexOptProcessCancelled = 1,
kSecondaryDexOptProcessError = 2
};
// Processes the dex_path as a secondary dex files and return true if the path dex file should
// be compiled.
// Returns: kSecondaryDexOptProcessError for errors (logged).
// kSecondaryDexOptProcessOk if the secondary dex path was process successfully.
// kSecondaryDexOptProcessCancelled if the processing was cancelled.
//
// When returning kSecondaryDexOptProcessOk, the output parameters will be:
// - is_public_out: whether or not the oat file should not be made public
// - dexopt_needed_out: valid OatFileAsssitant::DexOptNeeded
// - oat_dir_out: the oat dir path where the oat file should be stored
static SecondaryDexOptProcessResult process_secondary_dex_dexopt(const std::string& dex_path,
const char* pkgname, int dexopt_flags, const char* volume_uuid, int uid,
const char* instruction_set, const char* compiler_filter, bool* is_public_out,
int* dexopt_needed_out, std::string* oat_dir_out, bool downgrade,
const char* class_loader_context, const std::vector<std::string>& context_dex_paths,
/* out */ std::string* error_msg) {
LOG(DEBUG) << "Processing secondary dex path " << dex_path;
if (dexopt_status_->is_dexopt_blocked()) {
return kSecondaryDexOptProcessCancelled;
}
int storage_flag;
if (!validate_dexopt_storage_flags(dexopt_flags, &storage_flag, error_msg)) {
LOG(ERROR) << *error_msg;
return kSecondaryDexOptProcessError;
}
// Compute the oat dir as it's not easy to extract it from the child computation.
char oat_path[PKG_PATH_MAX];
char oat_dir[PKG_PATH_MAX];
char oat_isa_dir[PKG_PATH_MAX];
if (!create_secondary_dex_oat_layout(
dex_path, instruction_set, oat_dir, oat_isa_dir, oat_path, error_msg)) {
LOG(ERROR) << "Could not create secondary odex layout: " << *error_msg;
return kSecondaryDexOptProcessError;
}
oat_dir_out->assign(oat_dir);
bool cancelled = false;
pid_t pid = dexopt_status_->check_cancellation_and_fork(&cancelled);
if (cancelled) {
return kSecondaryDexOptProcessCancelled;
}
if (pid == 0) {
// child -- drop privileges before continuing.
drop_capabilities(uid);
// Validate the path structure.
if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid, uid, storage_flag)) {
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG,
"Could not validate secondary dex path %s", dex_path.c_str());
_exit(kSecondaryDexDexoptAnalyzerSkippedValidatePath);
}
// Open the dex file.
unique_fd zip_fd;
zip_fd.reset(open(dex_path.c_str(), O_RDONLY));
if (zip_fd.get() < 0) {
if (errno == ENOENT) {
_exit(kSecondaryDexDexoptAnalyzerSkippedNoFile);
} else {
_exit(kSecondaryDexDexoptAnalyzerSkippedOpenZip);
}
}
// Open class loader context dex files.
std::vector<unique_fd> context_zip_fds;
int open_dex_paths_rc = open_dex_paths(context_dex_paths, &context_zip_fds, error_msg);
if (open_dex_paths_rc != 0) {
_exit(open_dex_paths_rc);
}
// Prepare the oat directories.
if (!prepare_secondary_dex_oat_dir(dex_path, uid, instruction_set)) {
_exit(kSecondaryDexDexoptAnalyzerSkippedPrepareDir);
}
// Open the vdex/oat files if any.
unique_fd oat_file_fd;
unique_fd vdex_file_fd;
if (!maybe_open_oat_and_vdex_file(dex_path,
*oat_dir_out,
instruction_set,
true /* is_secondary_dex */,
&oat_file_fd,
&vdex_file_fd)) {
_exit(kSecondaryDexDexoptAnalyzerSkippedOpenOutput);
}
// Analyze profiles.
int profile_analysis_result = analyze_profiles(uid, pkgname, dex_path,
/*is_secondary_dex*/true);
// Run dexoptanalyzer to get dexopt_needed code. This is not expected to return.
// Note that we do not do it before the fork since opening the files is required to happen
// after forking.
RunDexoptAnalyzer run_dexopt_analyzer(dex_path,
vdex_file_fd.get(),
oat_file_fd.get(),
zip_fd.get(),
instruction_set,
compiler_filter,
profile_analysis_result,
downgrade,
class_loader_context,
join_fds(context_zip_fds));
run_dexopt_analyzer.Exec(kSecondaryDexDexoptAnalyzerSkippedFailExec);
}
/* parent */
int result = wait_child_with_timeout(pid, kShortTimeoutMs);
cancelled = dexopt_status_->check_if_killed_and_remove_dexopt_pid(pid);
if (!WIFEXITED(result)) {
if ((WTERMSIG(result) == SIGKILL) && cancelled) {
LOG(INFO) << "dexoptanalyzer cancelled for path:" << dex_path;
return kSecondaryDexOptProcessCancelled;
}
*error_msg = StringPrintf("dexoptanalyzer failed for path %s: 0x%04x",
dex_path.c_str(),
result);
LOG(ERROR) << *error_msg;
return kSecondaryDexOptProcessError;
}
result = WEXITSTATUS(result);
// Check that we successfully executed dexoptanalyzer.
bool success = process_secondary_dexoptanalyzer_result(dex_path,
result,
dexopt_needed_out,
error_msg);
if (!success) {
LOG(ERROR) << *error_msg;
}
LOG(DEBUG) << "Processed secondary dex file " << dex_path << " result=" << result;
// Run dexopt only if needed or forced.
// Note that dexoptanalyzer is executed even if force compilation is enabled (because it
// makes the code simpler; force compilation is only needed during tests).
if (success &&
(result != kSecondaryDexDexoptAnalyzerSkippedNoFile) &&
((dexopt_flags & DEXOPT_FORCE) != 0)) {
*dexopt_needed_out = DEX2OAT_FROM_SCRATCH;
}
// Check if we should make the oat file public.
// Note that if the dex file is not public the compiled code cannot be made public.
// It is ok to check this flag outside in the parent process.
*is_public_out = ((dexopt_flags & DEXOPT_PUBLIC) != 0) && is_file_public(dex_path);
return success ? kSecondaryDexOptProcessOk : kSecondaryDexOptProcessError;
}
static std::string format_dexopt_error(int status, const char* dex_path) {
if (WIFEXITED(status)) {
int int_code = WEXITSTATUS(status);
const char* code_name = get_return_code_name(static_cast<DexoptReturnCodes>(int_code));
if (code_name != nullptr) {
return StringPrintf("Dex2oat invocation for %s failed: %s", dex_path, code_name);
}
}
return StringPrintf("Dex2oat invocation for %s failed with 0x%04x", dex_path, status);
}
int dexopt(const char* dex_path, uid_t uid, const char* pkgname, const char* instruction_set,
int dexopt_needed, const char* oat_dir, int dexopt_flags, const char* compiler_filter,
const char* volume_uuid, const char* class_loader_context, const char* se_info,
bool downgrade, int target_sdk_version, const char* profile_name,
const char* dex_metadata_path, const char* compilation_reason, std::string* error_msg,
/* out */ bool* completed) {
CHECK(pkgname != nullptr);
CHECK(pkgname[0] != 0);
CHECK(error_msg != nullptr);
CHECK_EQ(dexopt_flags & ~DEXOPT_MASK, 0)
<< "dexopt flags contains unknown fields: " << dexopt_flags;
bool local_completed; // local placeholder for nullptr case
if (completed == nullptr) {
completed = &local_completed;
}
*completed = true;
if (dexopt_status_->is_dexopt_blocked()) {
*completed = false;
return 0;
}
if (!validate_dex_path_size(dex_path)) {
*error_msg = StringPrintf("Failed to validate %s", dex_path);
return -1;
}
if (class_loader_context != nullptr && strlen(class_loader_context) > PKG_PATH_MAX) {
*error_msg = StringPrintf("Class loader context exceeds the allowed size: %s",
class_loader_context);
LOG(ERROR) << *error_msg;
return -1;
}
bool is_public = (dexopt_flags & DEXOPT_PUBLIC) != 0;
bool debuggable = (dexopt_flags & DEXOPT_DEBUGGABLE) != 0;
bool boot_complete = (dexopt_flags & DEXOPT_BOOTCOMPLETE) != 0;
bool profile_guided = (dexopt_flags & DEXOPT_PROFILE_GUIDED) != 0;
bool is_secondary_dex = (dexopt_flags & DEXOPT_SECONDARY_DEX) != 0;
bool background_job_compile = (dexopt_flags & DEXOPT_IDLE_BACKGROUND_JOB) != 0;
bool enable_hidden_api_checks = (dexopt_flags & DEXOPT_ENABLE_HIDDEN_API_CHECKS) != 0;
bool generate_compact_dex = (dexopt_flags & DEXOPT_GENERATE_COMPACT_DEX) != 0;
bool generate_app_image = (dexopt_flags & DEXOPT_GENERATE_APP_IMAGE) != 0;
bool for_restore = (dexopt_flags & DEXOPT_FOR_RESTORE) != 0;
// Check if we're dealing with a secondary dex file and if we need to compile it.
std::string oat_dir_str;
std::vector<std::string> context_dex_paths;
if (is_secondary_dex) {
if (!get_class_loader_context_dex_paths(class_loader_context, uid, &context_dex_paths)) {
*error_msg = "Failed acquiring context dex paths";
return -1; // We had an error, logged in the process method.
}
SecondaryDexOptProcessResult sec_dex_result = process_secondary_dex_dexopt(dex_path,
pkgname, dexopt_flags, volume_uuid, uid,instruction_set, compiler_filter,
&is_public, &dexopt_needed, &oat_dir_str, downgrade, class_loader_context,
context_dex_paths, error_msg);
if (sec_dex_result == kSecondaryDexOptProcessOk) {
oat_dir = oat_dir_str.c_str();
if (dexopt_needed == NO_DEXOPT_NEEDED) {
*completed = true;
return 0; // Nothing to do, report success.
}
} else if (sec_dex_result == kSecondaryDexOptProcessCancelled) {
// cancelled, not an error.
*completed = false;
return 0;
} else {
if (error_msg->empty()) { // TODO: Make this a CHECK.
*error_msg = "Failed processing secondary.";
}
return -1; // We had an error, logged in the process method.
}
} else {
// Currently these flags are only used for secondary dex files.
// Verify that they are not set for primary apks.
CHECK((dexopt_flags & DEXOPT_STORAGE_CE) == 0);
CHECK((dexopt_flags & DEXOPT_STORAGE_DE) == 0);
}
// Open the input file.
UniqueFile in_dex(open(dex_path, O_RDONLY, 0), dex_path);
if (in_dex.fd() < 0) {
*error_msg = StringPrintf("installd cannot open '%s' for input during dexopt", dex_path);
LOG(ERROR) << *error_msg;
return -1;
}
// Open class loader context dex files.
std::vector<unique_fd> context_input_fds;
if (open_dex_paths(context_dex_paths, &context_input_fds, error_msg) != 0) {
LOG(ERROR) << *error_msg;
return -1;
}
// Create the output OAT file.
RestorableFile out_oat =
open_oat_out_file(dex_path, oat_dir, is_public, uid, instruction_set, is_secondary_dex);
if (out_oat.fd() < 0) {
*error_msg = "Could not open out oat file.";
return -1;
}
// Open vdex files.
UniqueFile in_vdex;
RestorableFile out_vdex;
if (!open_vdex_files_for_dex2oat(dex_path, out_oat.path().c_str(), dexopt_needed,
instruction_set, is_public, uid, is_secondary_dex, profile_guided, &in_vdex,
&out_vdex)) {
*error_msg = "Could not open vdex files.";
return -1;
}
// Ensure that the oat dir and the compiler artifacts of secondary dex files have the correct
// selinux context (we generate them on the fly during the dexopt invocation and they don't
// fully inherit their parent context).
// Note that for primary apk the oat files are created before, in a separate installd
// call which also does the restorecon. TODO(calin): unify the paths.
if (is_secondary_dex) {
if (selinux_android_restorecon_pkgdir(oat_dir, se_info, uid,
SELINUX_ANDROID_RESTORECON_RECURSE)) {
*error_msg = std::string("Failed to restorecon ").append(oat_dir);
LOG(ERROR) << *error_msg;
return -1;
}
}
// Create a swap file if necessary.
unique_fd swap_fd = maybe_open_dexopt_swap_file(out_oat.path());
// Open the reference profile if needed.
UniqueFile reference_profile = maybe_open_reference_profile(
pkgname, dex_path, profile_name, profile_guided, is_public, uid, is_secondary_dex);
struct stat sbuf;
if (reference_profile.fd() == -1 ||
(fstat(reference_profile.fd(), &sbuf) != -1 && sbuf.st_size == 0)) {
// We don't create an app image with empty or non existing reference profile since there
// is no speedup from loading it in that case and instead will be a small overhead.
generate_app_image = false;
}
// Create the app image file if needed.
RestorableFile out_image = maybe_open_app_image(out_oat.path(), generate_app_image, is_public,
uid, is_secondary_dex);
UniqueFile dex_metadata;
if (dex_metadata_path != nullptr) {
dex_metadata.reset(TEMP_FAILURE_RETRY(open(dex_metadata_path, O_RDONLY | O_NOFOLLOW)),
dex_metadata_path);
if (dex_metadata.fd() < 0) {
PLOG(ERROR) << "Failed to open dex metadata file " << dex_metadata_path;
}
}
std::string jitzygote_flag = server_configurable_flags::GetServerConfigurableFlag(
RUNTIME_NATIVE_BOOT_NAMESPACE,
ENABLE_JITZYGOTE_IMAGE,
/*default_value=*/ "");
bool compile_without_image = jitzygote_flag == "true" || IsBootClassPathProfilingEnable() ||
force_compile_without_image();
// Decide whether to use dex2oat64.
bool use_dex2oat64 = false;
// Check whether the device even supports 64-bit ABIs.
if (!GetProperty("ro.product.cpu.abilist64", "").empty()) {
use_dex2oat64 = GetBoolProperty("dalvik.vm.dex2oat64.enabled", false);
}
const char* dex2oat_bin = select_execution_binary(
(use_dex2oat64 ? kDex2oat64Path : kDex2oat32Path),
(use_dex2oat64 ? kDex2oatDebug64Path : kDex2oatDebug32Path),
background_job_compile);
auto execv_helper = std::make_unique<ExecVHelper>();
LOG(VERBOSE) << "DexInv: --- BEGIN '" << dex_path << "' ---";
RunDex2Oat runner(dex2oat_bin, execv_helper.get());
runner.Initialize(out_oat.GetUniqueFile(), out_vdex.GetUniqueFile(), out_image.GetUniqueFile(),
in_dex, in_vdex, dex_metadata, reference_profile, class_loader_context,
join_fds(context_input_fds), swap_fd.get(), instruction_set, compiler_filter,
debuggable, boot_complete, for_restore, target_sdk_version,
enable_hidden_api_checks, generate_compact_dex, compile_without_image,
background_job_compile, compilation_reason);
bool cancelled = false;
pid_t pid = dexopt_status_->check_cancellation_and_fork(&cancelled);
if (cancelled) {
*completed = false;
reference_profile.DisableCleanup();
return 0;
}
if (pid == 0) {
// Need to set schedpolicy before dropping privileges
// for cgroup migration. See details at b/175178520.
SetDex2OatScheduling(boot_complete);
/* child -- drop privileges before continuing */
drop_capabilities(uid);
if (flock(out_oat.fd(), LOCK_EX | LOCK_NB) != 0) {
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, "flock(%s) failed",
out_oat.path().c_str());
_exit(DexoptReturnCodes::kFlock);
}
runner.Exec(DexoptReturnCodes::kDex2oatExec);
} else {
int res = wait_child_with_timeout(pid, kLongTimeoutMs);
bool cancelled = dexopt_status_->check_if_killed_and_remove_dexopt_pid(pid);
if (res == 0) {
LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' (success) ---";
} else {
if ((WTERMSIG(res) == SIGKILL) && cancelled) {
LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' --- cancelled";
// cancelled, not an error
*completed = false;
reference_profile.DisableCleanup();
return 0;
}
LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' --- status=0x"
<< std::hex << std::setw(4) << res << ", process failed";
*error_msg = format_dexopt_error(res, dex_path);
return res;
}
}
// dex2oat ran successfully, so profile is safe to keep.
reference_profile.DisableCleanup();
// We've been successful, commit work files.
// If committing (=renaming tmp to regular) fails, try to restore backup files.
// If restoring fails as well, as a last resort, remove all files.
if (!out_oat.CreateBackupFile() || !out_vdex.CreateBackupFile() ||
!out_image.CreateBackupFile()) {
// Renaming failure can mean that the original file may not be accessible from installd.
LOG(ERROR) << "Cannot create backup file from existing file, file in wrong state?"
<< ", out_oat:" << out_oat.path() << " ,out_vdex:" << out_vdex.path()
<< " ,out_image:" << out_image.path();
out_oat.ResetAndRemoveAllFiles();
out_vdex.ResetAndRemoveAllFiles();
out_image.ResetAndRemoveAllFiles();
return -1;
}
if (!out_oat.CommitWorkFile() || !out_vdex.CommitWorkFile() || !out_image.CommitWorkFile()) {
LOG(ERROR) << "Cannot commit, out_oat:" << out_oat.path()
<< " ,out_vdex:" << out_vdex.path() << " ,out_image:" << out_image.path();
if (!out_oat.RestoreBackupFile() || !out_vdex.RestoreBackupFile() ||
!out_image.RestoreBackupFile()) {
LOG(ERROR) << "Cannot cancel commit, out_oat:" << out_oat.path()
<< " ,out_vdex:" << out_vdex.path() << " ,out_image:" << out_image.path();
// Restoring failed.
out_oat.ResetAndRemoveAllFiles();
out_vdex.ResetAndRemoveAllFiles();
out_image.ResetAndRemoveAllFiles();
}
return -1;
}
// Now remove remaining backup files.
out_oat.RemoveBackupFile();
out_vdex.RemoveBackupFile();
out_image.RemoveBackupFile();
*completed = true;
return 0;
}
// Try to remove the given directory. Log an error if the directory exists
// and is empty but could not be removed.
static bool rmdir_if_empty(const char* dir) {
if (rmdir(dir) == 0) {
return true;
}
if (errno == ENOENT || errno == ENOTEMPTY) {
return true;
}
PLOG(ERROR) << "Failed to remove dir: " << dir;
return false;
}
// Try to unlink the given file. Log an error if the file exists and could not
// be unlinked.
static bool unlink_if_exists(const std::string& file) {
if (unlink(file.c_str()) == 0) {
return true;
}
if (errno == ENOENT) {
return true;
}
PLOG(ERROR) << "Could not unlink: " << file;
return false;
}
enum ReconcileSecondaryDexResult {
kReconcileSecondaryDexExists = 0,
kReconcileSecondaryDexCleanedUp = 1,
kReconcileSecondaryDexValidationError = 2,
kReconcileSecondaryDexCleanUpError = 3,
kReconcileSecondaryDexAccessIOError = 4,
};
// Reconcile the secondary dex 'dex_path' and its generated oat files.
// Return true if all the parameters are valid and the secondary dex file was
// processed successfully (i.e. the dex_path either exists, or if not, its corresponding
// oat/vdex/art files where deleted successfully). In this case, out_secondary_dex_exists
// will be true if the secondary dex file still exists. If the secondary dex file does not exist,
// the method cleans up any previously generated compiler artifacts (oat, vdex, art).
// Return false if there were errors during processing. In this case
// out_secondary_dex_exists will be set to false.
bool reconcile_secondary_dex_file(const std::string& dex_path,
const std::string& pkgname, int uid, const std::vector<std::string>& isas,
const std::optional<std::string>& volume_uuid, int storage_flag,
/*out*/bool* out_secondary_dex_exists) {
*out_secondary_dex_exists = false; // start by assuming the file does not exist.
if (isas.size() == 0) {
LOG(ERROR) << "reconcile_secondary_dex_file called with empty isas vector";
return false;
}
if (storage_flag != FLAG_STORAGE_CE && storage_flag != FLAG_STORAGE_DE) {
LOG(ERROR) << "reconcile_secondary_dex_file called with invalid storage_flag: "
<< storage_flag;
return false;
}
// As a security measure we want to unlink art artifacts with the reduced capabilities
// of the package user id. So we fork and drop capabilities in the child.
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(uid);
const char* volume_uuid_cstr = volume_uuid ? volume_uuid->c_str() : nullptr;
if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid_cstr,
uid, storage_flag)) {
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG,
"Could not validate secondary dex path %s", dex_path.c_str());
_exit(kReconcileSecondaryDexValidationError);
}
SecondaryDexAccess access_check = check_secondary_dex_access(dex_path);
switch (access_check) {
case kSecondaryDexAccessDoesNotExist:
// File does not exist. Proceed with cleaning.
break;
case kSecondaryDexAccessReadOk: _exit(kReconcileSecondaryDexExists);
case kSecondaryDexAccessIOError: _exit(kReconcileSecondaryDexAccessIOError);
case kSecondaryDexAccessPermissionError: _exit(kReconcileSecondaryDexValidationError);
default:
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG,
"Unexpected result from check_secondary_dex_access: %d", access_check);
_exit(kReconcileSecondaryDexValidationError);
}
// The secondary dex does not exist anymore or it's. Clear any generated files.
char oat_path[PKG_PATH_MAX];
char oat_dir[PKG_PATH_MAX];
char oat_isa_dir[PKG_PATH_MAX];
bool result = true;
for (size_t i = 0; i < isas.size(); i++) {
std::string error_msg;
if (!create_secondary_dex_oat_layout(
dex_path,isas[i], oat_dir, oat_isa_dir, oat_path, &error_msg)) {
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, "%s", error_msg.c_str());
_exit(kReconcileSecondaryDexValidationError);
}
// Delete oat/vdex/art files.
result = unlink_if_exists(oat_path) && result;
result = unlink_if_exists(create_vdex_filename(oat_path)) && result;
result = unlink_if_exists(create_image_filename(oat_path)) && result;
// Delete profiles.
std::string current_profile = create_current_profile_path(
multiuser_get_user_id(uid), pkgname, dex_path, /*is_secondary*/true);
std::string reference_profile = create_reference_profile_path(
pkgname, dex_path, /*is_secondary*/true);
result = unlink_if_exists(current_profile) && result;
result = unlink_if_exists(reference_profile) && result;
// We upgraded once the location of current profile for secondary dex files.
// Check for any previous left-overs and remove them as well.
std::string old_current_profile = dex_path + ".prof";
result = unlink_if_exists(old_current_profile);
// Try removing the directories as well, they might be empty.
result = rmdir_if_empty(oat_isa_dir) && result;
result = rmdir_if_empty(oat_dir) && result;
}
if (!result) {
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG,
"Could not validate secondary dex path %s", dex_path.c_str());
}
_exit(result ? kReconcileSecondaryDexCleanedUp : kReconcileSecondaryDexAccessIOError);
}
int return_code = wait_child_with_timeout(pid, kShortTimeoutMs);
if (!WIFEXITED(return_code)) {
LOG(WARNING) << "reconcile dex failed for location " << dex_path << ": " << return_code;
} else {
return_code = WEXITSTATUS(return_code);
}
LOG(DEBUG) << "Reconcile secondary dex path " << dex_path << " result=" << return_code;
switch (return_code) {
case kReconcileSecondaryDexCleanedUp:
case kReconcileSecondaryDexValidationError:
// If we couldn't validate assume the dex file does not exist.
// This will purge the entry from the PM records.
*out_secondary_dex_exists = false;
return true;
case kReconcileSecondaryDexExists:
*out_secondary_dex_exists = true;
return true;
case kReconcileSecondaryDexAccessIOError:
// We had an access IO error.
// Return false so that we can try again.
// The value of out_secondary_dex_exists does not matter in this case and by convention
// is set to false.
*out_secondary_dex_exists = false;
return false;
default:
LOG(ERROR) << "Unexpected code from reconcile_secondary_dex_file: " << return_code;
*out_secondary_dex_exists = false;
return false;
}
}
// Compute and return the hash (SHA-256) of the secondary dex file at dex_path.
// Returns true if all parameters are valid and the hash successfully computed and stored in
// out_secondary_dex_hash.
// Also returns true with an empty hash if the file does not currently exist or is not accessible to
// the app.
// For any other errors (e.g. if any of the parameters are invalid) returns false.
bool hash_secondary_dex_file(const std::string& dex_path, const std::string& pkgname, int uid,
const std::optional<std::string>& volume_uuid, int storage_flag,
std::vector<uint8_t>* out_secondary_dex_hash) {
out_secondary_dex_hash->clear();
const char* volume_uuid_cstr = volume_uuid ? volume_uuid->c_str() : nullptr;
if (storage_flag != FLAG_STORAGE_CE && storage_flag != FLAG_STORAGE_DE) {
LOG(ERROR) << "hash_secondary_dex_file called with invalid storage_flag: "
<< storage_flag;
return false;
}
// Pipe to get the hash result back from our child process.
unique_fd pipe_read, pipe_write;
if (!Pipe(&pipe_read, &pipe_write)) {
PLOG(ERROR) << "Failed to create pipe";
return false;
}
// Fork so that actual access to the files is done in the app's own UID, to ensure we only
// access data the app itself can access.
pid_t pid = fork();
if (pid == 0) {
// child -- drop privileges before continuing
drop_capabilities(uid);
pipe_read.reset();
if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid_cstr, uid, storage_flag)) {
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG,
"Could not validate secondary dex path %s", dex_path.c_str());
_exit(DexoptReturnCodes::kHashValidatePath);
}
unique_fd fd(TEMP_FAILURE_RETRY(open(dex_path.c_str(), O_RDONLY | O_CLOEXEC | O_NOFOLLOW)));
if (fd == -1) {
if (errno == EACCES || errno == ENOENT) {
// Not treated as an error.
_exit(0);
}
PLOG(ERROR) << "Failed to open secondary dex " << dex_path;
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to open secondary dex %s: %d", dex_path.c_str(), errno);
_exit(DexoptReturnCodes::kHashOpenPath);
}
SHA256_CTX ctx;
SHA256_Init(&ctx);
std::vector<uint8_t> buffer(65536);
while (true) {
ssize_t bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer.data(), buffer.size()));
if (bytes_read == 0) {
break;
} else if (bytes_read == -1) {
async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to read secondary dex %s: %d", dex_path.c_str(), errno);
_exit(DexoptReturnCodes::kHashReadDex);
}
SHA256_Update(&ctx, buffer.data(), bytes_read);
}
std::array<uint8_t, SHA256_DIGEST_LENGTH> hash;
SHA256_Final(hash.data(), &ctx);
if (!WriteFully(pipe_write, hash.data(), hash.size())) {
_exit(DexoptReturnCodes::kHashWrite);
}
_exit(0);
}
// parent
pipe_write.reset();
out_secondary_dex_hash->resize(SHA256_DIGEST_LENGTH);
if (!ReadFully(pipe_read, out_secondary_dex_hash->data(), out_secondary_dex_hash->size())) {
out_secondary_dex_hash->clear();
}
return wait_child_with_timeout(pid, kShortTimeoutMs) == 0;
}
// Helper for move_ab, so that we can have common failure-case cleanup.
static bool unlink_and_rename(const char* from, const char* to) {
// Check whether "from" exists, and if so whether it's regular. If it is, unlink. Otherwise,
// return a failure.
struct stat s;
if (stat(to, &s) == 0) {
if (!S_ISREG(s.st_mode)) {
LOG(ERROR) << from << " is not a regular file to replace for A/B.";
return false;
}
if (unlink(to) != 0) {
LOG(ERROR) << "Could not unlink " << to << " to move A/B.";
return false;
}
} else {
// This may be a permission problem. We could investigate the error code, but we'll just
// let the rename failure do the work for us.
}
// Try to rename "to" to "from."
if (rename(from, to) != 0) {
PLOG(ERROR) << "Could not rename " << from << " to " << to;
return false;
}
return true;
}
// Move/rename a B artifact (from) to an A artifact (to).
static bool move_ab_path(const std::string& b_path, const std::string& a_path) {
// Check whether B exists.
{
struct stat s;
if (stat(b_path.c_str(), &s) != 0) {
// Ignore for now. The service calling this isn't smart enough to
// understand lack of artifacts at the moment.
LOG(VERBOSE) << "A/B artifact " << b_path << " does not exist!";
return false;
}
if (!S_ISREG(s.st_mode)) {
LOG(ERROR) << "A/B artifact " << b_path << " is not a regular file.";
// Try to unlink, but swallow errors.
unlink(b_path.c_str());
return false;
}
}
// Rename B to A.
if (!unlink_and_rename(b_path.c_str(), a_path.c_str())) {
// Delete the b_path so we don't try again (or fail earlier).
if (unlink(b_path.c_str()) != 0) {
PLOG(ERROR) << "Could not unlink " << b_path;
}
return false;
}
return true;
}
bool move_ab(const char* apk_path, const char* instruction_set, const char* oat_dir) {
// Get the current slot suffix. No suffix, no A/B.
const std::string slot_suffix = GetProperty("ro.boot.slot_suffix", "");
if (slot_suffix.empty()) {
return false;
}
if (!ValidateTargetSlotSuffix(slot_suffix)) {
LOG(ERROR) << "Target slot suffix not legal: " << slot_suffix;
return false;
}
// Validate other inputs.
if (validate_apk_path(apk_path) != 0) {
LOG(ERROR) << "Invalid apk_path: " << apk_path;
return false;
}
if (validate_apk_path(oat_dir) != 0) {
LOG(ERROR) << "Invalid oat_dir: " << oat_dir;
return false;
}
char a_path[PKG_PATH_MAX];
if (!calculate_oat_file_path(a_path, oat_dir, apk_path, instruction_set)) {
return false;
}
const std::string a_vdex_path = create_vdex_filename(a_path);
const std::string a_image_path = create_image_filename(a_path);
// B path = A path + slot suffix.
const std::string b_path = StringPrintf("%s.%s", a_path, slot_suffix.c_str());
const std::string b_vdex_path = StringPrintf("%s.%s", a_vdex_path.c_str(), slot_suffix.c_str());
const std::string b_image_path = StringPrintf("%s.%s",
a_image_path.c_str(),
slot_suffix.c_str());
bool success = true;
if (move_ab_path(b_path, a_path)) {
if (move_ab_path(b_vdex_path, a_vdex_path)) {
// Note: we can live without an app image. As such, ignore failure to move the image file.
// If we decide to require the app image, or the app image being moved correctly,
// then change accordingly.
constexpr bool kIgnoreAppImageFailure = true;
if (!a_image_path.empty()) {
if (!move_ab_path(b_image_path, a_image_path)) {
unlink(a_image_path.c_str());
if (!kIgnoreAppImageFailure) {
success = false;
}
}
}
} else {
// Cleanup: delete B image, ignore errors.
unlink(b_image_path.c_str());
success = false;
}
} else {
// Cleanup: delete B image, ignore errors.
unlink(b_vdex_path.c_str());
unlink(b_image_path.c_str());
success = false;
}
return success;
}
int64_t delete_odex(const char* apk_path, const char* instruction_set, const char* oat_dir) {
// Delete the oat/odex file.
char out_path[PKG_PATH_MAX];
if (!create_oat_out_path(apk_path, instruction_set, oat_dir,
/*is_secondary_dex*/false, out_path)) {
LOG(ERROR) << "Cannot create apk path for " << apk_path;
return -1;
}
// In case of a permission failure report the issue. Otherwise just print a warning.
auto unlink_and_check = [](const char* path) -> int64_t {
struct stat file_stat;
if (stat(path, &file_stat) != 0) {
if (errno != ENOENT) {
PLOG(ERROR) << "Could not stat " << path;
return -1;
}
return 0;
}
if (unlink(path) != 0) {
if (errno != ENOENT) {
PLOG(ERROR) << "Could not unlink " << path;
return -1;
}
}
return static_cast<int64_t>(file_stat.st_size);
};
// Delete the oat/odex file.
int64_t return_value_oat = unlink_and_check(out_path);
// Derive and delete the app image.
int64_t return_value_art = unlink_and_check(create_image_filename(out_path).c_str());
// Derive and delete the vdex file.
int64_t return_value_vdex = unlink_and_check(create_vdex_filename(out_path).c_str());
// Report result
if (return_value_oat == -1
|| return_value_art == -1
|| return_value_vdex == -1) {
return -1;
}
return return_value_oat + return_value_art + return_value_vdex;
}
static bool is_absolute_path(const std::string& path) {
if (path.find('/') != 0 || path.find("..") != std::string::npos) {
LOG(ERROR) << "Invalid absolute path " << path;
return false;
} else {
return true;
}
}
static bool is_valid_instruction_set(const std::string& instruction_set) {
// TODO: add explicit whitelisting of instruction sets
if (instruction_set.find('/') != std::string::npos) {
LOG(ERROR) << "Invalid instruction set " << instruction_set;
return false;
} else {
return true;
}
}
bool calculate_oat_file_path_default(char path[PKG_PATH_MAX], const char *oat_dir,
const char *apk_path, const char *instruction_set) {
std::string oat_dir_ = oat_dir;
std::string apk_path_ = apk_path;
std::string instruction_set_ = instruction_set;
if (!is_absolute_path(oat_dir_)) return false;
if (!is_absolute_path(apk_path_)) return false;
if (!is_valid_instruction_set(instruction_set_)) return false;
std::string::size_type end = apk_path_.rfind('.');
std::string::size_type start = apk_path_.rfind('/', end);
if (end == std::string::npos || start == std::string::npos) {
LOG(ERROR) << "Invalid apk_path " << apk_path_;
return false;
}
std::string res_ = oat_dir_ + '/' + instruction_set + '/'
+ apk_path_.substr(start + 1, end - start - 1) + ".odex";
const char* res = res_.c_str();
if (strlen(res) >= PKG_PATH_MAX) {
LOG(ERROR) << "Result too large";
return false;
} else {
strlcpy(path, res, PKG_PATH_MAX);
return true;
}
}
bool calculate_odex_file_path_default(char path[PKG_PATH_MAX], const char *apk_path,
const char *instruction_set) {
std::string apk_path_ = apk_path;
std::string instruction_set_ = instruction_set;
if (!is_absolute_path(apk_path_)) return false;
if (!is_valid_instruction_set(instruction_set_)) return false;
std::string::size_type end = apk_path_.rfind('.');
std::string::size_type start = apk_path_.rfind('/', end);
if (end == std::string::npos || start == std::string::npos) {
LOG(ERROR) << "Invalid apk_path " << apk_path_;
return false;
}
std::string oat_dir = apk_path_.substr(0, start + 1) + "oat";
return calculate_oat_file_path_default(path, oat_dir.c_str(), apk_path, instruction_set);
}
bool create_cache_path_default(char path[PKG_PATH_MAX], const char *src,
const char *instruction_set) {
std::string src_ = src;
std::string instruction_set_ = instruction_set;
if (!is_absolute_path(src_)) return false;
if (!is_valid_instruction_set(instruction_set_)) return false;
for (auto it = src_.begin() + 1; it < src_.end(); ++it) {
if (*it == '/') {
*it = '@';
}
}
std::string res_ = android_data_dir + DALVIK_CACHE + '/' + instruction_set_ + src_
+ DALVIK_CACHE_POSTFIX;
const char* res = res_.c_str();
if (strlen(res) >= PKG_PATH_MAX) {
LOG(ERROR) << "Result too large";
return false;
} else {
strlcpy(path, res, PKG_PATH_MAX);
return true;
}
}
bool open_classpath_files(const std::string& classpath, std::vector<unique_fd>* apk_fds,
std::vector<std::string>* dex_locations) {
std::vector<std::string> classpaths_elems = base::Split(classpath, ":");
for (const std::string& elem : classpaths_elems) {
unique_fd fd(TEMP_FAILURE_RETRY(open(elem.c_str(), O_RDONLY)));
if (fd < 0) {
PLOG(ERROR) << "Could not open classpath elem " << elem;
return false;
} else {
apk_fds->push_back(std::move(fd));
dex_locations->push_back(elem);
}
}
return true;
}
static bool create_app_profile_snapshot(int32_t app_id,
const std::string& package_name,
const std::string& profile_name,
const std::string& classpath) {
int app_shared_gid = multiuser_get_shared_gid(/*user_id*/ 0, app_id);
unique_fd snapshot_fd = open_snapshot_profile(AID_SYSTEM, package_name, profile_name);
if (snapshot_fd < 0) {
return false;
}
std::vector<unique_fd> profiles_fd;
unique_fd reference_profile_fd;
open_profile_files(app_shared_gid, package_name, profile_name, /*is_secondary_dex*/ false,
&profiles_fd, &reference_profile_fd);
if (profiles_fd.empty() || (reference_profile_fd.get() < 0)) {
return false;
}
profiles_fd.push_back(std::move(reference_profile_fd));
// Open the class paths elements. These will be used to filter out profile data that does
// not belong to the classpath during merge.
std::vector<unique_fd> apk_fds;
std::vector<std::string> dex_locations;
if (!open_classpath_files(classpath, &apk_fds, &dex_locations)) {
return false;
}
RunProfman args;
// This is specifically a snapshot for an app, so don't use boot image profiles.
args.SetupMerge(profiles_fd,
snapshot_fd,
apk_fds,
dex_locations,
/* for_snapshot= */ true,
/* for_boot_image= */ false);
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(app_shared_gid);
args.Exec();
}
/* parent */
int return_code = wait_child_with_timeout(pid, kShortTimeoutMs);
if (!WIFEXITED(return_code)) {
LOG(WARNING) << "profman failed for " << package_name << ":" << profile_name;
cleanup_output_fd(snapshot_fd.get());
return false;
}
// Verify that profman finished successfully.
int profman_code = WEXITSTATUS(return_code);
if (profman_code != PROFMAN_BIN_RETURN_CODE_SUCCESS) {
LOG(WARNING) << "profman error for " << package_name << ":" << profile_name
<< ":" << profman_code;
return false;
}
return true;
}
static bool create_boot_image_profile_snapshot(const std::string& package_name,
const std::string& profile_name,
const std::string& classpath) {
// The reference profile directory for the android package might not be prepared. Do it now.
const std::string ref_profile_dir =
create_primary_reference_profile_package_dir_path(package_name);
if (fs_prepare_dir(ref_profile_dir.c_str(), 0770, AID_SYSTEM, AID_SYSTEM) != 0) {
PLOG(ERROR) << "Failed to prepare " << ref_profile_dir;
return false;
}
// Return false for empty class path since it may otherwise return true below if profiles is
// empty.
if (classpath.empty()) {
PLOG(ERROR) << "Class path is empty";
return false;
}
// Open and create the snapshot profile.
unique_fd snapshot_fd = open_snapshot_profile(AID_SYSTEM, package_name, profile_name);
// Collect all non empty profiles.
// The collection will traverse all applications profiles and find the non empty files.
// This has the potential of inspecting a large number of files and directories (depending
// on the number of applications and users). So there is a slight increase in the chance
// to get get occasionally I/O errors (e.g. for opening the file). When that happens do not
// fail the snapshot and aggregate whatever profile we could open.
//
// The profile snapshot is a best effort based on available data it's ok if some data
// from some apps is missing. It will be counter productive for the snapshot to fail
// because we could not open or read some of the files.
std::vector<std::string> profiles;
if (!collect_profiles(&profiles)) {
LOG(WARNING) << "There were errors while collecting the profiles for the boot image.";
}
// If we have no profiles return early.
if (profiles.empty()) {
return true;
}
// Open the classpath elements. These will be used to filter out profile data that does
// not belong to the classpath during merge.
std::vector<unique_fd> apk_fds;
std::vector<std::string> dex_locations;
if (!open_classpath_files(classpath, &apk_fds, &dex_locations)) {
return false;
}
// If we could not open any files from the classpath return an error.
if (apk_fds.empty()) {
LOG(ERROR) << "Could not open any of the classpath elements.";
return false;
}
// Aggregate the profiles in batches of kAggregationBatchSize.
// We do this to avoid opening a huge a amount of files.
static constexpr size_t kAggregationBatchSize = 10;
for (size_t i = 0; i < profiles.size(); ) {
std::vector<unique_fd> profiles_fd;
for (size_t k = 0; k < kAggregationBatchSize && i < profiles.size(); k++, i++) {
unique_fd fd = open_profile(AID_SYSTEM, profiles[i], O_RDONLY, /*mode=*/ 0);
if (fd.get() >= 0) {
profiles_fd.push_back(std::move(fd));
}
}
// We aggregate (read & write) into the same fd multiple times in a row.
// We need to reset the cursor every time to ensure we read the whole file every time.
if (TEMP_FAILURE_RETRY(lseek(snapshot_fd, 0, SEEK_SET)) == static_cast<off_t>(-1)) {
PLOG(ERROR) << "Cannot reset position for snapshot profile";
return false;
}
RunProfman args;
args.SetupMerge(profiles_fd,
snapshot_fd,
apk_fds,
dex_locations,
/*for_snapshot=*/true,
/*for_boot_image=*/true);
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
drop_capabilities(AID_SYSTEM);
// The introduction of new access flags into boot jars causes them to
// fail dex file verification.
args.Exec();
}
/* parent */
int return_code = wait_child_with_timeout(pid, kShortTimeoutMs);
if (!WIFEXITED(return_code)) {
PLOG(WARNING) << "profman failed for " << package_name << ":" << profile_name;
cleanup_output_fd(snapshot_fd.get());
return false;
}
// Verify that profman finished successfully.
int profman_code = WEXITSTATUS(return_code);
if (profman_code != PROFMAN_BIN_RETURN_CODE_SUCCESS) {
LOG(WARNING) << "profman error for " << package_name << ":" << profile_name
<< ":" << profman_code;
return false;
}
}
return true;
}
bool create_profile_snapshot(int32_t app_id, const std::string& package_name,
const std::string& profile_name, const std::string& classpath) {
if (app_id == -1) {
return create_boot_image_profile_snapshot(package_name, profile_name, classpath);
} else {
return create_app_profile_snapshot(app_id, package_name, profile_name, classpath);
}
}
static bool check_profile_exists_in_dexmetadata(const std::string& dex_metadata) {
ZipArchiveHandle zip = nullptr;
if (OpenArchive(dex_metadata.c_str(), &zip) != 0) {
PLOG(ERROR) << "Failed to open dm '" << dex_metadata << "'";
return false;
}
ZipEntry64 entry;
int result = FindEntry(zip, "primary.prof", &entry);
CloseArchive(zip);
return result != 0 ? false : true;
}
bool prepare_app_profile(const std::string& package_name,
userid_t user_id,
appid_t app_id,
const std::string& profile_name,
const std::string& code_path,
const std::optional<std::string>& dex_metadata) {
if (user_id != USER_NULL) {
if (user_id < 0) {
LOG(ERROR) << "Unexpected user ID " << user_id;
return false;
}
// Prepare the current profile.
std::string cur_profile = create_current_profile_path(user_id, package_name, profile_name,
/*is_secondary_dex*/ false);
uid_t uid = multiuser_get_uid(user_id, app_id);
if (fs_prepare_file_strict(cur_profile.c_str(), 0600, uid, uid) != 0) {
PLOG(ERROR) << "Failed to prepare " << cur_profile;
return false;
}
} else {
// Prepare the reference profile as the system user.
user_id = USER_SYSTEM;
}
// Check if we need to install the profile from the dex metadata.
if (!dex_metadata || !check_profile_exists_in_dexmetadata(dex_metadata->c_str())) {
return true;
}
// We have a dex metdata. Merge the profile into the reference profile.
unique_fd ref_profile_fd =
open_reference_profile(multiuser_get_uid(user_id, app_id), package_name, profile_name,
/*read_write*/ true, /*is_secondary_dex*/ false);
unique_fd dex_metadata_fd(TEMP_FAILURE_RETRY(
open(dex_metadata->c_str(), O_RDONLY | O_NOFOLLOW)));
unique_fd apk_fd(TEMP_FAILURE_RETRY(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW)));
if (apk_fd < 0) {
PLOG(ERROR) << "Could not open code path " << code_path;
return false;
}
RunProfman args;
args.SetupCopyAndUpdate(dex_metadata_fd,
ref_profile_fd,
apk_fd,
code_path);
pid_t pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
gid_t app_shared_gid = multiuser_get_shared_gid(user_id, app_id);
drop_capabilities(app_shared_gid);
// The copy and update takes ownership over the fds.
args.Exec();
}
/* parent */
int return_code = wait_child_with_timeout(pid, kShortTimeoutMs);
if (!WIFEXITED(return_code)) {
PLOG(WARNING) << "profman failed for " << package_name << ":" << profile_name;
cleanup_output_fd(ref_profile_fd.get());
return false;
}
return true;
}
int get_odex_visibility(const char* apk_path, const char* instruction_set, const char* oat_dir) {
char oat_path[PKG_PATH_MAX];
if (!create_oat_out_path(apk_path, instruction_set, oat_dir, /*is_secondary_dex=*/false,
oat_path)) {
return -1;
}
struct stat st;
if (stat(oat_path, &st) == -1) {
if (errno == ENOENT) {
return ODEX_NOT_FOUND;
}
PLOG(ERROR) << "Could not stat " << oat_path;
return -1;
}
return (st.st_mode & S_IROTH) ? ODEX_IS_PUBLIC : ODEX_IS_PRIVATE;
}
} // namespace installd
} // namespace android