blob: e1c43c6fecd38ec4924d8b2e174a276890684f9c [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorService.h"
#include <aidl/android/hardware/sensors/ISensors.h>
#include <android-base/strings.h>
#include <android/content/pm/IPackageManagerNative.h>
#include <android/util/ProtoOutputStream.h>
#include <binder/ActivityManager.h>
#include <binder/BinderService.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <binder/PermissionController.h>
#include <com_android_frameworks_sensorservice_flags.h>
#include <cutils/ashmem.h>
#include <cutils/misc.h>
#include <cutils/properties.h>
#include <frameworks/base/core/proto/android/service/sensor_service.proto.h>
#include <hardware/sensors.h>
#include <hardware_legacy/power.h>
#include <inttypes.h>
#include <log/log.h>
#include <math.h>
#include <openssl/digest.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <private/android_filesystem_config.h>
#include <sched.h>
#include <sensor/SensorEventQueue.h>
#include <sensorprivacy/SensorPrivacyManager.h>
#include <stdint.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <utils/SystemClock.h>
#include <condition_variable>
#include <ctime>
#include <future>
#include <mutex>
#include <string>
#include "BatteryService.h"
#include "CorrectedGyroSensor.h"
#include "GravitySensor.h"
#include "LimitedAxesImuSensor.h"
#include "LinearAccelerationSensor.h"
#include "OrientationSensor.h"
#include "RotationVectorSensor.h"
#include "SensorDirectConnection.h"
#include "SensorEventAckReceiver.h"
#include "SensorEventConnection.h"
#include "SensorFusion.h"
#include "SensorInterface.h"
#include "SensorRecord.h"
#include "SensorRegistrationInfo.h"
#include "SensorServiceUtils.h"
using namespace std::chrono_literals;
namespace sensorservice_flags = com::android::frameworks::sensorservice::flags;
namespace android {
// ---------------------------------------------------------------------------
/*
* Notes:
*
* - what about a gyro-corrected magnetic-field sensor?
* - run mag sensor from time to time to force calibration
* - gravity sensor length is wrong (=> drift in linear-acc sensor)
*
*/
const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
uint8_t SensorService::sHmacGlobalKey[128] = {};
bool SensorService::sHmacGlobalKeyIsValid = false;
std::map<String16, int> SensorService::sPackageTargetVersion;
Mutex SensorService::sPackageTargetVersionLock;
String16 SensorService::sSensorInterfaceDescriptorPrefix =
String16("android.frameworks.sensorservice");
AppOpsManager SensorService::sAppOpsManager;
std::atomic_uint64_t SensorService::curProxCallbackSeq(0);
std::atomic_uint64_t SensorService::completedCallbackSeq(0);
#define SENSOR_SERVICE_DIR "/data/system/sensor_service"
#define SENSOR_SERVICE_HMAC_KEY_FILE SENSOR_SERVICE_DIR "/hmac_key"
#define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
// Permissions.
static const String16 sAccessHighSensorSamplingRatePermission(
"android.permission.HIGH_SAMPLING_RATE_SENSORS");
static const String16 sDumpPermission("android.permission.DUMP");
static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE");
static const String16 sManageSensorsPermission("android.permission.MANAGE_SENSORS");
namespace {
int32_t nextRuntimeSensorHandle() {
using ::aidl::android::hardware::sensors::ISensors;
static int32_t nextHandle = ISensors::RUNTIME_SENSORS_HANDLE_BASE;
if (nextHandle == ISensors::RUNTIME_SENSORS_HANDLE_END) {
return -1;
}
return nextHandle++;
}
class RuntimeSensorCallbackProxy : public RuntimeSensor::SensorCallback {
public:
RuntimeSensorCallbackProxy(sp<SensorService::RuntimeSensorCallback> callback)
: mCallback(std::move(callback)) {}
status_t onConfigurationChanged(int handle, bool enabled, int64_t samplingPeriodNs,
int64_t batchReportLatencyNs) override {
return mCallback->onConfigurationChanged(handle, enabled, samplingPeriodNs,
batchReportLatencyNs);
}
private:
sp<SensorService::RuntimeSensorCallback> mCallback;
};
} // namespace
static bool isAutomotive() {
sp<IServiceManager> serviceManager = defaultServiceManager();
if (serviceManager.get() == nullptr) {
ALOGE("%s: unable to access native ServiceManager", __func__);
return false;
}
sp<content::pm::IPackageManagerNative> packageManager;
sp<IBinder> binder = serviceManager->waitForService(String16("package_native"));
packageManager = interface_cast<content::pm::IPackageManagerNative>(binder);
if (packageManager == nullptr) {
ALOGE("%s: unable to access native PackageManager", __func__);
return false;
}
bool isAutomotive = false;
binder::Status status =
packageManager->hasSystemFeature(String16("android.hardware.type.automotive"), 0,
&isAutomotive);
if (!status.isOk()) {
ALOGE("%s: hasSystemFeature failed: %s", __func__, status.exceptionMessage().c_str());
return false;
}
return isAutomotive;
}
SensorService::SensorService()
: mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
mWakeLockAcquired(false), mLastReportedProxIsActive(false) {
mUidPolicy = new UidPolicy(this);
mSensorPrivacyPolicy = new SensorPrivacyPolicy(this);
mMicSensorPrivacyPolicy = new MicrophonePrivacyPolicy(this);
}
int SensorService::registerRuntimeSensor(
const sensor_t& sensor, int deviceId, sp<RuntimeSensorCallback> callback) {
int handle = 0;
while (handle == 0 || !mSensors.isNewHandle(handle)) {
handle = nextRuntimeSensorHandle();
if (handle < 0) {
// Ran out of the dedicated range for runtime sensors.
return handle;
}
}
ALOGI("Registering runtime sensor handle 0x%x, type %d, name %s",
handle, sensor.type, sensor.name);
sp<RuntimeSensor::SensorCallback> runtimeSensorCallback(
new RuntimeSensorCallbackProxy(callback));
sensor_t runtimeSensor = sensor;
// force the handle to be consistent
runtimeSensor.handle = handle;
auto si = std::make_shared<RuntimeSensor>(runtimeSensor, std::move(runtimeSensorCallback));
Mutex::Autolock _l(mLock);
if (!registerSensor(std::move(si), /* isDebug= */ false, /* isVirtual= */ false, deviceId)) {
// The registration was unsuccessful.
return mSensors.getNonSensor().getHandle();
}
if (mRuntimeSensorCallbacks.find(deviceId) == mRuntimeSensorCallbacks.end()) {
mRuntimeSensorCallbacks.emplace(deviceId, callback);
}
if (mRuntimeSensorHandler == nullptr) {
mRuntimeSensorEventBuffer =
new sensors_event_t[SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT];
mRuntimeSensorHandler = new RuntimeSensorHandler(this);
// Use PRIORITY_URGENT_DISPLAY as the injected sensor events should be dispatched as soon as
// possible, and also for consistency within the SensorService.
mRuntimeSensorHandler->run("RuntimeSensorHandler", PRIORITY_URGENT_DISPLAY);
}
return handle;
}
status_t SensorService::unregisterRuntimeSensor(int handle) {
ALOGI("Unregistering runtime sensor handle 0x%x disconnected", handle);
int deviceId = getDeviceIdFromHandle(handle);
{
Mutex::Autolock _l(mLock);
if (!unregisterDynamicSensorLocked(handle)) {
ALOGE("Runtime sensor release error.");
return UNKNOWN_ERROR;
}
}
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
for (const sp<SensorEventConnection>& connection : connLock.getActiveConnections()) {
connection->removeSensor(handle);
}
// If this was the last sensor for this device, remove its callback.
bool deviceHasSensors = false;
mSensors.forEachEntry(
[&deviceId, &deviceHasSensors] (const SensorServiceUtil::SensorList::Entry& e) -> bool {
if (e.deviceId == deviceId) {
deviceHasSensors = true;
return false; // stop iterating
}
return true;
});
if (!deviceHasSensors) {
mRuntimeSensorCallbacks.erase(deviceId);
}
return OK;
}
status_t SensorService::sendRuntimeSensorEvent(const sensors_event_t& event) {
std::unique_lock<std::mutex> lock(mRutimeSensorThreadMutex);
mRuntimeSensorEventQueue.push(event);
mRuntimeSensorsCv.notify_all();
return OK;
}
bool SensorService::initializeHmacKey() {
int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
if (fd != -1) {
int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
close(fd);
if (result == sizeof(sHmacGlobalKey)) {
return true;
}
ALOGW("Unable to read HMAC key; generating new one.");
}
if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
return false;
}
// We need to make sure this is only readable to us.
bool wroteKey = false;
mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
S_IRUSR|S_IWUSR);
if (fd != -1) {
int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
close(fd);
wroteKey = (result == sizeof(sHmacGlobalKey));
}
if (wroteKey) {
ALOGI("Generated new HMAC key.");
} else {
ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
"after reboot.");
}
// Even if we failed to write the key we return true, because we did
// initialize the HMAC key.
return true;
}
// Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
void SensorService::enableSchedFifoMode() {
struct sched_param param = {0};
param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
}
}
void SensorService::onFirstRef() {
ALOGD("nuSensorService starting...");
SensorDevice& dev(SensorDevice::getInstance());
sHmacGlobalKeyIsValid = initializeHmacKey();
if (dev.initCheck() == NO_ERROR) {
sensor_t const* list;
ssize_t count = dev.getSensorList(&list);
if (count > 0) {
bool hasGyro = false, hasAccel = false, hasMag = false;
bool hasGyroUncalibrated = false;
bool hasAccelUncalibrated = false;
uint32_t virtualSensorsNeeds =
(1<<SENSOR_TYPE_GRAVITY) |
(1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
(1<<SENSOR_TYPE_ROTATION_VECTOR) |
(1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
(1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
for (ssize_t i=0 ; i<count ; i++) {
bool useThisSensor = true;
switch (list[i].type) {
case SENSOR_TYPE_ACCELEROMETER:
hasAccel = true;
break;
case SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED:
hasAccelUncalibrated = true;
break;
case SENSOR_TYPE_MAGNETIC_FIELD:
hasMag = true;
break;
case SENSOR_TYPE_GYROSCOPE:
hasGyro = true;
break;
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
hasGyroUncalibrated = true;
break;
case SENSOR_TYPE_DYNAMIC_SENSOR_META:
if (sensorservice_flags::dynamic_sensor_hal_reconnect_handling()) {
mDynamicMetaSensorHandle = list[i].handle;
}
break;
case SENSOR_TYPE_GRAVITY:
case SENSOR_TYPE_LINEAR_ACCELERATION:
case SENSOR_TYPE_ROTATION_VECTOR:
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
if (IGNORE_HARDWARE_FUSION) {
useThisSensor = false;
} else {
virtualSensorsNeeds &= ~(1<<list[i].type);
}
break;
default:
break;
}
if (useThisSensor) {
if (list[i].type == SENSOR_TYPE_PROXIMITY) {
auto s = std::make_shared<ProximitySensor>(list[i], *this);
const int handle = s->getSensor().getHandle();
if (registerSensor(std::move(s))) {
mProxSensorHandles.push_back(handle);
}
} else {
registerSensor(std::make_shared<HardwareSensor>(list[i]));
}
}
}
// it's safe to instantiate the SensorFusion object here
// (it wants to be instantiated after h/w sensors have been
// registered)
SensorFusion::getInstance();
if ((hasGyro || hasGyroUncalibrated) && hasAccel && hasMag) {
// Add Android virtual sensors if they're not already
// available in the HAL
bool needRotationVector =
(virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
registerVirtualSensor(std::make_shared<RotationVectorSensor>(),
/* isDebug= */ !needRotationVector);
registerVirtualSensor(std::make_shared<OrientationSensor>(),
/* isDebug= */ !needRotationVector);
// virtual debugging sensors are not for user
registerVirtualSensor(std::make_shared<CorrectedGyroSensor>(list, count),
/* isDebug= */ true);
registerVirtualSensor(std::make_shared<GyroDriftSensor>(), /* isDebug= */ true);
}
if (hasAccel && (hasGyro || hasGyroUncalibrated)) {
bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
registerVirtualSensor(std::make_shared<GravitySensor>(list, count),
/* isDebug= */ !needGravitySensor);
bool needLinearAcceleration =
(virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
registerVirtualSensor(std::make_shared<LinearAccelerationSensor>(list, count),
/* isDebug= */ !needLinearAcceleration);
bool needGameRotationVector =
(virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
registerVirtualSensor(std::make_shared<GameRotationVectorSensor>(),
/* isDebug= */ !needGameRotationVector);
}
if (hasAccel && hasMag) {
bool needGeoMagRotationVector =
(virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
registerVirtualSensor(std::make_shared<GeoMagRotationVectorSensor>(),
/* isDebug= */ !needGeoMagRotationVector);
}
if (isAutomotive()) {
if (hasAccel) {
registerVirtualSensor(
std::make_shared<LimitedAxesImuSensor>(
list, count, SENSOR_TYPE_ACCELEROMETER));
}
if (hasGyro) {
registerVirtualSensor(
std::make_shared<LimitedAxesImuSensor>(
list, count, SENSOR_TYPE_GYROSCOPE));
}
if (hasAccelUncalibrated) {
registerVirtualSensor(
std::make_shared<LimitedAxesImuSensor>(
list, count, SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED));
}
if (hasGyroUncalibrated) {
registerVirtualSensor(
std::make_shared<LimitedAxesImuSensor>(
list, count, SENSOR_TYPE_GYROSCOPE_UNCALIBRATED));
}
}
// Check if the device really supports batching by looking at the FIFO event
// counts for each sensor.
bool batchingSupported = false;
mSensors.forEachSensor(
[&batchingSupported] (const Sensor& s) -> bool {
if (s.getFifoMaxEventCount() > 0) {
batchingSupported = true;
}
return !batchingSupported;
});
if (batchingSupported) {
// Increase socket buffer size to a max of 100 KB for batching capabilities.
mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
} else {
mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
}
// Compare the socketBufferSize value against the system limits and limit
// it to maxSystemSocketBufferSize if necessary.
FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
char line[128];
if (fp != nullptr && fgets(line, sizeof(line), fp) != nullptr) {
line[sizeof(line) - 1] = '\0';
size_t maxSystemSocketBufferSize;
sscanf(line, "%zu", &maxSystemSocketBufferSize);
if (mSocketBufferSize > maxSystemSocketBufferSize) {
mSocketBufferSize = maxSystemSocketBufferSize;
}
}
if (fp) {
fclose(fp);
}
mWakeLockAcquired = false;
mLooper = new Looper(false);
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
mSensorEventBuffer = new sensors_event_t[minBufferSize];
mSensorEventScratch = new sensors_event_t[minBufferSize];
mRuntimeSensorEventBuffer = nullptr;
mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
mCurrentOperatingMode = NORMAL;
mNextSensorRegIndex = 0;
for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
mLastNSensorRegistrations.push();
}
mInitCheck = NO_ERROR;
mAckReceiver = new SensorEventAckReceiver(this);
mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
run("SensorService", PRIORITY_URGENT_DISPLAY);
// priority can only be changed after run
enableSchedFifoMode();
// Start watching UID changes to apply policy.
mUidPolicy->registerSelf();
// Start watching sensor privacy changes
mSensorPrivacyPolicy->registerSelf();
// Start watching mic sensor privacy changes
mMicSensorPrivacyPolicy->registerSelf();
}
}
}
void SensorService::onUidStateChanged(uid_t uid, UidState state) {
SensorDevice& dev(SensorDevice::getInstance());
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
for (const sp<SensorEventConnection>& conn : connLock.getActiveConnections()) {
if (conn->getUid() == uid) {
dev.setUidStateForConnection(conn.get(), state);
}
}
for (const sp<SensorDirectConnection>& conn : connLock.getDirectConnections()) {
if (conn->getUid() == uid) {
// Update sensor subscriptions if needed
bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
conn->onSensorAccessChanged(hasAccess);
}
}
checkAndReportProxStateChangeLocked();
}
bool SensorService::hasSensorAccess(uid_t uid, const String16& opPackageName) {
Mutex::Autolock _l(mLock);
return hasSensorAccessLocked(uid, opPackageName);
}
bool SensorService::hasSensorAccessLocked(uid_t uid, const String16& opPackageName) {
return !mSensorPrivacyPolicy->isSensorPrivacyEnabled()
&& isUidActive(uid) && !isOperationRestrictedLocked(opPackageName);
}
bool SensorService::registerSensor(std::shared_ptr<SensorInterface> s, bool isDebug, bool isVirtual,
int deviceId) {
const int handle = s->getSensor().getHandle();
const int type = s->getSensor().getType();
if (mSensors.add(handle, std::move(s), isDebug, isVirtual, deviceId)) {
mRecentEvent.emplace(handle, new SensorServiceUtil::RecentEventLogger(type));
return true;
} else {
LOG_FATAL("Failed to register sensor with handle %d", handle);
return false;
}
}
bool SensorService::registerDynamicSensorLocked(std::shared_ptr<SensorInterface> s, bool isDebug) {
return registerSensor(std::move(s), isDebug);
}
bool SensorService::unregisterDynamicSensorLocked(int handle) {
bool ret = mSensors.remove(handle);
const auto i = mRecentEvent.find(handle);
if (i != mRecentEvent.end()) {
delete i->second;
mRecentEvent.erase(i);
}
return ret;
}
bool SensorService::registerVirtualSensor(std::shared_ptr<SensorInterface> s, bool isDebug) {
return registerSensor(std::move(s), isDebug, true);
}
SensorService::~SensorService() {
for (auto && entry : mRecentEvent) {
delete entry.second;
}
mUidPolicy->unregisterSelf();
mSensorPrivacyPolicy->unregisterSelf();
mMicSensorPrivacyPolicy->unregisterSelf();
}
status_t SensorService::dump(int fd, const Vector<String16>& args) {
String8 result;
if (!PermissionCache::checkCallingPermission(sDumpPermission)) {
result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
} else {
bool privileged = IPCThreadState::self()->getCallingUid() == 0;
if (args.size() > 2) {
return INVALID_OPERATION;
}
if (args.size() > 0) {
Mode targetOperatingMode = NORMAL;
std::string inputStringMode = String8(args[0]).c_str();
if (getTargetOperatingMode(inputStringMode, &targetOperatingMode)) {
status_t error = changeOperatingMode(args, targetOperatingMode);
// Dump the latest state only if no error was encountered.
if (error != NO_ERROR) {
return error;
}
}
}
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
// Run the following logic if a transition isn't requested above based on the input
// argument parsing.
if (args.size() == 1 && args[0] == String16("--proto")) {
return dumpProtoLocked(fd, &connLock);
} else if (!mSensors.hasAnySensor()) {
result.append("No Sensors on the device\n");
result.appendFormat("devInitCheck : %d\n", SensorDevice::getInstance().initCheck());
} else {
// Default dump the sensor list and debugging information.
//
timespec curTime;
clock_gettime(CLOCK_REALTIME, &curTime);
struct tm* timeinfo = localtime(&(curTime.tv_sec));
result.appendFormat("Captured at: %02d:%02d:%02d.%03d\n", timeinfo->tm_hour,
timeinfo->tm_min, timeinfo->tm_sec, (int)ns2ms(curTime.tv_nsec));
result.append("Sensor Device:\n");
result.append(SensorDevice::getInstance().dump().c_str());
result.append("Sensor List:\n");
result.append(mSensors.dump().c_str());
result.append("Fusion States:\n");
SensorFusion::getInstance().dump(result);
result.append("Recent Sensor events:\n");
for (auto&& i : mRecentEvent) {
std::shared_ptr<SensorInterface> s = getSensorInterfaceFromHandle(i.first);
if (!i.second->isEmpty() && s != nullptr) {
if (privileged || s->getSensor().getRequiredPermission().empty()) {
i.second->setFormat("normal");
} else {
i.second->setFormat("mask_data");
}
// if there is events and sensor does not need special permission.
result.appendFormat("%s: ", s->getSensor().getName().c_str());
result.append(i.second->dump().c_str());
}
}
result.append("Active sensors:\n");
SensorDevice& dev = SensorDevice::getInstance();
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
int handle = mActiveSensors.keyAt(i);
if (dev.isSensorActive(handle)) {
result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
getSensorName(handle).c_str(),
handle,
mActiveSensors.valueAt(i)->getNumConnections());
}
}
result.appendFormat("Socket Buffer size = %zd events\n",
mSocketBufferSize/sizeof(sensors_event_t));
result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
"not held");
result.appendFormat("Mode :");
switch(mCurrentOperatingMode) {
case NORMAL:
result.appendFormat(" NORMAL\n");
break;
case RESTRICTED:
result.appendFormat(" RESTRICTED : %s\n", mAllowListedPackage.c_str());
break;
case DATA_INJECTION:
result.appendFormat(" DATA_INJECTION : %s\n", mAllowListedPackage.c_str());
break;
case REPLAY_DATA_INJECTION:
result.appendFormat(" REPLAY_DATA_INJECTION : %s\n",
mAllowListedPackage.c_str());
break;
case HAL_BYPASS_REPLAY_DATA_INJECTION:
result.appendFormat(" HAL_BYPASS_REPLAY_DATA_INJECTION : %s\n",
mAllowListedPackage.c_str());
break;
default:
result.appendFormat(" UNKNOWN\n");
break;
}
result.appendFormat("Sensor Privacy: %s\n",
mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled");
const auto& activeConnections = connLock.getActiveConnections();
result.appendFormat("%zd active connections\n", activeConnections.size());
for (size_t i=0 ; i < activeConnections.size() ; i++) {
result.appendFormat("Connection Number: %zu \n", i);
activeConnections[i]->dump(result);
}
const auto& directConnections = connLock.getDirectConnections();
result.appendFormat("%zd direct connections\n", directConnections.size());
for (size_t i = 0 ; i < directConnections.size() ; i++) {
result.appendFormat("Direct connection %zu:\n", i);
directConnections[i]->dump(result);
}
result.appendFormat("Previous Registrations:\n");
// Log in the reverse chronological order.
int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
const int startIndex = currentIndex;
do {
const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
if (SensorRegistrationInfo::isSentinel(reg_info)) {
// Ignore sentinel, proceed to next item.
currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
continue;
}
result.appendFormat("%s\n", reg_info.dump().c_str());
currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
} while(startIndex != currentIndex);
}
}
write(fd, result.c_str(), result.size());
return NO_ERROR;
}
/**
* Dump debugging information as android.service.SensorServiceProto protobuf message using
* ProtoOutputStream.
*
* See proto definition and some notes about ProtoOutputStream in
* frameworks/base/core/proto/android/service/sensor_service.proto
*/
status_t SensorService::dumpProtoLocked(int fd, ConnectionSafeAutolock* connLock) const {
using namespace service::SensorServiceProto;
util::ProtoOutputStream proto;
proto.write(INIT_STATUS, int(SensorDevice::getInstance().initCheck()));
if (!mSensors.hasAnySensor()) {
return proto.flush(fd) ? OK : UNKNOWN_ERROR;
}
const bool privileged = IPCThreadState::self()->getCallingUid() == 0;
timespec curTime;
clock_gettime(CLOCK_REALTIME, &curTime);
proto.write(CURRENT_TIME_MS, curTime.tv_sec * 1000 + ns2ms(curTime.tv_nsec));
// Write SensorDeviceProto
uint64_t token = proto.start(SENSOR_DEVICE);
SensorDevice::getInstance().dump(&proto);
proto.end(token);
// Write SensorListProto
token = proto.start(SENSORS);
mSensors.dump(&proto);
proto.end(token);
// Write SensorFusionProto
token = proto.start(FUSION_STATE);
SensorFusion::getInstance().dump(&proto);
proto.end(token);
// Write SensorEventsProto
token = proto.start(SENSOR_EVENTS);
for (auto&& i : mRecentEvent) {
std::shared_ptr<SensorInterface> s = getSensorInterfaceFromHandle(i.first);
if (!i.second->isEmpty() && s != nullptr) {
i.second->setFormat(privileged || s->getSensor().getRequiredPermission().empty() ?
"normal" : "mask_data");
const uint64_t mToken = proto.start(service::SensorEventsProto::RECENT_EVENTS_LOGS);
proto.write(service::SensorEventsProto::RecentEventsLog::NAME,
std::string(s->getSensor().getName().c_str()));
i.second->dump(&proto);
proto.end(mToken);
}
}
proto.end(token);
// Write ActiveSensorProto
SensorDevice& dev = SensorDevice::getInstance();
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
int handle = mActiveSensors.keyAt(i);
if (dev.isSensorActive(handle)) {
token = proto.start(ACTIVE_SENSORS);
proto.write(service::ActiveSensorProto::NAME,
std::string(getSensorName(handle).c_str()));
proto.write(service::ActiveSensorProto::HANDLE, handle);
proto.write(service::ActiveSensorProto::NUM_CONNECTIONS,
int(mActiveSensors.valueAt(i)->getNumConnections()));
proto.end(token);
}
}
proto.write(SOCKET_BUFFER_SIZE, int(mSocketBufferSize));
proto.write(SOCKET_BUFFER_SIZE_IN_EVENTS, int(mSocketBufferSize / sizeof(sensors_event_t)));
proto.write(WAKE_LOCK_ACQUIRED, mWakeLockAcquired);
switch(mCurrentOperatingMode) {
case NORMAL:
proto.write(OPERATING_MODE, OP_MODE_NORMAL);
break;
case RESTRICTED:
proto.write(OPERATING_MODE, OP_MODE_RESTRICTED);
proto.write(WHITELISTED_PACKAGE, std::string(mAllowListedPackage.c_str()));
break;
case DATA_INJECTION:
proto.write(OPERATING_MODE, OP_MODE_DATA_INJECTION);
proto.write(WHITELISTED_PACKAGE, std::string(mAllowListedPackage.c_str()));
break;
default:
proto.write(OPERATING_MODE, OP_MODE_UNKNOWN);
}
proto.write(SENSOR_PRIVACY, mSensorPrivacyPolicy->isSensorPrivacyEnabled());
// Write repeated SensorEventConnectionProto
const auto& activeConnections = connLock->getActiveConnections();
for (size_t i = 0; i < activeConnections.size(); i++) {
token = proto.start(ACTIVE_CONNECTIONS);
activeConnections[i]->dump(&proto);
proto.end(token);
}
// Write repeated SensorDirectConnectionProto
const auto& directConnections = connLock->getDirectConnections();
for (size_t i = 0 ; i < directConnections.size() ; i++) {
token = proto.start(DIRECT_CONNECTIONS);
directConnections[i]->dump(&proto);
proto.end(token);
}
// Write repeated SensorRegistrationInfoProto
const int startIndex = mNextSensorRegIndex;
int curr = startIndex;
do {
const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[curr];
if (SensorRegistrationInfo::isSentinel(reg_info)) {
// Ignore sentinel, proceed to next item.
curr = (curr + 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE;
continue;
}
token = proto.start(PREVIOUS_REGISTRATIONS);
reg_info.dump(&proto);
proto.end(token);
curr = (curr + 1 + SENSOR_REGISTRATIONS_BUF_SIZE) % SENSOR_REGISTRATIONS_BUF_SIZE;
} while (startIndex != curr);
return proto.flush(fd) ? OK : UNKNOWN_ERROR;
}
void SensorService::disableAllSensors() {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
disableAllSensorsLocked(&connLock);
}
void SensorService::disableAllSensorsLocked(ConnectionSafeAutolock* connLock) {
SensorDevice& dev(SensorDevice::getInstance());
for (const sp<SensorDirectConnection>& conn : connLock->getDirectConnections()) {
bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
conn->onSensorAccessChanged(hasAccess);
}
dev.disableAllSensors();
checkAndReportProxStateChangeLocked();
// Clear all pending flush connections for all active sensors. If one of the active
// connections has called flush() and the underlying sensor has been disabled before a
// flush complete event is returned, we need to remove the connection from this queue.
for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
}
}
void SensorService::enableAllSensors() {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
enableAllSensorsLocked(&connLock);
}
void SensorService::enableAllSensorsLocked(ConnectionSafeAutolock* connLock) {
// sensors should only be enabled if the operating state is not restricted and sensor
// privacy is not enabled.
if (mCurrentOperatingMode == RESTRICTED || mSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
ALOGW("Sensors cannot be enabled: mCurrentOperatingMode = %d, sensor privacy = %s",
mCurrentOperatingMode,
mSensorPrivacyPolicy->isSensorPrivacyEnabled() ? "enabled" : "disabled");
return;
}
SensorDevice& dev(SensorDevice::getInstance());
dev.enableAllSensors();
for (const sp<SensorDirectConnection>& conn : connLock->getDirectConnections()) {
bool hasAccess = hasSensorAccessLocked(conn->getUid(), conn->getOpPackageName());
conn->onSensorAccessChanged(hasAccess);
}
checkAndReportProxStateChangeLocked();
}
void SensorService::capRates() {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
for (const sp<SensorDirectConnection>& conn : connLock.getDirectConnections()) {
conn->onMicSensorAccessChanged(true);
}
for (const sp<SensorEventConnection>& conn : connLock.getActiveConnections()) {
conn->onMicSensorAccessChanged(true);
}
}
void SensorService::uncapRates() {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
for (const sp<SensorDirectConnection>& conn : connLock.getDirectConnections()) {
conn->onMicSensorAccessChanged(false);
}
for (const sp<SensorEventConnection>& conn : connLock.getActiveConnections()) {
conn->onMicSensorAccessChanged(false);
}
}
// NOTE: This is a remote API - make sure all args are validated
status_t SensorService::shellCommand(int in, int out, int err, Vector<String16>& args) {
if (!checkCallingPermission(sManageSensorsPermission, nullptr, nullptr)) {
return PERMISSION_DENIED;
}
if (args.size() == 0) {
return BAD_INDEX;
}
if (in == BAD_TYPE || out == BAD_TYPE || err == BAD_TYPE) {
return BAD_VALUE;
}
if (args[0] == String16("set-uid-state")) {
return handleSetUidState(args, err);
} else if (args[0] == String16("reset-uid-state")) {
return handleResetUidState(args, err);
} else if (args[0] == String16("get-uid-state")) {
return handleGetUidState(args, out, err);
} else if (args[0] == String16("unrestrict-ht")) {
mHtRestricted = false;
return NO_ERROR;
} else if (args[0] == String16("restrict-ht")) {
mHtRestricted = true;
return NO_ERROR;
} else if (args.size() == 1 && args[0] == String16("help")) {
printHelp(out);
return NO_ERROR;
}
printHelp(err);
return BAD_VALUE;
}
static status_t getUidForPackage(String16 packageName, int userId, /*inout*/uid_t& uid, int err) {
PermissionController pc;
uid = pc.getPackageUid(packageName, 0);
if (uid <= 0) {
ALOGE("Unknown package: '%s'", String8(packageName).c_str());
dprintf(err, "Unknown package: '%s'\n", String8(packageName).c_str());
return BAD_VALUE;
}
if (userId < 0) {
ALOGE("Invalid user: %d", userId);
dprintf(err, "Invalid user: %d\n", userId);
return BAD_VALUE;
}
uid = multiuser_get_uid(userId, uid);
return NO_ERROR;
}
status_t SensorService::handleSetUidState(Vector<String16>& args, int err) {
// Valid arg.size() is 3 or 5, args.size() is 5 with --user option.
if (!(args.size() == 3 || args.size() == 5)) {
printHelp(err);
return BAD_VALUE;
}
bool active = false;
if (args[2] == String16("active")) {
active = true;
} else if ((args[2] != String16("idle"))) {
ALOGE("Expected active or idle but got: '%s'", String8(args[2]).c_str());
return BAD_VALUE;
}
int userId = 0;
if (args.size() == 5 && args[3] == String16("--user")) {
userId = atoi(String8(args[4]));
}
uid_t uid;
if (getUidForPackage(args[1], userId, uid, err) != NO_ERROR) {
return BAD_VALUE;
}
mUidPolicy->addOverrideUid(uid, active);
return NO_ERROR;
}
status_t SensorService::handleResetUidState(Vector<String16>& args, int err) {
// Valid arg.size() is 2 or 4, args.size() is 4 with --user option.
if (!(args.size() == 2 || args.size() == 4)) {
printHelp(err);
return BAD_VALUE;
}
int userId = 0;
if (args.size() == 4 && args[2] == String16("--user")) {
userId = atoi(String8(args[3]));
}
uid_t uid;
if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) {
return BAD_VALUE;
}
mUidPolicy->removeOverrideUid(uid);
return NO_ERROR;
}
status_t SensorService::handleGetUidState(Vector<String16>& args, int out, int err) {
// Valid arg.size() is 2 or 4, args.size() is 4 with --user option.
if (!(args.size() == 2 || args.size() == 4)) {
printHelp(err);
return BAD_VALUE;
}
int userId = 0;
if (args.size() == 4 && args[2] == String16("--user")) {
userId = atoi(String8(args[3]));
}
uid_t uid;
if (getUidForPackage(args[1], userId, uid, err) == BAD_VALUE) {
return BAD_VALUE;
}
if (mUidPolicy->isUidActive(uid)) {
return dprintf(out, "active\n");
} else {
return dprintf(out, "idle\n");
}
}
status_t SensorService::printHelp(int out) {
return dprintf(out, "Sensor service commands:\n"
" get-uid-state <PACKAGE> [--user USER_ID] gets the uid state\n"
" set-uid-state <PACKAGE> <active|idle> [--user USER_ID] overrides the uid state\n"
" reset-uid-state <PACKAGE> [--user USER_ID] clears the uid state override\n"
" help print this message\n");
}
//TODO: move to SensorEventConnection later
void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
sensors_event_t const* buffer, const int count) {
for (int i=0 ; i<count ; i++) {
int handle = buffer[i].sensor;
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
handle = buffer[i].meta_data.sensor;
}
if (connection->hasSensor(handle)) {
std::shared_ptr<SensorInterface> si = getSensorInterfaceFromHandle(handle);
// If this buffer has an event from a one_shot sensor and this connection is registered
// for this particular one_shot sensor, try cleaning up the connection.
if (si != nullptr &&
si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
si->autoDisable(connection.get(), handle);
cleanupWithoutDisableLocked(connection, handle);
}
}
}
}
void SensorService::sendEventsToAllClients(
const std::vector<sp<SensorEventConnection>>& activeConnections,
ssize_t count) {
// Send our events to clients. Check the state of wake lock for each client
// and release the lock if none of the clients need it.
bool needsWakeLock = false;
for (const sp<SensorEventConnection>& connection : activeConnections) {
connection->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
mMapFlushEventsToConnections);
needsWakeLock |= connection->needsWakeLock();
// If the connection has one-shot sensors, it may be cleaned up after
// first trigger. Early check for one-shot sensors.
if (connection->hasOneShotSensors()) {
cleanupAutoDisabledSensorLocked(connection, mSensorEventBuffer, count);
}
}
if (mWakeLockAcquired && !needsWakeLock) {
setWakeLockAcquiredLocked(false);
}
}
void SensorService::disconnectDynamicSensor(
int handle,
const std::vector<sp<SensorEventConnection>>& activeConnections) {
ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
SensorDevice::getInstance().handleDynamicSensorConnection(
handle, false /*connected*/);
if (!unregisterDynamicSensorLocked(handle)) {
ALOGE("Dynamic sensor release error.");
}
for (const sp<SensorEventConnection>& connection : activeConnections) {
connection->removeSensor(handle);
}
}
void SensorService::handleDeviceReconnection(SensorDevice& device) {
if (sensorservice_flags::dynamic_sensor_hal_reconnect_handling()) {
const std::vector<sp<SensorEventConnection>> activeConnections =
mConnectionHolder.lock(mLock).getActiveConnections();
for (int32_t handle : device.getDynamicSensorHandles()) {
if (mDynamicMetaSensorHandle.has_value()) {
// Sending one event at a time to prevent the number of handle is more than the
// buffer can hold.
mSensorEventBuffer[0].type = SENSOR_TYPE_DYNAMIC_SENSOR_META;
mSensorEventBuffer[0].sensor = *mDynamicMetaSensorHandle;
mSensorEventBuffer[0].dynamic_sensor_meta.connected = false;
mSensorEventBuffer[0].dynamic_sensor_meta.handle = handle;
mMapFlushEventsToConnections[0] = nullptr;
disconnectDynamicSensor(handle, activeConnections);
sendEventsToAllClients(activeConnections, 1);
} else {
ALOGE("Failed to find mDynamicMetaSensorHandle during init.");
break;
}
}
}
device.reconnect();
}
bool SensorService::threadLoop() {
ALOGD("nuSensorService thread starting...");
// each virtual sensor could generate an event per "real" event, that's why we need to size
// numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. in practice, this is too
// aggressive, but guaranteed to be enough.
const size_t vcount = mSensors.getVirtualSensors().size();
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
const size_t numEventMax = minBufferSize / (1 + vcount);
SensorDevice& device(SensorDevice::getInstance());
const int halVersion = device.getHalDeviceVersion();
do {
ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
if (count < 0) {
if (count == DEAD_OBJECT && device.isReconnecting()) {
handleDeviceReconnection(device);
continue;
} else {
ALOGE("sensor poll failed (%s)", strerror(-count));
break;
}
}
// Reset sensors_event_t.flags to zero for all events in the buffer.
for (int i = 0; i < count; i++) {
mSensorEventBuffer[i].flags = 0;
}
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
// Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
// rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
// sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
// not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
// releasing the wakelock.
uint32_t wakeEvents = 0;
for (int i = 0; i < count; i++) {
if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
wakeEvents++;
}
}
if (wakeEvents > 0) {
if (!mWakeLockAcquired) {
setWakeLockAcquiredLocked(true);
}
device.writeWakeLockHandled(wakeEvents);
}
recordLastValueLocked(mSensorEventBuffer, count);
// handle virtual sensors
if (count && vcount) {
sensors_event_t const * const event = mSensorEventBuffer;
if (!mActiveVirtualSensors.empty()) {
size_t k = 0;
SensorFusion& fusion(SensorFusion::getInstance());
if (fusion.isEnabled()) {
for (size_t i=0 ; i<size_t(count) ; i++) {
fusion.process(event[i]);
}
}
for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
for (int handle : mActiveVirtualSensors) {
if (count + k >= minBufferSize) {
ALOGE("buffer too small to hold all events: "
"count=%zd, k=%zu, size=%zu",
count, k, minBufferSize);
break;
}
sensors_event_t out;
std::shared_ptr<SensorInterface> si = getSensorInterfaceFromHandle(handle);
if (si == nullptr) {
ALOGE("handle %d is not an valid virtual sensor", handle);
continue;
}
if (si->process(&out, event[i])) {
mSensorEventBuffer[count + k] = out;
k++;
}
}
}
if (k) {
// record the last synthesized values
recordLastValueLocked(&mSensorEventBuffer[count], k);
count += k;
sortEventBuffer(mSensorEventBuffer, count);
}
}
}
// handle backward compatibility for RotationVector sensor
if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
for (int i = 0; i < count; i++) {
if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
// All the 4 components of the quaternion should be available
// No heading accuracy. Set it to -1
mSensorEventBuffer[i].data[4] = -1;
}
}
}
// Cache the list of active connections, since we use it in multiple places below but won't
// modify it here
const std::vector<sp<SensorEventConnection>> activeConnections = connLock.getActiveConnections();
for (int i = 0; i < count; ++i) {
// Map flush_complete_events in the buffer to SensorEventConnections which called flush
// on the hardware sensor. mapFlushEventsToConnections[i] will be the
// SensorEventConnection mapped to the corresponding flush_complete_event in
// mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
mMapFlushEventsToConnections[i] = nullptr;
if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
if (rec != nullptr) {
mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
rec->removeFirstPendingFlushConnection();
}
}
// handle dynamic sensor meta events, process registration and unregistration of dynamic
// sensor based on content of event.
if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
const sensor_t& dynamicSensor =
*(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
handle, dynamicSensor.type, dynamicSensor.name);
if (mSensors.isNewHandle(handle)) {
const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
sensor_t s = dynamicSensor;
// make sure the dynamic sensor flag is set
s.flags |= DYNAMIC_SENSOR_MASK;
// force the handle to be consistent
s.handle = handle;
auto si = std::make_shared<HardwareSensor>(s, uuid);
// This will release hold on dynamic sensor meta, so it should be called
// after Sensor object is created.
device.handleDynamicSensorConnection(handle, true /*connected*/);
registerDynamicSensorLocked(std::move(si));
} else {
ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
}
} else {
int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
disconnectDynamicSensor(handle, activeConnections);
}
}
}
// Send our events to clients. Check the state of wake lock for each client and release the
// lock if none of the clients need it.
sendEventsToAllClients(activeConnections, count);
} while (!Thread::exitPending());
ALOGW("Exiting SensorService::threadLoop => aborting...");
abort();
return false;
}
void SensorService::processRuntimeSensorEvents() {
size_t count = 0;
const size_t maxBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
{
std::unique_lock<std::mutex> lock(mRutimeSensorThreadMutex);
if (mRuntimeSensorEventQueue.empty()) {
mRuntimeSensorsCv.wait(lock, [this] { return !mRuntimeSensorEventQueue.empty(); });
}
// Pop the events from the queue into the buffer until it's empty or the buffer is full.
while (!mRuntimeSensorEventQueue.empty()) {
if (count >= maxBufferSize) {
ALOGE("buffer too small to hold all events: count=%zd, size=%zu", count,
maxBufferSize);
break;
}
mRuntimeSensorEventBuffer[count] = mRuntimeSensorEventQueue.front();
mRuntimeSensorEventQueue.pop();
count++;
}
}
if (count) {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
recordLastValueLocked(mRuntimeSensorEventBuffer, count);
sortEventBuffer(mRuntimeSensorEventBuffer, count);
for (const sp<SensorEventConnection>& connection : connLock.getActiveConnections()) {
connection->sendEvents(mRuntimeSensorEventBuffer, count, /* scratch= */ nullptr,
/* mapFlushEventsToConnections= */ nullptr);
if (connection->hasOneShotSensors()) {
cleanupAutoDisabledSensorLocked(connection, mRuntimeSensorEventBuffer, count);
}
}
}
}
sp<Looper> SensorService::getLooper() const {
return mLooper;
}
void SensorService::resetAllWakeLockRefCounts() {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
for (const sp<SensorEventConnection>& connection : connLock.getActiveConnections()) {
connection->resetWakeLockRefCount();
}
setWakeLockAcquiredLocked(false);
}
void SensorService::setWakeLockAcquiredLocked(bool acquire) {
if (acquire) {
if (!mWakeLockAcquired) {
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
mWakeLockAcquired = true;
}
mLooper->wake();
} else {
if (mWakeLockAcquired) {
release_wake_lock(WAKE_LOCK_NAME);
mWakeLockAcquired = false;
}
}
}
bool SensorService::isWakeLockAcquired() {
Mutex::Autolock _l(mLock);
return mWakeLockAcquired;
}
bool SensorService::SensorEventAckReceiver::threadLoop() {
ALOGD("new thread SensorEventAckReceiver");
sp<Looper> looper = mService->getLooper();
do {
bool wakeLockAcquired = mService->isWakeLockAcquired();
int timeout = -1;
if (wakeLockAcquired) timeout = 5000;
int ret = looper->pollOnce(timeout);
if (ret == ALOOPER_POLL_TIMEOUT) {
mService->resetAllWakeLockRefCounts();
}
} while(!Thread::exitPending());
return false;
}
bool SensorService::RuntimeSensorHandler::threadLoop() {
ALOGD("new thread RuntimeSensorHandler");
do {
mService->processRuntimeSensorEvents();
} while (!Thread::exitPending());
return false;
}
void SensorService::recordLastValueLocked(
const sensors_event_t* buffer, size_t count) {
for (size_t i = 0; i < count; i++) {
if (buffer[i].type == SENSOR_TYPE_META_DATA ||
buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
continue;
}
auto logger = mRecentEvent.find(buffer[i].sensor);
if (logger != mRecentEvent.end()) {
logger->second->addEvent(buffer[i]);
}
}
}
void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
struct compar {
static int cmp(void const* lhs, void const* rhs) {
sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
return l->timestamp - r->timestamp;
}
};
qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
}
String8 SensorService::getSensorName(int handle) const {
return mSensors.getName(handle);
}
String8 SensorService::getSensorStringType(int handle) const {
return mSensors.getStringType(handle);
}
bool SensorService::isVirtualSensor(int handle) const {
std::shared_ptr<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
return sensor != nullptr && sensor->isVirtual();
}
bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
int handle = event.sensor;
if (event.type == SENSOR_TYPE_META_DATA) {
handle = event.meta_data.sensor;
}
std::shared_ptr<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
}
int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
// UUID is not supported for this device.
return 0;
}
if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
// This sensor can be uniquely identified in the system by
// the combination of its type and name.
return -1;
}
// We have a dynamic sensor.
if (!sHmacGlobalKeyIsValid) {
// Rather than risk exposing UUIDs, we slow down dynamic sensors.
ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
return 0;
}
// We want each app author/publisher to get a different ID, so that the
// same dynamic sensor cannot be tracked across apps by multiple
// authors/publishers. So we use both our UUID and our User ID.
// Note potential confusion:
// UUID => Universally Unique Identifier.
// UID => User Identifier.
// We refrain from using "uid" except as needed by API to try to
// keep this distinction clear.
auto appUserId = IPCThreadState::self()->getCallingUid();
uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
memcpy(uuidAndApp, &uuid, sizeof(uuid));
memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
// Now we use our key on our UUID/app combo to get the hash.
uint8_t hash[EVP_MAX_MD_SIZE];
unsigned int hashLen;
if (HMAC(EVP_sha256(),
sHmacGlobalKey, sizeof(sHmacGlobalKey),
uuidAndApp, sizeof(uuidAndApp),
hash, &hashLen) == nullptr) {
// Rather than risk exposing UUIDs, we slow down dynamic sensors.
ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
return 0;
}
int32_t id = 0;
if (hashLen < sizeof(id)) {
// We never expect this case, but out of paranoia, we handle it.
// Our 'id' length is already quite small, we don't want the
// effective length of it to be even smaller.
// Rather than risk exposing UUIDs, we cripple dynamic sensors.
ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
return 0;
}
// This is almost certainly less than all of 'hash', but it's as secure
// as we can be with our current 'id' length.
memcpy(&id, hash, sizeof(id));
// Note at the beginning of the function that we return the values of
// 0 and -1 to represent special cases. As a result, we can't return
// those as dynamic sensor IDs. If we happened to hash to one of those
// values, we change 'id' so we report as a dynamic sensor, and not as
// one of those special cases.
if (id == -1) {
id = -2;
} else if (id == 0) {
id = 1;
}
return id;
}
void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
for (auto &sensor : sensorList) {
int32_t id = getIdFromUuid(sensor.getUuid());
sensor.setId(id);
// The sensor UUID must always be anonymized here for non privileged clients.
// There is no other checks after this point before returning to client process.
if (!isAudioServerOrSystemServerUid(IPCThreadState::self()->getCallingUid())) {
sensor.anonymizeUuid();
}
}
}
Vector<Sensor> SensorService::getSensorList(const String16& opPackageName) {
char value[PROPERTY_VALUE_MAX];
property_get("debug.sensors", value, "0");
const Vector<Sensor>& initialSensorList = (atoi(value)) ?
mSensors.getUserDebugSensors() : mSensors.getUserSensors();
Vector<Sensor> accessibleSensorList;
resetTargetSdkVersionCache(opPackageName);
bool isCapped = isRateCappedBasedOnPermission(opPackageName);
for (size_t i = 0; i < initialSensorList.size(); i++) {
Sensor sensor = initialSensorList[i];
if (isCapped && isSensorInCappedSet(sensor.getType())) {
sensor.capMinDelayMicros(SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS / 1000);
sensor.capHighestDirectReportRateLevel(SENSOR_SERVICE_CAPPED_SAMPLING_RATE_LEVEL);
}
accessibleSensorList.add(sensor);
}
makeUuidsIntoIdsForSensorList(accessibleSensorList);
return accessibleSensorList;
}
void SensorService::addSensorIfAccessible(const String16& opPackageName, const Sensor& sensor,
Vector<Sensor>& accessibleSensorList) {
if (canAccessSensor(sensor, "can't see", opPackageName)) {
accessibleSensorList.add(sensor);
} else if (sensor.getType() != SENSOR_TYPE_HEAD_TRACKER) {
ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
sensor.getName().c_str(), sensor.getRequiredPermission().c_str(),
sensor.getRequiredAppOp());
}
}
Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
Vector<Sensor> accessibleSensorList;
mSensors.forEachSensor(
[this, &opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
if (sensor.isDynamicSensor()) {
addSensorIfAccessible(opPackageName, sensor, accessibleSensorList);
}
return true;
});
makeUuidsIntoIdsForSensorList(accessibleSensorList);
return accessibleSensorList;
}
Vector<Sensor> SensorService::getRuntimeSensorList(const String16& opPackageName, int deviceId) {
Vector<Sensor> accessibleSensorList;
mSensors.forEachEntry(
[this, &opPackageName, deviceId, &accessibleSensorList] (
const SensorServiceUtil::SensorList::Entry& e) -> bool {
if (e.deviceId == deviceId) {
addSensorIfAccessible(opPackageName, e.si->getSensor(), accessibleSensorList);
}
return true;
});
makeUuidsIntoIdsForSensorList(accessibleSensorList);
return accessibleSensorList;
}
sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
int requestedMode, const String16& opPackageName, const String16& attributionTag) {
// Only 4 modes supported for a SensorEventConnection ... NORMAL, DATA_INJECTION,
// REPLAY_DATA_INJECTION and HAL_BYPASS_REPLAY_DATA_INJECTION
if (requestedMode != NORMAL && !isInjectionMode(requestedMode)) {
return nullptr;
}
resetTargetSdkVersionCache(opPackageName);
Mutex::Autolock _l(mLock);
// To create a client in DATA_INJECTION mode to inject data, SensorService should already be
// operating in DI mode.
if (requestedMode == DATA_INJECTION) {
if (mCurrentOperatingMode != DATA_INJECTION) return nullptr;
if (!isAllowListedPackage(packageName)) return nullptr;
}
uid_t uid = IPCThreadState::self()->getCallingUid();
pid_t pid = IPCThreadState::self()->getCallingPid();
String8 connPackageName =
(packageName == "") ? String8::format("unknown_package_pid_%d", pid) : packageName;
String16 connOpPackageName =
(opPackageName == String16("")) ? String16(connPackageName) : opPackageName;
sp<SensorEventConnection> result(new SensorEventConnection(this, uid, connPackageName,
isInjectionMode(requestedMode),
connOpPackageName, attributionTag));
if (isInjectionMode(requestedMode)) {
mConnectionHolder.addEventConnectionIfNotPresent(result);
// Add the associated file descriptor to the Looper for polling whenever there is data to
// be injected.
result->updateLooperRegistration(mLooper);
}
return result;
}
int SensorService::isDataInjectionEnabled() {
Mutex::Autolock _l(mLock);
return mCurrentOperatingMode == DATA_INJECTION;
}
int SensorService::isReplayDataInjectionEnabled() {
Mutex::Autolock _l(mLock);
return mCurrentOperatingMode == REPLAY_DATA_INJECTION;
}
int SensorService::isHalBypassReplayDataInjectionEnabled() {
Mutex::Autolock _l(mLock);
return mCurrentOperatingMode == HAL_BYPASS_REPLAY_DATA_INJECTION;
}
bool SensorService::isInjectionMode(int mode) {
return (mode == DATA_INJECTION || mode == REPLAY_DATA_INJECTION ||
mode == HAL_BYPASS_REPLAY_DATA_INJECTION);
}
sp<ISensorEventConnection> SensorService::createSensorDirectConnection(
const String16& opPackageName, int deviceId, uint32_t size, int32_t type, int32_t format,
const native_handle *resource) {
resetTargetSdkVersionCache(opPackageName);
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
// No new direct connections are allowed when sensor privacy is enabled
if (mSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
ALOGE("Cannot create new direct connections when sensor privacy is enabled");
return nullptr;
}
struct sensors_direct_mem_t mem = {
.type = type,
.format = format,
.size = size,
.handle = resource,
};
uid_t uid = IPCThreadState::self()->getCallingUid();
if (mem.handle == nullptr) {
ALOGE("Failed to clone resource handle");
return nullptr;
}
// check format
if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
ALOGE("Direct channel format %d is unsupported!", format);
return nullptr;
}
// check for duplication
for (const sp<SensorDirectConnection>& connection : connLock.getDirectConnections()) {
if (connection->isEquivalent(&mem)) {
ALOGE("Duplicate create channel request for the same share memory");
return nullptr;
}
}
// check specific to memory type
switch(type) {
case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem
if (resource->numFds < 1) {
ALOGE("Ashmem direct channel requires a memory region to be supplied");
android_errorWriteLog(0x534e4554, "70986337"); // SafetyNet
return nullptr;
}
int fd = resource->data[0];
if (!ashmem_valid(fd)) {
ALOGE("Supplied Ashmem memory region is invalid");
return nullptr;
}
int size2 = ashmem_get_size_region(fd);
// check size consistency
if (size2 < static_cast<int64_t>(size)) {
ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d",
size, size2);
return nullptr;
}
break;
}
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
// no specific checks for gralloc
break;
default:
ALOGE("Unknown direct connection memory type %d", type);
return nullptr;
}
native_handle_t *clone = native_handle_clone(resource);
if (!clone) {
return nullptr;
}
native_handle_set_fdsan_tag(clone);
sp<SensorDirectConnection> conn;
int channelHandle = 0;
if (deviceId == RuntimeSensor::DEFAULT_DEVICE_ID) {
SensorDevice& dev(SensorDevice::getInstance());
channelHandle = dev.registerDirectChannel(&mem);
} else {
auto runtimeSensorCallback = mRuntimeSensorCallbacks.find(deviceId);
if (runtimeSensorCallback == mRuntimeSensorCallbacks.end()) {
ALOGE("Runtime sensor callback for deviceId %d not found", deviceId);
} else {
int fd = dup(clone->data[0]);
channelHandle = runtimeSensorCallback->second->onDirectChannelCreated(fd);
}
}
if (channelHandle <= 0) {
ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle);
} else {
mem.handle = clone;
conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName, deviceId);
}
if (conn == nullptr) {
native_handle_close_with_tag(clone);
native_handle_delete(clone);
} else {
// add to list of direct connections
// sensor service should never hold pointer or sp of SensorDirectConnection object.
mConnectionHolder.addDirectConnection(conn);
}
return conn;
}
int SensorService::configureRuntimeSensorDirectChannel(
int sensorHandle, const SensorDirectConnection* c, const sensors_direct_cfg_t* config) {
int deviceId = c->getDeviceId();
int sensorDeviceId = getDeviceIdFromHandle(sensorHandle);
if (sensorDeviceId != c->getDeviceId()) {
ALOGE("Cannot configure direct channel created for device %d with a sensor that belongs "
"to device %d", c->getDeviceId(), sensorDeviceId);
return BAD_VALUE;
}
auto runtimeSensorCallback = mRuntimeSensorCallbacks.find(deviceId);
if (runtimeSensorCallback == mRuntimeSensorCallbacks.end()) {
ALOGE("Runtime sensor callback for deviceId %d not found", deviceId);
return BAD_VALUE;
}
return runtimeSensorCallback->second->onDirectChannelConfigured(
c->getHalChannelHandle(), sensorHandle, config->rate_level);
}
int SensorService::setOperationParameter(
int32_t handle, int32_t type,
const Vector<float> &floats, const Vector<int32_t> &ints) {
Mutex::Autolock _l(mLock);
if (!checkCallingPermission(sLocationHardwarePermission, nullptr, nullptr)) {
return PERMISSION_DENIED;
}
bool isFloat = true;
bool isCustom = false;
size_t expectSize = INT32_MAX;
switch (type) {
case AINFO_LOCAL_GEOMAGNETIC_FIELD:
isFloat = true;
expectSize = 3;
break;
case AINFO_LOCAL_GRAVITY:
isFloat = true;
expectSize = 1;
break;
case AINFO_DOCK_STATE:
case AINFO_HIGH_PERFORMANCE_MODE:
case AINFO_MAGNETIC_FIELD_CALIBRATION:
isFloat = false;
expectSize = 1;
break;
default:
// CUSTOM events must only contain float data; it may have variable size
if (type < AINFO_CUSTOM_START || type >= AINFO_DEBUGGING_START ||
ints.size() ||
sizeof(additional_info_event_t::data_float)/sizeof(float) < floats.size() ||
handle < 0) {
return BAD_VALUE;
}
isFloat = true;
isCustom = true;
expectSize = floats.size();
break;
}
if (!isCustom && handle != -1) {
return BAD_VALUE;
}
// three events: first one is begin tag, last one is end tag, the one in the middle
// is the payload.
sensors_event_t event[3];
int64_t timestamp = elapsedRealtimeNano();
for (sensors_event_t* i = event; i < event + 3; i++) {
*i = (sensors_event_t) {
.version = sizeof(sensors_event_t),
.sensor = handle,
.type = SENSOR_TYPE_ADDITIONAL_INFO,
.timestamp = timestamp++,
.additional_info = (additional_info_event_t) {
.serial = 0
}
};
}
event[0].additional_info.type = AINFO_BEGIN;
event[1].additional_info.type = type;
event[2].additional_info.type = AINFO_END;
if (isFloat) {
if (floats.size() != expectSize) {
return BAD_VALUE;
}
for (size_t i = 0; i < expectSize; ++i) {
event[1].additional_info.data_float[i] = floats[i];
}
} else {
if (ints.size() != expectSize) {
return BAD_VALUE;
}
for (size_t i = 0; i < expectSize; ++i) {
event[1].additional_info.data_int32[i] = ints[i];
}
}
SensorDevice& dev(SensorDevice::getInstance());
for (sensors_event_t* i = event; i < event + 3; i++) {
int ret = dev.injectSensorData(i);
if (ret != NO_ERROR) {
return ret;
}
}
return NO_ERROR;
}
status_t SensorService::resetToNormalMode() {
Mutex::Autolock _l(mLock);
return resetToNormalModeLocked();
}
status_t SensorService::resetToNormalModeLocked() {
SensorDevice& dev(SensorDevice::getInstance());
status_t err = dev.setMode(NORMAL);
if (err == NO_ERROR) {
mCurrentOperatingMode = NORMAL;
dev.enableAllSensors();
checkAndReportProxStateChangeLocked();
}
return err;
}
void SensorService::cleanupConnection(SensorEventConnection* c) {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
const wp<SensorEventConnection> connection(c);
size_t size = mActiveSensors.size();
ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
for (size_t i=0 ; i<size ; ) {
int handle = mActiveSensors.keyAt(i);
if (c->hasSensor(handle)) {
ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
std::shared_ptr<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor != nullptr) {
sensor->activate(c, false);
} else {
ALOGE("sensor interface of handle=0x%08x is null!", handle);
}
if (c->removeSensor(handle)) {
BatteryService::disableSensor(c->getUid(), handle);
}
}
SensorRecord* rec = mActiveSensors.valueAt(i);
ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
ALOGD_IF(DEBUG_CONNECTIONS,
"removing connection %p for sensor[%zu].handle=0x%08x",
c, i, handle);
if (rec && rec->removeConnection(connection)) {
ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
mActiveSensors.removeItemsAt(i, 1);
mActiveVirtualSensors.erase(handle);
delete rec;
size--;
} else {
i++;
}
}
c->updateLooperRegistration(mLooper);
mConnectionHolder.removeEventConnection(connection);
if (c->needsWakeLock()) {
checkWakeLockStateLocked(&connLock);
}
SensorDevice& dev(SensorDevice::getInstance());
dev.notifyConnectionDestroyed(c);
}
void SensorService::cleanupConnection(SensorDirectConnection* c) {
Mutex::Autolock _l(mLock);
int deviceId = c->getDeviceId();
if (deviceId == RuntimeSensor::DEFAULT_DEVICE_ID) {
SensorDevice& dev(SensorDevice::getInstance());
dev.unregisterDirectChannel(c->getHalChannelHandle());
} else {
auto runtimeSensorCallback = mRuntimeSensorCallbacks.find(deviceId);
if (runtimeSensorCallback != mRuntimeSensorCallbacks.end()) {
runtimeSensorCallback->second->onDirectChannelDestroyed(c->getHalChannelHandle());
} else {
ALOGE("Runtime sensor callback for deviceId %d not found", deviceId);
}
}
mConnectionHolder.removeDirectConnection(c);
}
void SensorService::checkAndReportProxStateChangeLocked() {
if (mProxSensorHandles.empty()) return;
SensorDevice& dev(SensorDevice::getInstance());
bool isActive = false;
for (auto& sensor : mProxSensorHandles) {
if (dev.isSensorActive(sensor)) {
isActive = true;
break;
}
}
if (isActive != mLastReportedProxIsActive) {
notifyProximityStateLocked(isActive, mProximityActiveListeners);
mLastReportedProxIsActive = isActive;
}
}
void SensorService::notifyProximityStateLocked(
const bool isActive,
const std::vector<sp<ProximityActiveListener>>& listeners) {
const uint64_t mySeq = ++curProxCallbackSeq;
std::thread t([isActive, mySeq, listenersCopy = listeners]() {
while (completedCallbackSeq.load() != mySeq - 1)
std::this_thread::sleep_for(1ms);
for (auto& listener : listenersCopy)
listener->onProximityActive(isActive);
completedCallbackSeq++;
});
t.detach();
}
status_t SensorService::addProximityActiveListener(const sp<ProximityActiveListener>& callback) {
if (callback == nullptr) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
// Check if the callback was already added.
for (const auto& cb : mProximityActiveListeners) {
if (cb == callback) {
return ALREADY_EXISTS;
}
}
mProximityActiveListeners.push_back(callback);
std::vector<sp<ProximityActiveListener>> listener(1, callback);
notifyProximityStateLocked(mLastReportedProxIsActive, listener);
return OK;
}
status_t SensorService::removeProximityActiveListener(
const sp<ProximityActiveListener>& callback) {
if (callback == nullptr) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
for (auto iter = mProximityActiveListeners.begin();
iter != mProximityActiveListeners.end();
++iter) {
if (*iter == callback) {
mProximityActiveListeners.erase(iter);
return OK;
}
}
return NAME_NOT_FOUND;
}
std::shared_ptr<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
return mSensors.getInterface(handle);
}
int SensorService::getDeviceIdFromHandle(int handle) const {
int deviceId = RuntimeSensor::DEFAULT_DEVICE_ID;
mSensors.forEachEntry(
[&deviceId, handle] (const SensorServiceUtil::SensorList::Entry& e) -> bool {
if (e.si->getSensor().getHandle() == handle) {
deviceId = e.deviceId;
return false; // stop iterating
}
return true;
});
return deviceId;
}
status_t SensorService::enable(const sp<SensorEventConnection>& connection,
int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
const String16& opPackageName) {
if (mInitCheck != NO_ERROR)
return mInitCheck;
std::shared_ptr<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor == nullptr ||
!canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
return BAD_VALUE;
}
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
if (mCurrentOperatingMode != NORMAL && mCurrentOperatingMode != REPLAY_DATA_INJECTION &&
!isAllowListedPackage(connection->getPackageName())) {
return INVALID_OPERATION;
}
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec == nullptr) {
rec = new SensorRecord(connection);
mActiveSensors.add(handle, rec);
if (sensor->isVirtual()) {
mActiveVirtualSensors.emplace(handle);
}
// There was no SensorRecord for this sensor which means it was previously disabled. Mark
// the recent event as stale to ensure that the previous event is not sent to a client. This
// ensures on-change events that were generated during a previous sensor activation are not
// erroneously sent to newly connected clients, especially if a second client registers for
// an on-change sensor before the first client receives the updated event. Once an updated
// event is received, the recent events will be marked as current, and any new clients will
// immediately receive the most recent event.
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
auto logger = mRecentEvent.find(handle);
if (logger != mRecentEvent.end()) {
logger->second->setLastEventStale();
}
}
} else {
if (rec->addConnection(connection)) {
// this sensor is already activated, but we are adding a connection that uses it.
// Immediately send down the last known value of the requested sensor if it's not a
// "continuous" sensor.
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
// NOTE: The wake_up flag of this event may get set to
// WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
auto logger = mRecentEvent.find(handle);
if (logger != mRecentEvent.end()) {
sensors_event_t event;
// Verify that the last sensor event was generated from the current activation
// of the sensor. If not, it is possible for an on-change sensor to receive a
// sensor event that is stale if two clients re-activate the sensor
// simultaneously.
if(logger->second->populateLastEventIfCurrent(&event)) {
event.sensor = handle;
if (event.version == sizeof(sensors_event_t)) {
if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
setWakeLockAcquiredLocked(true);
}
connection->sendEvents(&event, 1, nullptr);
if (!connection->needsWakeLock() && mWakeLockAcquired) {
checkWakeLockStateLocked(&connLock);
}
}
}
}
}
}
}
if (connection->addSensor(handle)) {
BatteryService::enableSensor(connection->getUid(), handle);
// the sensor was added (which means it wasn't already there)
// so, see if this connection becomes active
mConnectionHolder.addEventConnectionIfNotPresent(connection);
} else {
ALOGW("sensor %08x already enabled in connection %p (ignoring)",
handle, connection.get());
}
// Check maximum delay for the sensor.
nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) {
samplingPeriodNs = maxDelayNs;
}
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (samplingPeriodNs < minDelayNs) {
samplingPeriodNs = minDelayNs;
}
ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
"rate=%" PRId64 " timeout== %" PRId64"",
handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
maxBatchReportLatencyNs);
// Call flush() before calling activate() on the sensor. Wait for a first
// flush complete event before sending events on this connection. Ignore
// one-shot sensors which don't support flush(). Ignore on-change sensors
// to maintain the on-change logic (any on-change events except the initial
// one should be trigger by a change in value). Also if this sensor isn't
// already active, don't call flush().
if (err == NO_ERROR &&
sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
rec->getNumConnections() > 1) {
connection->setFirstFlushPending(handle, true);
status_t err_flush = sensor->flush(connection.get(), handle);
// Flush may return error if the underlying h/w sensor uses an older HAL.
if (err_flush == NO_ERROR) {
rec->addPendingFlushConnection(connection.get());
} else {
connection->setFirstFlushPending(handle, false);
}
}
if (err == NO_ERROR) {
ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
err = sensor->activate(connection.get(), true);
}
if (err == NO_ERROR) {
connection->updateLooperRegistration(mLooper);
if (sensor->getSensor().getRequiredPermission().size() > 0 &&
sensor->getSensor().getRequiredAppOp() >= 0) {
connection->mHandleToAppOp[handle] = sensor->getSensor().getRequiredAppOp();
}
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
SensorRegistrationInfo(handle, connection->getPackageName(),
samplingPeriodNs, maxBatchReportLatencyNs, true);
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
}
if (err != NO_ERROR) {
// batch/activate has failed, reset our state.
cleanupWithoutDisableLocked(connection, handle);
}
return err;
}
status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
if (mInitCheck != NO_ERROR)
return mInitCheck;
Mutex::Autolock _l(mLock);
status_t err = cleanupWithoutDisableLocked(connection, handle);
if (err == NO_ERROR) {
std::shared_ptr<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
}
if (err == NO_ERROR) {
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false);
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
}
return err;
}
status_t SensorService::cleanupWithoutDisable(
const sp<SensorEventConnection>& connection, int handle) {
Mutex::Autolock _l(mLock);
return cleanupWithoutDisableLocked(connection, handle);
}
status_t SensorService::cleanupWithoutDisableLocked(
const sp<SensorEventConnection>& connection, int handle) {
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec) {
// see if this connection becomes inactive
if (connection->removeSensor(handle)) {
BatteryService::disableSensor(connection->getUid(), handle);
}
if (connection->hasAnySensor() == false) {
connection->updateLooperRegistration(mLooper);
mConnectionHolder.removeEventConnection(connection);
}
// see if this sensor becomes inactive
if (rec->removeConnection(connection)) {
mActiveSensors.removeItem(handle);
mActiveVirtualSensors.erase(handle);
delete rec;
}
return NO_ERROR;
}
return BAD_VALUE;
}
status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
int handle, nsecs_t ns, const String16& opPackageName) {
if (mInitCheck != NO_ERROR)
return mInitCheck;
std::shared_ptr<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor == nullptr ||
!canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
return BAD_VALUE;
}
if (ns < 0)
return BAD_VALUE;
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (ns < minDelayNs) {
ns = minDelayNs;
}
return sensor->setDelay(connection.get(), handle, ns);
}
status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
const String16& opPackageName) {
if (mInitCheck != NO_ERROR) return mInitCheck;
SensorDevice& dev(SensorDevice::getInstance());
const int halVersion = dev.getHalDeviceVersion();
status_t err(NO_ERROR);
Mutex::Autolock _l(mLock);
// Loop through all sensors for this connection and call flush on each of them.
for (int handle : connection->getActiveSensorHandles()) {
std::shared_ptr<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor == nullptr) {
continue;
}
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
ALOGE("flush called on a one-shot sensor");
err = INVALID_OPERATION;
continue;
}
if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
// For older devices just increment pending flush count which will send a trivial
// flush complete event.
if (!connection->incrementPendingFlushCountIfHasAccess(handle)) {
ALOGE("flush called on an inaccessible sensor");
err = INVALID_OPERATION;
}
} else {
if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
err = INVALID_OPERATION;
continue;
}
status_t err_flush = sensor->flush(connection.get(), handle);
if (err_flush == NO_ERROR) {
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec != nullptr) rec->addPendingFlushConnection(connection);
}
err = (err_flush != NO_ERROR) ? err_flush : err;
}
}
return err;
}
bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
const String16& opPackageName) {
// Special case for Head Tracker sensor type: currently restricted to system usage only, unless
// the restriction is specially lifted for testing
if (sensor.getType() == SENSOR_TYPE_HEAD_TRACKER &&
!isAudioServerOrSystemServerUid(IPCThreadState::self()->getCallingUid())) {
if (!mHtRestricted) {
ALOGI("Permitting access to HT sensor type outside system (%s)",
String8(opPackageName).c_str());
} else {
ALOGW("%s %s a sensor (%s) as a non-system client", String8(opPackageName).c_str(),
operation, sensor.getName().c_str());
return false;
}
}
// Check if a permission is required for this sensor
if (sensor.getRequiredPermission().length() <= 0) {
return true;
}
const int32_t opCode = sensor.getRequiredAppOp();
int targetSdkVersion = getTargetSdkVersion(opPackageName);
bool canAccess = false;
if (targetSdkVersion > 0 && targetSdkVersion <= __ANDROID_API_P__ &&
(sensor.getType() == SENSOR_TYPE_STEP_COUNTER ||
sensor.getType() == SENSOR_TYPE_STEP_DETECTOR)) {
// Allow access to step sensors if the application targets pre-Q, which is before the
// requirement to hold the AR permission to access Step Counter and Step Detector events
// was introduced.
canAccess = true;
} else if (hasPermissionForSensor(sensor)) {
// Ensure that the AppOp is allowed, or that there is no necessary app op for the sensor
if (opCode >= 0) {
const int32_t appOpMode = sAppOpsManager.checkOp(opCode,
IPCThreadState::self()->getCallingUid(), opPackageName);
canAccess = (appOpMode == AppOpsManager::MODE_ALLOWED);
} else {
canAccess = true;
}
}
if (!canAccess) {
ALOGE("%s %s a sensor (%s) without holding %s", String8(opPackageName).c_str(),
operation, sensor.getName().c_str(), sensor.getRequiredPermission().c_str());
}
return canAccess;
}
bool SensorService::hasPermissionForSensor(const Sensor& sensor) {
bool hasPermission = false;
const String8& requiredPermission = sensor.getRequiredPermission();
// Runtime permissions can't use the cache as they may change.
if (sensor.isRequiredPermissionRuntime()) {
hasPermission = checkPermission(String16(requiredPermission),
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid(),
/*logPermissionFailure=*/ false);
} else {
hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
}
return hasPermission;
}
int SensorService::getTargetSdkVersion(const String16& opPackageName) {
// Don't query the SDK version for the ISensorManager descriptor as it
// doesn't have one. This descriptor tends to be used for VNDK clients, but
// can technically be set by anyone so don't give it elevated privileges.
bool isVNDK = opPackageName.startsWith(sSensorInterfaceDescriptorPrefix) &&
opPackageName.contains(String16("@"));
if (isVNDK) {
return -1;
}
Mutex::Autolock packageLock(sPackageTargetVersionLock);
int targetSdkVersion = -1;
auto entry = sPackageTargetVersion.find(opPackageName);
if (entry != sPackageTargetVersion.end()) {
targetSdkVersion = entry->second;
} else {
sp<IBinder> binder = defaultServiceManager()->getService(String16("package_native"));
if (binder != nullptr) {
sp<content::pm::IPackageManagerNative> packageManager =
interface_cast<content::pm::IPackageManagerNative>(binder);
if (packageManager != nullptr) {
binder::Status status = packageManager->getTargetSdkVersionForPackage(
opPackageName, &targetSdkVersion);
if (!status.isOk()) {
targetSdkVersion = -1;
}
}
}
sPackageTargetVersion[opPackageName] = targetSdkVersion;
}
return targetSdkVersion;
}
void SensorService::resetTargetSdkVersionCache(const String16& opPackageName) {
Mutex::Autolock packageLock(sPackageTargetVersionLock);
auto iter = sPackageTargetVersion.find(opPackageName);
if (iter != sPackageTargetVersion.end()) {
sPackageTargetVersion.erase(iter);
}
}
bool SensorService::getTargetOperatingMode(const std::string &inputString, Mode *targetModeOut) {
if (inputString == std::string("restrict")) {
*targetModeOut = RESTRICTED;
return true;
}
if (inputString == std::string("enable")) {
*targetModeOut = NORMAL;
return true;
}
if (inputString == std::string("data_injection")) {
*targetModeOut = DATA_INJECTION;
return true;
}
if (inputString == std::string("replay_data_injection")) {
*targetModeOut = REPLAY_DATA_INJECTION;
return true;
}
if (inputString == std::string("hal_bypass_replay_data_injection")) {
*targetModeOut = HAL_BYPASS_REPLAY_DATA_INJECTION;
return true;
}
return false;
}
status_t SensorService::changeOperatingMode(const Vector<String16>& args,
Mode targetOperatingMode) {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
SensorDevice& dev(SensorDevice::getInstance());
if (mCurrentOperatingMode == targetOperatingMode) {
return NO_ERROR;
}
if (targetOperatingMode != NORMAL && args.size() < 2) {
return INVALID_OPERATION;
}
switch (targetOperatingMode) {
case NORMAL:
// If currently in restricted mode, reset back to NORMAL mode else ignore.
if (mCurrentOperatingMode == RESTRICTED) {
mCurrentOperatingMode = NORMAL;
// enable sensors and recover all sensor direct report
enableAllSensorsLocked(&connLock);
}
if (mCurrentOperatingMode == REPLAY_DATA_INJECTION) {
dev.disableAllSensors();
}
if (mCurrentOperatingMode == DATA_INJECTION ||
mCurrentOperatingMode == REPLAY_DATA_INJECTION ||
mCurrentOperatingMode == HAL_BYPASS_REPLAY_DATA_INJECTION) {
resetToNormalModeLocked();
}
mAllowListedPackage.clear();
return status_t(NO_ERROR);
case RESTRICTED:
// If in any mode other than normal, ignore.
if (mCurrentOperatingMode != NORMAL) {
return INVALID_OPERATION;
}
mCurrentOperatingMode = RESTRICTED;
// temporarily stop all sensor direct report and disable sensors
disableAllSensorsLocked(&connLock);
mAllowListedPackage = String8(args[1]);
return status_t(NO_ERROR);
case HAL_BYPASS_REPLAY_DATA_INJECTION:
FALLTHROUGH_INTENDED;
case REPLAY_DATA_INJECTION:
if (SensorServiceUtil::isUserBuild()) {
return INVALID_OPERATION;
}
FALLTHROUGH_INTENDED;
case DATA_INJECTION:
if (mCurrentOperatingMode == NORMAL) {
dev.disableAllSensors();
status_t err = NO_ERROR;
if (targetOperatingMode == HAL_BYPASS_REPLAY_DATA_INJECTION) {
// Set SensorDevice to HAL_BYPASS_REPLAY_DATA_INJECTION_MODE. This value is not
// injected into the HAL, nor will any events be injected into the HAL
err = dev.setMode(HAL_BYPASS_REPLAY_DATA_INJECTION);
} else {
// Otherwise use DATA_INJECTION here since this value goes to the HAL and the HAL
// doesn't have an understanding of replay vs. normal data injection.
err = dev.setMode(DATA_INJECTION);
}
if (err == NO_ERROR) {
mCurrentOperatingMode = targetOperatingMode;
}
if (err != NO_ERROR || targetOperatingMode == REPLAY_DATA_INJECTION) {
// Re-enable sensors.
dev.enableAllSensors();
}
mAllowListedPackage = String8(args[1]);
return NO_ERROR;
} else {
// Transition to data injection mode supported only from NORMAL mode.
return INVALID_OPERATION;
}
break;
default:
break;
}
return NO_ERROR;
}
void SensorService::checkWakeLockState() {
ConnectionSafeAutolock connLock = mConnectionHolder.lock(mLock);
checkWakeLockStateLocked(&connLock);
}
void SensorService::checkWakeLockStateLocked(ConnectionSafeAutolock* connLock) {
if (!mWakeLockAcquired) {
return;
}
bool releaseLock = true;
for (const sp<SensorEventConnection>& connection : connLock->getActiveConnections()) {
if (connection->needsWakeLock()) {
releaseLock = false;
break;
}
}
if (releaseLock) {
setWakeLockAcquiredLocked(false);
}
}
void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
Mutex::Autolock _l(mLock);
connection->writeToSocketFromCache();
if (connection->needsWakeLock()) {
setWakeLockAcquiredLocked(true);
}
}
bool SensorService::isAllowListedPackage(const String8& packageName) {
return (packageName.contains(mAllowListedPackage.c_str()));
}
bool SensorService::isOperationRestrictedLocked(const String16& opPackageName) {
if (mCurrentOperatingMode == RESTRICTED) {
String8 package(opPackageName);
return !isAllowListedPackage(package);
}
return false;
}
void SensorService::UidPolicy::registerSelf() {
ActivityManager am;
am.registerUidObserver(this, ActivityManager::UID_OBSERVER_GONE
| ActivityManager::UID_OBSERVER_IDLE
| ActivityManager::UID_OBSERVER_ACTIVE,
ActivityManager::PROCESS_STATE_UNKNOWN,
String16("android"));
}
void SensorService::UidPolicy::unregisterSelf() {
ActivityManager am;
am.unregisterUidObserver(this);
}
void SensorService::UidPolicy::onUidGone(__unused uid_t uid, __unused bool disabled) {
onUidIdle(uid, disabled);
}
void SensorService::UidPolicy::onUidActive(uid_t uid) {
{
Mutex::Autolock _l(mUidLock);
mActiveUids.insert(uid);
}
sp<SensorService> service = mService.promote();
if (service != nullptr) {
service->onUidStateChanged(uid, UID_STATE_ACTIVE);
}
}
void SensorService::UidPolicy::onUidIdle(uid_t uid, __unused bool disabled) {
bool deleted = false;
{
Mutex::Autolock _l(mUidLock);
if (mActiveUids.erase(uid) > 0) {
deleted = true;
}
}
if (deleted) {
sp<SensorService> service = mService.promote();
if (service != nullptr) {
service->onUidStateChanged(uid, UID_STATE_IDLE);
}
}
}
void SensorService::UidPolicy::addOverrideUid(uid_t uid, bool active) {
updateOverrideUid(uid, active, true);
}
void SensorService::UidPolicy::removeOverrideUid(uid_t uid) {
updateOverrideUid(uid, false, false);
}
void SensorService::UidPolicy::updateOverrideUid(uid_t uid, bool active, bool insert) {
bool wasActive = false;
bool isActive = false;
{
Mutex::Autolock _l(mUidLock);
wasActive = isUidActiveLocked(uid);
mOverrideUids.erase(uid);
if (insert) {
mOverrideUids.insert(std::pair<uid_t, bool>(uid, active));
}
isActive = isUidActiveLocked(uid);
}
if (wasActive != isActive) {
sp<SensorService> service = mService.promote();
if (service != nullptr) {
service->onUidStateChanged(uid, isActive ? UID_STATE_ACTIVE : UID_STATE_IDLE);
}
}
}
bool SensorService::UidPolicy::isUidActive(uid_t uid) {
// Non-app UIDs are considered always active
if (uid < FIRST_APPLICATION_UID) {
return true;
}
Mutex::Autolock _l(mUidLock);
return isUidActiveLocked(uid);
}
bool SensorService::UidPolicy::isUidActiveLocked(uid_t uid) {
// Non-app UIDs are considered always active
if (uid < FIRST_APPLICATION_UID) {
return true;
}
auto it = mOverrideUids.find(uid);
if (it != mOverrideUids.end()) {
return it->second;
}
return mActiveUids.find(uid) != mActiveUids.end();
}
bool SensorService::isUidActive(uid_t uid) {
return mUidPolicy->isUidActive(uid);
}
bool SensorService::isRateCappedBasedOnPermission(const String16& opPackageName) {
int targetSdk = getTargetSdkVersion(opPackageName);
bool hasSamplingRatePermission = checkPermission(sAccessHighSensorSamplingRatePermission,
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid(),
/*logPermissionFailure=*/ false);
if (targetSdk < __ANDROID_API_S__ ||
(targetSdk >= __ANDROID_API_S__ && hasSamplingRatePermission)) {
return false;
}
return true;
}
/**
* Checks if a sensor should be capped according to HIGH_SAMPLING_RATE_SENSORS
* permission.
*
* This needs to be kept in sync with the list defined on the Java side
* in frameworks/base/core/java/android/hardware/SystemSensorManager.java
*/
bool SensorService::isSensorInCappedSet(int sensorType) {
return (sensorType == SENSOR_TYPE_ACCELEROMETER
|| sensorType == SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED
|| sensorType == SENSOR_TYPE_GYROSCOPE
|| sensorType == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED
|| sensorType == SENSOR_TYPE_MAGNETIC_FIELD
|| sensorType == SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED);
}
status_t SensorService::adjustSamplingPeriodBasedOnMicAndPermission(nsecs_t* requestedPeriodNs,
const String16& opPackageName) {
if (*requestedPeriodNs >= SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) {
return OK;
}
bool shouldCapBasedOnPermission = isRateCappedBasedOnPermission(opPackageName);
if (shouldCapBasedOnPermission) {
*requestedPeriodNs = SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS;
if (isPackageDebuggable(opPackageName)) {
return PERMISSION_DENIED;
}
return OK;
}
if (mMicSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
*requestedPeriodNs = SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS;
return OK;
}
return OK;
}
status_t SensorService::adjustRateLevelBasedOnMicAndPermission(int* requestedRateLevel,
const String16& opPackageName) {
if (*requestedRateLevel <= SENSOR_SERVICE_CAPPED_SAMPLING_RATE_LEVEL) {
return OK;
}
bool shouldCapBasedOnPermission = isRateCappedBasedOnPermission(opPackageName);
if (shouldCapBasedOnPermission) {
*requestedRateLevel = SENSOR_SERVICE_CAPPED_SAMPLING_RATE_LEVEL;
if (isPackageDebuggable(opPackageName)) {
return PERMISSION_DENIED;
}
return OK;
}
if (mMicSensorPrivacyPolicy->isSensorPrivacyEnabled()) {
*requestedRateLevel = SENSOR_SERVICE_CAPPED_SAMPLING_RATE_LEVEL;
return OK;
}
return OK;
}
void SensorService::SensorPrivacyPolicy::registerSelf() {
AutoCallerClear acc;
SensorPrivacyManager spm;
mSensorPrivacyEnabled = spm.isSensorPrivacyEnabled();
spm.addSensorPrivacyListener(this);
}
void SensorService::SensorPrivacyPolicy::unregisterSelf() {
AutoCallerClear acc;
SensorPrivacyManager spm;
spm.removeSensorPrivacyListener(this);
}
bool SensorService::SensorPrivacyPolicy::isSensorPrivacyEnabled() {
return mSensorPrivacyEnabled;
}
binder::Status SensorService::SensorPrivacyPolicy::onSensorPrivacyChanged(int toggleType __unused,
int sensor __unused, bool enabled) {
mSensorPrivacyEnabled = enabled;
sp<SensorService> service = mService.promote();
if (service != nullptr) {
if (enabled) {
service->disableAllSensors();
} else {
service->enableAllSensors();
}
}
return binder::Status::ok();
}
void SensorService::MicrophonePrivacyPolicy::registerSelf() {
AutoCallerClear acc;
SensorPrivacyManager spm;
mSensorPrivacyEnabled =
spm.isToggleSensorPrivacyEnabled(
SensorPrivacyManager::TOGGLE_TYPE_SOFTWARE,
SensorPrivacyManager::TOGGLE_SENSOR_MICROPHONE)
|| spm.isToggleSensorPrivacyEnabled(
SensorPrivacyManager::TOGGLE_TYPE_HARDWARE,
SensorPrivacyManager::TOGGLE_SENSOR_MICROPHONE);
spm.addToggleSensorPrivacyListener(this);
}
void SensorService::MicrophonePrivacyPolicy::unregisterSelf() {
AutoCallerClear acc;
SensorPrivacyManager spm;
spm.removeToggleSensorPrivacyListener(this);
}
binder::Status SensorService::MicrophonePrivacyPolicy::onSensorPrivacyChanged(int toggleType __unused,
int sensor, bool enabled) {
if (sensor != SensorPrivacyManager::TOGGLE_SENSOR_MICROPHONE) {
return binder::Status::ok();
}
mSensorPrivacyEnabled = enabled;
sp<SensorService> service = mService.promote();
if (service != nullptr) {
if (enabled) {
service->capRates();
} else {
service->uncapRates();
}
}
return binder::Status::ok();
}
SensorService::ConnectionSafeAutolock::ConnectionSafeAutolock(
SensorService::SensorConnectionHolder& holder, Mutex& mutex)
: mConnectionHolder(holder), mAutolock(mutex) {}
template<typename ConnectionType>
const std::vector<sp<ConnectionType>>& SensorService::ConnectionSafeAutolock::getConnectionsHelper(
const SortedVector<wp<ConnectionType>>& connectionList,
std::vector<std::vector<sp<ConnectionType>>>* referenceHolder) {
referenceHolder->emplace_back();
std::vector<sp<ConnectionType>>& connections = referenceHolder->back();
for (const wp<ConnectionType>& weakConnection : connectionList){
sp<ConnectionType> connection = weakConnection.promote();
if (connection != nullptr) {
connections.push_back(std::move(connection));
}
}
return connections;
}
const std::vector<sp<SensorService::SensorEventConnection>>&
SensorService::ConnectionSafeAutolock::getActiveConnections() {
return getConnectionsHelper(mConnectionHolder.mActiveConnections,
&mReferencedActiveConnections);
}
const std::vector<sp<SensorService::SensorDirectConnection>>&
SensorService::ConnectionSafeAutolock::getDirectConnections() {
return getConnectionsHelper(mConnectionHolder.mDirectConnections,
&mReferencedDirectConnections);
}
void SensorService::SensorConnectionHolder::addEventConnectionIfNotPresent(
const sp<SensorService::SensorEventConnection>& connection) {
if (mActiveConnections.indexOf(connection) < 0) {
mActiveConnections.add(connection);
}
}
void SensorService::SensorConnectionHolder::removeEventConnection(
const wp<SensorService::SensorEventConnection>& connection) {
mActiveConnections.remove(connection);
}
void SensorService::SensorConnectionHolder::addDirectConnection(
const sp<SensorService::SensorDirectConnection>& connection) {
mDirectConnections.add(connection);
}
void SensorService::SensorConnectionHolder::removeDirectConnection(
const wp<SensorService::SensorDirectConnection>& connection) {
mDirectConnections.remove(connection);
}
SensorService::ConnectionSafeAutolock SensorService::SensorConnectionHolder::lock(Mutex& mutex) {
return ConnectionSafeAutolock(*this, mutex);
}
bool SensorService::isPackageDebuggable(const String16& opPackageName) {
bool debugMode = false;
sp<IBinder> binder = defaultServiceManager()->getService(String16("package_native"));
if (binder != nullptr) {
sp<content::pm::IPackageManagerNative> packageManager =
interface_cast<content::pm::IPackageManagerNative>(binder);
if (packageManager != nullptr) {
binder::Status status = packageManager->isPackageDebuggable(
opPackageName, &debugMode);
}
}
return debugMode;
}
} // namespace android