| /* |
| * Copyright 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "vulkan/vulkan_core.h" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <aidl/android/hardware/graphics/common/Dataspace.h> |
| #include <aidl/android/hardware/graphics/common/PixelFormat.h> |
| #include <android/hardware/graphics/common/1.0/types.h> |
| #include <android/hardware_buffer.h> |
| #include <grallocusage/GrallocUsageConversion.h> |
| #include <graphicsenv/GraphicsEnv.h> |
| #include <hardware/gralloc.h> |
| #include <hardware/gralloc1.h> |
| #include <log/log.h> |
| #include <sync/sync.h> |
| #include <system/window.h> |
| #include <ui/BufferQueueDefs.h> |
| #include <utils/StrongPointer.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| |
| #include <algorithm> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "driver.h" |
| |
| using PixelFormat = aidl::android::hardware::graphics::common::PixelFormat; |
| using DataSpace = aidl::android::hardware::graphics::common::Dataspace; |
| using android::hardware::graphics::common::V1_0::BufferUsage; |
| |
| namespace vulkan { |
| namespace driver { |
| |
| namespace { |
| |
| static uint64_t convertGralloc1ToBufferUsage(uint64_t producerUsage, |
| uint64_t consumerUsage) { |
| static_assert(uint64_t(GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN) == |
| uint64_t(GRALLOC1_PRODUCER_USAGE_CPU_READ_OFTEN), |
| "expected ConsumerUsage and ProducerUsage CPU_READ_OFTEN " |
| "bits to match"); |
| uint64_t merged = producerUsage | consumerUsage; |
| if ((merged & (GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN)) == |
| GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN) { |
| merged &= ~uint64_t(GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN); |
| merged |= BufferUsage::CPU_READ_OFTEN; |
| } |
| if ((merged & (GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN)) == |
| GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN) { |
| merged &= ~uint64_t(GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN); |
| merged |= BufferUsage::CPU_WRITE_OFTEN; |
| } |
| return merged; |
| } |
| |
| const VkSurfaceTransformFlagsKHR kSupportedTransforms = |
| VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR | |
| VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR | |
| VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR | |
| VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR | |
| VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR | |
| VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR | |
| VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR | |
| VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR | |
| VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR; |
| |
| VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) { |
| // Native and Vulkan transforms are isomorphic, but are represented |
| // differently. Vulkan transforms are built up of an optional horizontal |
| // mirror, followed by a clockwise 0/90/180/270-degree rotation. Native |
| // transforms are built up from a horizontal flip, vertical flip, and |
| // 90-degree rotation, all optional but always in that order. |
| |
| switch (native) { |
| case 0: |
| return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_FLIP_H: |
| return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_FLIP_V: |
| return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_ROT_180: |
| return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_ROT_90: |
| return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90: |
| return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90: |
| return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_ROT_270: |
| return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY: |
| default: |
| return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; |
| } |
| } |
| |
| int TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform) { |
| switch (transform) { |
| case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_180; |
| case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_270; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_H | |
| NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_V; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_V | |
| NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: |
| case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR: |
| default: |
| return 0; |
| } |
| } |
| |
| int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) { |
| switch (transform) { |
| case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_270; |
| case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_180; |
| case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_H | |
| NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_V; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_V | |
| NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: |
| case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR: |
| default: |
| return 0; |
| } |
| } |
| |
| const static VkColorSpaceKHR colorSpaceSupportedByVkEXTSwapchainColorspace[] = { |
| VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT, |
| VK_COLOR_SPACE_DISPLAY_P3_LINEAR_EXT, |
| VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT, |
| VK_COLOR_SPACE_BT709_LINEAR_EXT, |
| VK_COLOR_SPACE_BT709_NONLINEAR_EXT, |
| VK_COLOR_SPACE_BT2020_LINEAR_EXT, |
| VK_COLOR_SPACE_HDR10_ST2084_EXT, |
| VK_COLOR_SPACE_HDR10_HLG_EXT, |
| VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT, |
| VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT, |
| VK_COLOR_SPACE_PASS_THROUGH_EXT, |
| VK_COLOR_SPACE_DCI_P3_LINEAR_EXT}; |
| |
| const static VkColorSpaceKHR |
| colorSpaceSupportedByVkEXTSwapchainColorspaceOnFP16SurfaceOnly[] = { |
| VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT, |
| VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT}; |
| |
| class TimingInfo { |
| public: |
| TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId) |
| : vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0}, |
| native_frame_id_(nativeFrameId) {} |
| bool ready() const { |
| return (timestamp_desired_present_time_ != |
| NATIVE_WINDOW_TIMESTAMP_PENDING && |
| timestamp_actual_present_time_ != |
| NATIVE_WINDOW_TIMESTAMP_PENDING && |
| timestamp_render_complete_time_ != |
| NATIVE_WINDOW_TIMESTAMP_PENDING && |
| timestamp_composition_latch_time_ != |
| NATIVE_WINDOW_TIMESTAMP_PENDING); |
| } |
| void calculate(int64_t rdur) { |
| bool anyTimestampInvalid = |
| (timestamp_actual_present_time_ == |
| NATIVE_WINDOW_TIMESTAMP_INVALID) || |
| (timestamp_render_complete_time_ == |
| NATIVE_WINDOW_TIMESTAMP_INVALID) || |
| (timestamp_composition_latch_time_ == |
| NATIVE_WINDOW_TIMESTAMP_INVALID); |
| if (anyTimestampInvalid) { |
| ALOGE("Unexpectedly received invalid timestamp."); |
| vals_.actualPresentTime = 0; |
| vals_.earliestPresentTime = 0; |
| vals_.presentMargin = 0; |
| return; |
| } |
| |
| vals_.actualPresentTime = |
| static_cast<uint64_t>(timestamp_actual_present_time_); |
| int64_t margin = (timestamp_composition_latch_time_ - |
| timestamp_render_complete_time_); |
| // Calculate vals_.earliestPresentTime, and potentially adjust |
| // vals_.presentMargin. The initial value of vals_.earliestPresentTime |
| // is vals_.actualPresentTime. If we can subtract rdur (the duration |
| // of a refresh cycle) from vals_.earliestPresentTime (and also from |
| // vals_.presentMargin) and still leave a positive margin, then we can |
| // report to the application that it could have presented earlier than |
| // it did (per the extension specification). If for some reason, we |
| // can do this subtraction repeatedly, we do, since |
| // vals_.earliestPresentTime really is supposed to be the "earliest". |
| int64_t early_time = timestamp_actual_present_time_; |
| while ((margin > rdur) && |
| ((early_time - rdur) > timestamp_composition_latch_time_)) { |
| early_time -= rdur; |
| margin -= rdur; |
| } |
| vals_.earliestPresentTime = static_cast<uint64_t>(early_time); |
| vals_.presentMargin = static_cast<uint64_t>(margin); |
| } |
| void get_values(VkPastPresentationTimingGOOGLE* values) const { |
| *values = vals_; |
| } |
| |
| public: |
| VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 }; |
| |
| uint64_t native_frame_id_ { 0 }; |
| int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING }; |
| int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING }; |
| int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING }; |
| int64_t timestamp_composition_latch_time_ |
| { NATIVE_WINDOW_TIMESTAMP_PENDING }; |
| }; |
| |
| struct Surface { |
| android::sp<ANativeWindow> window; |
| VkSwapchainKHR swapchain_handle; |
| uint64_t consumer_usage; |
| |
| // Indicate whether this surface has been used by a swapchain, no matter the |
| // swapchain is still current or has been destroyed. |
| bool used_by_swapchain; |
| }; |
| |
| VkSurfaceKHR HandleFromSurface(Surface* surface) { |
| return VkSurfaceKHR(reinterpret_cast<uint64_t>(surface)); |
| } |
| |
| Surface* SurfaceFromHandle(VkSurfaceKHR handle) { |
| return reinterpret_cast<Surface*>(handle); |
| } |
| |
| // Maximum number of TimingInfo structs to keep per swapchain: |
| enum { MAX_TIMING_INFOS = 10 }; |
| // Minimum number of frames to look for in the past (so we don't cause |
| // syncronous requests to Surface Flinger): |
| enum { MIN_NUM_FRAMES_AGO = 5 }; |
| |
| bool IsSharedPresentMode(VkPresentModeKHR mode) { |
| return mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR || |
| mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR; |
| } |
| |
| struct Swapchain { |
| Swapchain(Surface& surface_, |
| uint32_t num_images_, |
| VkPresentModeKHR present_mode, |
| int pre_transform_, |
| int64_t refresh_duration_) |
| : surface(surface_), |
| num_images(num_images_), |
| mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR), |
| pre_transform(pre_transform_), |
| frame_timestamps_enabled(false), |
| refresh_duration(refresh_duration_), |
| acquire_next_image_timeout(-1), |
| shared(IsSharedPresentMode(present_mode)) { |
| } |
| |
| VkResult get_refresh_duration(uint64_t& outRefreshDuration) |
| { |
| ANativeWindow* window = surface.window.get(); |
| int err = native_window_get_refresh_cycle_duration( |
| window, |
| &refresh_duration); |
| if (err != android::OK) { |
| ALOGE("%s:native_window_get_refresh_cycle_duration failed: %s (%d)", |
| __func__, strerror(-err), err ); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| outRefreshDuration = refresh_duration; |
| return VK_SUCCESS; |
| } |
| |
| Surface& surface; |
| uint32_t num_images; |
| bool mailbox_mode; |
| int pre_transform; |
| bool frame_timestamps_enabled; |
| int64_t refresh_duration; |
| nsecs_t acquire_next_image_timeout; |
| bool shared; |
| |
| struct Image { |
| Image() |
| : image(VK_NULL_HANDLE), |
| dequeue_fence(-1), |
| release_fence(-1), |
| dequeued(false) {} |
| VkImage image; |
| // If the image is bound to memory, an sp to the underlying gralloc buffer. |
| // Otherwise, nullptr; the image will be bound to memory as part of |
| // AcquireNextImage. |
| android::sp<ANativeWindowBuffer> buffer; |
| // The fence is only valid when the buffer is dequeued, and should be |
| // -1 any other time. When valid, we own the fd, and must ensure it is |
| // closed: either by closing it explicitly when queueing the buffer, |
| // or by passing ownership e.g. to ANativeWindow::cancelBuffer(). |
| int dequeue_fence; |
| // This fence is a dup of the sync fd returned from the driver via |
| // vkQueueSignalReleaseImageANDROID upon vkQueuePresentKHR. We must |
| // ensure it is closed upon re-presenting or releasing the image. |
| int release_fence; |
| bool dequeued; |
| } images[android::BufferQueueDefs::NUM_BUFFER_SLOTS]; |
| |
| std::vector<TimingInfo> timing; |
| }; |
| |
| VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) { |
| return VkSwapchainKHR(reinterpret_cast<uint64_t>(swapchain)); |
| } |
| |
| Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) { |
| return reinterpret_cast<Swapchain*>(handle); |
| } |
| |
| static bool IsFencePending(int fd) { |
| if (fd < 0) |
| return false; |
| |
| errno = 0; |
| return sync_wait(fd, 0 /* timeout */) == -1 && errno == ETIME; |
| } |
| |
| void ReleaseSwapchainImage(VkDevice device, |
| bool shared_present, |
| ANativeWindow* window, |
| int release_fence, |
| Swapchain::Image& image, |
| bool defer_if_pending) { |
| ATRACE_CALL(); |
| |
| ALOG_ASSERT(release_fence == -1 || image.dequeued, |
| "ReleaseSwapchainImage: can't provide a release fence for " |
| "non-dequeued images"); |
| |
| if (image.dequeued) { |
| if (release_fence >= 0) { |
| // We get here from vkQueuePresentKHR. The application is |
| // responsible for creating an execution dependency chain from |
| // vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR |
| // (release_fence), so we can drop the dequeue_fence here. |
| if (image.dequeue_fence >= 0) |
| close(image.dequeue_fence); |
| } else { |
| // We get here during swapchain destruction, or various serious |
| // error cases e.g. when we can't create the release_fence during |
| // vkQueuePresentKHR. In non-error cases, the dequeue_fence should |
| // have already signalled, since the swapchain images are supposed |
| // to be idle before the swapchain is destroyed. In error cases, |
| // there may be rendering in flight to the image, but since we |
| // weren't able to create a release_fence, waiting for the |
| // dequeue_fence is about the best we can do. |
| release_fence = image.dequeue_fence; |
| } |
| image.dequeue_fence = -1; |
| |
| // It's invalid to call cancelBuffer on a shared buffer |
| if (window && !shared_present) { |
| window->cancelBuffer(window, image.buffer.get(), release_fence); |
| } else { |
| if (release_fence >= 0) { |
| sync_wait(release_fence, -1 /* forever */); |
| close(release_fence); |
| } |
| } |
| release_fence = -1; |
| image.dequeued = false; |
| } |
| |
| if (defer_if_pending && IsFencePending(image.release_fence)) |
| return; |
| |
| if (image.release_fence >= 0) { |
| close(image.release_fence); |
| image.release_fence = -1; |
| } |
| |
| if (image.image) { |
| ATRACE_BEGIN("DestroyImage"); |
| GetData(device).driver.DestroyImage(device, image.image, nullptr); |
| ATRACE_END(); |
| image.image = VK_NULL_HANDLE; |
| } |
| |
| image.buffer.clear(); |
| } |
| |
| void OrphanSwapchain(VkDevice device, Swapchain* swapchain) { |
| if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain)) |
| return; |
| for (uint32_t i = 0; i < swapchain->num_images; i++) { |
| if (!swapchain->images[i].dequeued) { |
| ReleaseSwapchainImage(device, swapchain->shared, nullptr, -1, |
| swapchain->images[i], true); |
| } |
| } |
| swapchain->surface.swapchain_handle = VK_NULL_HANDLE; |
| swapchain->timing.clear(); |
| } |
| |
| uint32_t get_num_ready_timings(Swapchain& swapchain) { |
| if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) { |
| return 0; |
| } |
| |
| uint32_t num_ready = 0; |
| const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1; |
| for (uint32_t i = 0; i < num_timings; i++) { |
| TimingInfo& ti = swapchain.timing[i]; |
| if (ti.ready()) { |
| // This TimingInfo is ready to be reported to the user. Add it |
| // to the num_ready. |
| num_ready++; |
| continue; |
| } |
| // This TimingInfo is not yet ready to be reported to the user, |
| // and so we should look for any available timestamps that |
| // might make it ready. |
| int64_t desired_present_time = 0; |
| int64_t render_complete_time = 0; |
| int64_t composition_latch_time = 0; |
| int64_t actual_present_time = 0; |
| // Obtain timestamps: |
| int err = native_window_get_frame_timestamps( |
| swapchain.surface.window.get(), ti.native_frame_id_, |
| &desired_present_time, &render_complete_time, |
| &composition_latch_time, |
| nullptr, //&first_composition_start_time, |
| nullptr, //&last_composition_start_time, |
| nullptr, //&composition_finish_time, |
| &actual_present_time, |
| nullptr, //&dequeue_ready_time, |
| nullptr /*&reads_done_time*/); |
| |
| if (err != android::OK) { |
| continue; |
| } |
| |
| // Record the timestamp(s) we received, and then see if this TimingInfo |
| // is ready to be reported to the user: |
| ti.timestamp_desired_present_time_ = desired_present_time; |
| ti.timestamp_actual_present_time_ = actual_present_time; |
| ti.timestamp_render_complete_time_ = render_complete_time; |
| ti.timestamp_composition_latch_time_ = composition_latch_time; |
| |
| if (ti.ready()) { |
| // The TimingInfo has received enough timestamps, and should now |
| // use those timestamps to calculate the info that should be |
| // reported to the user: |
| ti.calculate(swapchain.refresh_duration); |
| num_ready++; |
| } |
| } |
| return num_ready; |
| } |
| |
| void copy_ready_timings(Swapchain& swapchain, |
| uint32_t* count, |
| VkPastPresentationTimingGOOGLE* timings) { |
| if (swapchain.timing.empty()) { |
| *count = 0; |
| return; |
| } |
| |
| size_t last_ready = swapchain.timing.size() - 1; |
| while (!swapchain.timing[last_ready].ready()) { |
| if (last_ready == 0) { |
| *count = 0; |
| return; |
| } |
| last_ready--; |
| } |
| |
| uint32_t num_copied = 0; |
| int32_t num_to_remove = 0; |
| for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) { |
| const TimingInfo& ti = swapchain.timing[i]; |
| if (ti.ready()) { |
| ti.get_values(&timings[num_copied]); |
| num_copied++; |
| } |
| num_to_remove++; |
| } |
| |
| // Discard old frames that aren't ready if newer frames are ready. |
| // We don't expect to get the timing info for those old frames. |
| swapchain.timing.erase(swapchain.timing.begin(), |
| swapchain.timing.begin() + num_to_remove); |
| |
| *count = num_copied; |
| } |
| |
| PixelFormat GetNativePixelFormat(VkFormat format) { |
| PixelFormat native_format = PixelFormat::RGBA_8888; |
| switch (format) { |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| native_format = PixelFormat::RGBA_8888; |
| break; |
| case VK_FORMAT_R5G6B5_UNORM_PACK16: |
| native_format = PixelFormat::RGB_565; |
| break; |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| native_format = PixelFormat::RGBA_FP16; |
| break; |
| case VK_FORMAT_A2B10G10R10_UNORM_PACK32: |
| native_format = PixelFormat::RGBA_1010102; |
| break; |
| case VK_FORMAT_R8_UNORM: |
| native_format = PixelFormat::R_8; |
| break; |
| case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16: |
| native_format = PixelFormat::RGBA_10101010; |
| break; |
| default: |
| ALOGV("unsupported swapchain format %d", format); |
| break; |
| } |
| return native_format; |
| } |
| |
| DataSpace GetNativeDataspace(VkColorSpaceKHR colorspace, |
| PixelFormat pixelFormat) { |
| switch (colorspace) { |
| case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR: |
| return DataSpace::SRGB; |
| case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT: |
| return DataSpace::DISPLAY_P3; |
| case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT: |
| return DataSpace::SCRGB_LINEAR; |
| case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT: |
| return DataSpace::SCRGB; |
| case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT: |
| return DataSpace::DCI_P3_LINEAR; |
| case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT: |
| return DataSpace::DCI_P3; |
| case VK_COLOR_SPACE_BT709_LINEAR_EXT: |
| return DataSpace::SRGB_LINEAR; |
| case VK_COLOR_SPACE_BT709_NONLINEAR_EXT: |
| return DataSpace::SRGB; |
| case VK_COLOR_SPACE_BT2020_LINEAR_EXT: |
| if (pixelFormat == PixelFormat::RGBA_FP16) { |
| return DataSpace::BT2020_LINEAR_EXTENDED; |
| } else { |
| return DataSpace::BT2020_LINEAR; |
| } |
| case VK_COLOR_SPACE_HDR10_ST2084_EXT: |
| return DataSpace::BT2020_PQ; |
| case VK_COLOR_SPACE_DOLBYVISION_EXT: |
| return DataSpace::BT2020_PQ; |
| case VK_COLOR_SPACE_HDR10_HLG_EXT: |
| return DataSpace::BT2020_HLG; |
| case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT: |
| return DataSpace::ADOBE_RGB_LINEAR; |
| case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT: |
| return DataSpace::ADOBE_RGB; |
| // Pass through is intended to allow app to provide data that is passed |
| // to the display system without modification. |
| case VK_COLOR_SPACE_PASS_THROUGH_EXT: |
| return DataSpace::ARBITRARY; |
| |
| default: |
| // This indicates that we don't know about the |
| // dataspace specified and we should indicate that |
| // it's unsupported |
| return DataSpace::UNKNOWN; |
| } |
| } |
| |
| } // anonymous namespace |
| |
| VKAPI_ATTR |
| VkResult CreateAndroidSurfaceKHR( |
| VkInstance instance, |
| const VkAndroidSurfaceCreateInfoKHR* pCreateInfo, |
| const VkAllocationCallbacks* allocator, |
| VkSurfaceKHR* out_surface) { |
| ATRACE_CALL(); |
| |
| if (!allocator) |
| allocator = &GetData(instance).allocator; |
| void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface), |
| alignof(Surface), |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (!mem) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| Surface* surface = new (mem) Surface; |
| |
| surface->window = pCreateInfo->window; |
| surface->swapchain_handle = VK_NULL_HANDLE; |
| surface->used_by_swapchain = false; |
| int err = native_window_get_consumer_usage(surface->window.get(), |
| &surface->consumer_usage); |
| if (err != android::OK) { |
| ALOGE("native_window_get_consumer_usage() failed: %s (%d)", |
| strerror(-err), err); |
| surface->~Surface(); |
| allocator->pfnFree(allocator->pUserData, surface); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = |
| native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL); |
| if (err != android::OK) { |
| ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err), |
| err); |
| surface->~Surface(); |
| allocator->pfnFree(allocator->pUserData, surface); |
| return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR; |
| } |
| |
| *out_surface = HandleFromSurface(surface); |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| void DestroySurfaceKHR(VkInstance instance, |
| VkSurfaceKHR surface_handle, |
| const VkAllocationCallbacks* allocator) { |
| ATRACE_CALL(); |
| |
| Surface* surface = SurfaceFromHandle(surface_handle); |
| if (!surface) |
| return; |
| native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL); |
| ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE, |
| "destroyed VkSurfaceKHR 0x%" PRIx64 |
| " has active VkSwapchainKHR 0x%" PRIx64, |
| reinterpret_cast<uint64_t>(surface_handle), |
| reinterpret_cast<uint64_t>(surface->swapchain_handle)); |
| surface->~Surface(); |
| if (!allocator) |
| allocator = &GetData(instance).allocator; |
| allocator->pfnFree(allocator->pUserData, surface); |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/, |
| uint32_t /*queue_family*/, |
| VkSurfaceKHR /*surface_handle*/, |
| VkBool32* supported) { |
| *supported = VK_TRUE; |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR( |
| VkPhysicalDevice pdev, |
| VkSurfaceKHR surface, |
| VkSurfaceCapabilitiesKHR* capabilities) { |
| ATRACE_CALL(); |
| |
| // Implement in terms of GetPhysicalDeviceSurfaceCapabilities2KHR |
| |
| VkPhysicalDeviceSurfaceInfo2KHR info2 = { |
| VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR, |
| nullptr, |
| surface |
| }; |
| |
| VkSurfaceCapabilities2KHR caps2 = { |
| VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR, |
| nullptr, |
| {}, |
| }; |
| |
| VkResult result = GetPhysicalDeviceSurfaceCapabilities2KHR(pdev, &info2, &caps2); |
| *capabilities = caps2.surfaceCapabilities; |
| return result; |
| } |
| |
| // Does the call-twice and VK_INCOMPLETE handling for querying lists |
| // of things, where we already have the full set built in a vector. |
| template <typename T> |
| VkResult CopyWithIncomplete(std::vector<T> const& things, |
| T* callerPtr, uint32_t* callerCount) { |
| VkResult result = VK_SUCCESS; |
| if (callerPtr) { |
| if (things.size() > *callerCount) |
| result = VK_INCOMPLETE; |
| *callerCount = std::min(uint32_t(things.size()), *callerCount); |
| std::copy(things.begin(), things.begin() + *callerCount, callerPtr); |
| } else { |
| *callerCount = things.size(); |
| } |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev, |
| VkSurfaceKHR surface_handle, |
| uint32_t* count, |
| VkSurfaceFormatKHR* formats) { |
| ATRACE_CALL(); |
| |
| const InstanceData& instance_data = GetData(pdev); |
| |
| uint64_t consumer_usage = 0; |
| bool colorspace_ext = |
| instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace); |
| if (surface_handle == VK_NULL_HANDLE) { |
| ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query; |
| bool surfaceless_enabled = |
| instance_data.hook_extensions.test(surfaceless); |
| if (!surfaceless_enabled) { |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| // Support for VK_GOOGLE_surfaceless_query. |
| |
| // TODO(b/203826952): research proper value; temporarily use the |
| // values seen on Pixel |
| consumer_usage = AHARDWAREBUFFER_USAGE_COMPOSER_OVERLAY; |
| } else { |
| Surface& surface = *SurfaceFromHandle(surface_handle); |
| consumer_usage = surface.consumer_usage; |
| } |
| |
| AHardwareBuffer_Desc desc = {}; |
| desc.width = 1; |
| desc.height = 1; |
| desc.layers = 1; |
| desc.usage = consumer_usage | AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE | |
| AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER; |
| |
| // We must support R8G8B8A8 |
| std::vector<VkSurfaceFormatKHR> all_formats = { |
| {VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}, |
| {VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}, |
| }; |
| |
| if (colorspace_ext) { |
| for (VkColorSpaceKHR colorSpace : |
| colorSpaceSupportedByVkEXTSwapchainColorspace) { |
| if (GetNativeDataspace(colorSpace, GetNativePixelFormat( |
| VK_FORMAT_R8G8B8A8_UNORM)) != |
| DataSpace::UNKNOWN) { |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_R8G8B8A8_UNORM, colorSpace}); |
| } |
| |
| if (GetNativeDataspace(colorSpace, GetNativePixelFormat( |
| VK_FORMAT_R8G8B8A8_SRGB)) != |
| DataSpace::UNKNOWN) { |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_R8G8B8A8_SRGB, colorSpace}); |
| } |
| } |
| } |
| |
| // NOTE: Any new formats that are added must be coordinated across different |
| // Android users. This includes the ANGLE team (a layered implementation of |
| // OpenGL-ES). |
| |
| desc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM; |
| if (AHardwareBuffer_isSupported(&desc)) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R5G6B5_UNORM_PACK16, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); |
| if (colorspace_ext) { |
| for (VkColorSpaceKHR colorSpace : |
| colorSpaceSupportedByVkEXTSwapchainColorspace) { |
| if (GetNativeDataspace( |
| colorSpace, |
| GetNativePixelFormat(VK_FORMAT_R5G6B5_UNORM_PACK16)) != |
| DataSpace::UNKNOWN) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R5G6B5_UNORM_PACK16, colorSpace}); |
| } |
| } |
| } |
| } |
| |
| desc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT; |
| if (AHardwareBuffer_isSupported(&desc)) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); |
| if (colorspace_ext) { |
| for (VkColorSpaceKHR colorSpace : |
| colorSpaceSupportedByVkEXTSwapchainColorspace) { |
| if (GetNativeDataspace( |
| colorSpace, |
| GetNativePixelFormat(VK_FORMAT_R16G16B16A16_SFLOAT)) != |
| DataSpace::UNKNOWN) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R16G16B16A16_SFLOAT, colorSpace}); |
| } |
| } |
| |
| for ( |
| VkColorSpaceKHR colorSpace : |
| colorSpaceSupportedByVkEXTSwapchainColorspaceOnFP16SurfaceOnly) { |
| if (GetNativeDataspace( |
| colorSpace, |
| GetNativePixelFormat(VK_FORMAT_R16G16B16A16_SFLOAT)) != |
| DataSpace::UNKNOWN) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R16G16B16A16_SFLOAT, colorSpace}); |
| } |
| } |
| } |
| } |
| |
| desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM; |
| if (AHardwareBuffer_isSupported(&desc)) { |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32, |
| VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); |
| if (colorspace_ext) { |
| for (VkColorSpaceKHR colorSpace : |
| colorSpaceSupportedByVkEXTSwapchainColorspace) { |
| if (GetNativeDataspace( |
| colorSpace, GetNativePixelFormat( |
| VK_FORMAT_A2B10G10R10_UNORM_PACK32)) != |
| DataSpace::UNKNOWN) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_A2B10G10R10_UNORM_PACK32, colorSpace}); |
| } |
| } |
| } |
| } |
| |
| desc.format = AHARDWAREBUFFER_FORMAT_R8_UNORM; |
| if (AHardwareBuffer_isSupported(&desc)) { |
| if (colorspace_ext) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R8_UNORM, VK_COLOR_SPACE_PASS_THROUGH_EXT}); |
| } |
| } |
| |
| bool rgba10x6_formats_ext = false; |
| uint32_t exts_count; |
| const auto& driver = GetData(pdev).driver; |
| driver.EnumerateDeviceExtensionProperties(pdev, nullptr, &exts_count, |
| nullptr); |
| std::vector<VkExtensionProperties> props(exts_count); |
| driver.EnumerateDeviceExtensionProperties(pdev, nullptr, &exts_count, |
| props.data()); |
| for (uint32_t i = 0; i < exts_count; i++) { |
| VkExtensionProperties prop = props[i]; |
| if (strcmp(prop.extensionName, |
| VK_EXT_RGBA10X6_FORMATS_EXTENSION_NAME) == 0) { |
| rgba10x6_formats_ext = true; |
| } |
| } |
| desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A10_UNORM; |
| if (AHardwareBuffer_isSupported(&desc) && rgba10x6_formats_ext) { |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16, |
| VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); |
| if (colorspace_ext) { |
| for (VkColorSpaceKHR colorSpace : |
| colorSpaceSupportedByVkEXTSwapchainColorspace) { |
| if (GetNativeDataspace( |
| colorSpace, |
| GetNativePixelFormat( |
| VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16)) != |
| DataSpace::UNKNOWN) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16, |
| colorSpace}); |
| } |
| } |
| } |
| } |
| |
| // NOTE: Any new formats that are added must be coordinated across different |
| // Android users. This includes the ANGLE team (a layered implementation of |
| // OpenGL-ES). |
| |
| return CopyWithIncomplete(all_formats, formats, count); |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceCapabilities2KHR( |
| VkPhysicalDevice physicalDevice, |
| const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, |
| VkSurfaceCapabilities2KHR* pSurfaceCapabilities) { |
| ATRACE_CALL(); |
| |
| auto surface = pSurfaceInfo->surface; |
| auto capabilities = &pSurfaceCapabilities->surfaceCapabilities; |
| |
| VkSurfacePresentModeEXT const *pPresentMode = nullptr; |
| for (auto pNext = reinterpret_cast<VkBaseInStructure const *>(pSurfaceInfo->pNext); |
| pNext; pNext = reinterpret_cast<VkBaseInStructure const *>(pNext->pNext)) { |
| switch (pNext->sType) { |
| case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT: |
| pPresentMode = reinterpret_cast<VkSurfacePresentModeEXT const *>(pNext); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| int err; |
| int width, height; |
| int transform_hint; |
| int max_buffer_count; |
| int min_undequeued_buffers; |
| if (surface == VK_NULL_HANDLE) { |
| const InstanceData& instance_data = GetData(physicalDevice); |
| ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query; |
| bool surfaceless_enabled = |
| instance_data.hook_extensions.test(surfaceless); |
| if (!surfaceless_enabled) { |
| // It is an error to pass a surface==VK_NULL_HANDLE unless the |
| // VK_GOOGLE_surfaceless_query extension is enabled |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| // Support for VK_GOOGLE_surfaceless_query. The primary purpose of this |
| // extension for this function is for |
| // VkSurfaceProtectedCapabilitiesKHR::supportsProtected. The following |
| // four values cannot be known without a surface. Default values will |
| // be supplied anyway, but cannot be relied upon. |
| width = 0xFFFFFFFF; |
| height = 0xFFFFFFFF; |
| transform_hint = VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR; |
| capabilities->minImageCount = 0xFFFFFFFF; |
| capabilities->maxImageCount = 0xFFFFFFFF; |
| } else { |
| ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); |
| |
| err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, |
| &transform_hint); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, |
| &max_buffer_count); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, |
| &min_undequeued_buffers); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| // Additional buffer count over min_undequeued_buffers in vulkan came from 2 total |
| // being technically enough for fifo (although a poor experience) vs 3 being the |
| // absolute minimum for mailbox to be useful. So min_undequeued_buffers + 2 is sensible |
| static constexpr int default_additional_buffers = 2; |
| |
| if(pPresentMode != nullptr) { |
| switch (pPresentMode->presentMode) { |
| case VK_PRESENT_MODE_IMMEDIATE_KHR: |
| ALOGE("Swapchain present mode VK_PRESENT_MODE_IMMEDIATE_KHR is not supported"); |
| break; |
| case VK_PRESENT_MODE_MAILBOX_KHR: |
| case VK_PRESENT_MODE_FIFO_KHR: |
| capabilities->minImageCount = std::min(max_buffer_count, |
| min_undequeued_buffers + default_additional_buffers); |
| capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count); |
| break; |
| case VK_PRESENT_MODE_FIFO_RELAXED_KHR: |
| ALOGE("Swapchain present mode VK_PRESENT_MODE_FIFO_RELEAXED_KHR " |
| "is not supported"); |
| break; |
| case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR: |
| case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR: |
| capabilities->minImageCount = 1; |
| capabilities->maxImageCount = 1; |
| break; |
| |
| default: |
| ALOGE("Unrecognized swapchain present mode %u is not supported", |
| pPresentMode->presentMode); |
| break; |
| } |
| } else { |
| capabilities->minImageCount = std::min(max_buffer_count, |
| min_undequeued_buffers + default_additional_buffers); |
| capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count); |
| } |
| } |
| |
| capabilities->currentExtent = |
| VkExtent2D{static_cast<uint32_t>(width), static_cast<uint32_t>(height)}; |
| |
| // TODO(http://b/134182502): Figure out what the max extent should be. |
| capabilities->minImageExtent = VkExtent2D{1, 1}; |
| capabilities->maxImageExtent = VkExtent2D{4096, 4096}; |
| |
| if (capabilities->maxImageExtent.height < |
| capabilities->currentExtent.height) { |
| capabilities->maxImageExtent.height = |
| capabilities->currentExtent.height; |
| } |
| |
| if (capabilities->maxImageExtent.width < |
| capabilities->currentExtent.width) { |
| capabilities->maxImageExtent.width = capabilities->currentExtent.width; |
| } |
| |
| capabilities->maxImageArrayLayers = 1; |
| |
| capabilities->supportedTransforms = kSupportedTransforms; |
| capabilities->currentTransform = |
| TranslateNativeToVulkanTransform(transform_hint); |
| |
| // On Android, window composition is a WindowManager property, not something |
| // associated with the bufferqueue. It can't be changed from here. |
| capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR; |
| |
| capabilities->supportedUsageFlags = |
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | |
| VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | |
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; |
| |
| for (auto pNext = reinterpret_cast<VkBaseOutStructure*>(pSurfaceCapabilities->pNext); |
| pNext; pNext = reinterpret_cast<VkBaseOutStructure*>(pNext->pNext)) { |
| |
| switch (pNext->sType) { |
| case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: { |
| VkSharedPresentSurfaceCapabilitiesKHR* shared_caps = |
| reinterpret_cast<VkSharedPresentSurfaceCapabilitiesKHR*>(pNext); |
| // Claim same set of usage flags are supported for |
| // shared present modes as for other modes. |
| shared_caps->sharedPresentSupportedUsageFlags = |
| pSurfaceCapabilities->surfaceCapabilities |
| .supportedUsageFlags; |
| } break; |
| |
| case VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR: { |
| VkSurfaceProtectedCapabilitiesKHR* protected_caps = |
| reinterpret_cast<VkSurfaceProtectedCapabilitiesKHR*>(pNext); |
| protected_caps->supportsProtected = VK_TRUE; |
| } break; |
| |
| case VK_STRUCTURE_TYPE_SURFACE_PRESENT_SCALING_CAPABILITIES_EXT: { |
| VkSurfacePresentScalingCapabilitiesEXT* scaling_caps = |
| reinterpret_cast<VkSurfacePresentScalingCapabilitiesEXT*>(pNext); |
| // By default, Android stretches the buffer to fit the window, |
| // without preserving aspect ratio. Other modes are technically possible |
| // but consult with CoGS team before exposing them here! |
| scaling_caps->supportedPresentScaling = VK_PRESENT_SCALING_STRETCH_BIT_EXT; |
| |
| // Since we always scale, we don't support any gravity. |
| scaling_caps->supportedPresentGravityX = 0; |
| scaling_caps->supportedPresentGravityY = 0; |
| |
| // Scaled image limits are just the basic image limits |
| scaling_caps->minScaledImageExtent = capabilities->minImageExtent; |
| scaling_caps->maxScaledImageExtent = capabilities->maxImageExtent; |
| } break; |
| |
| case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_COMPATIBILITY_EXT: { |
| VkSurfacePresentModeCompatibilityEXT* mode_caps = |
| reinterpret_cast<VkSurfacePresentModeCompatibilityEXT*>(pNext); |
| |
| ALOG_ASSERT(pPresentMode, |
| "querying VkSurfacePresentModeCompatibilityEXT " |
| "requires VkSurfacePresentModeEXT to be provided"); |
| std::vector<VkPresentModeKHR> compatibleModes; |
| compatibleModes.push_back(pPresentMode->presentMode); |
| |
| switch (pPresentMode->presentMode) { |
| // Shared modes are both compatible with each other. |
| case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR: |
| compatibleModes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR); |
| break; |
| case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR: |
| compatibleModes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR); |
| break; |
| default: |
| // Other modes are only compatible with themselves. |
| // TODO: consider whether switching between FIFO and MAILBOX is reasonable |
| break; |
| } |
| |
| // Note: this does not generate VK_INCOMPLETE since we're nested inside |
| // a larger query and there would be no way to determine exactly where it came from. |
| CopyWithIncomplete(compatibleModes, mode_caps->pPresentModes, |
| &mode_caps->presentModeCount); |
| } break; |
| |
| default: |
| // Ignore all other extension structs |
| break; |
| } |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceFormats2KHR( |
| VkPhysicalDevice physicalDevice, |
| const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, |
| uint32_t* pSurfaceFormatCount, |
| VkSurfaceFormat2KHR* pSurfaceFormats) { |
| ATRACE_CALL(); |
| |
| if (!pSurfaceFormats) { |
| return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, |
| pSurfaceInfo->surface, |
| pSurfaceFormatCount, nullptr); |
| } |
| |
| // temp vector for forwarding; we'll marshal it into the pSurfaceFormats |
| // after the call. |
| std::vector<VkSurfaceFormatKHR> surface_formats(*pSurfaceFormatCount); |
| VkResult result = GetPhysicalDeviceSurfaceFormatsKHR( |
| physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount, |
| surface_formats.data()); |
| |
| if (result != VK_SUCCESS && result != VK_INCOMPLETE) { |
| return result; |
| } |
| |
| const auto& driver = GetData(physicalDevice).driver; |
| |
| // marshal results individually due to stride difference. |
| uint32_t formats_to_marshal = *pSurfaceFormatCount; |
| for (uint32_t i = 0u; i < formats_to_marshal; i++) { |
| pSurfaceFormats[i].surfaceFormat = surface_formats[i]; |
| |
| // Query the compression properties for the surface format |
| VkSurfaceFormat2KHR* pSurfaceFormat = &pSurfaceFormats[i]; |
| while (pSurfaceFormat->pNext) { |
| pSurfaceFormat = |
| reinterpret_cast<VkSurfaceFormat2KHR*>(pSurfaceFormat->pNext); |
| switch (pSurfaceFormat->sType) { |
| case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT: { |
| VkImageCompressionPropertiesEXT* surfaceCompressionProps = |
| reinterpret_cast<VkImageCompressionPropertiesEXT*>( |
| pSurfaceFormat); |
| |
| if (surfaceCompressionProps && |
| driver.GetPhysicalDeviceImageFormatProperties2KHR) { |
| VkPhysicalDeviceImageFormatInfo2 imageFormatInfo = {}; |
| imageFormatInfo.sType = |
| VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2; |
| imageFormatInfo.format = |
| pSurfaceFormats[i].surfaceFormat.format; |
| imageFormatInfo.type = VK_IMAGE_TYPE_2D; |
| imageFormatInfo.usage = |
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| imageFormatInfo.pNext = nullptr; |
| |
| VkImageCompressionControlEXT compressionControl = {}; |
| compressionControl.sType = |
| VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT; |
| compressionControl.pNext = imageFormatInfo.pNext; |
| compressionControl.flags = |
| VK_IMAGE_COMPRESSION_FIXED_RATE_DEFAULT_EXT; |
| |
| imageFormatInfo.pNext = &compressionControl; |
| |
| VkImageCompressionPropertiesEXT compressionProps = {}; |
| compressionProps.sType = |
| VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT; |
| compressionProps.pNext = nullptr; |
| |
| VkImageFormatProperties2KHR imageFormatProps = {}; |
| imageFormatProps.sType = |
| VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR; |
| imageFormatProps.pNext = &compressionProps; |
| |
| VkResult compressionRes = |
| driver.GetPhysicalDeviceImageFormatProperties2KHR( |
| physicalDevice, &imageFormatInfo, |
| &imageFormatProps); |
| if (compressionRes == VK_SUCCESS) { |
| surfaceCompressionProps->imageCompressionFlags = |
| compressionProps.imageCompressionFlags; |
| surfaceCompressionProps |
| ->imageCompressionFixedRateFlags = |
| compressionProps.imageCompressionFixedRateFlags; |
| } else { |
| return compressionRes; |
| } |
| } |
| } break; |
| |
| default: |
| // Ignore all other extension structs |
| break; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev, |
| VkSurfaceKHR surface, |
| uint32_t* count, |
| VkPresentModeKHR* modes) { |
| ATRACE_CALL(); |
| |
| int err; |
| int query_value; |
| std::vector<VkPresentModeKHR> present_modes; |
| if (surface == VK_NULL_HANDLE) { |
| const InstanceData& instance_data = GetData(pdev); |
| ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query; |
| bool surfaceless_enabled = |
| instance_data.hook_extensions.test(surfaceless); |
| if (!surfaceless_enabled) { |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| // Support for VK_GOOGLE_surfaceless_query. The primary purpose of this |
| // extension for this function is for |
| // VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR and |
| // VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR. We technically cannot |
| // know if VK_PRESENT_MODE_SHARED_MAILBOX_KHR is supported without a |
| // surface, and that cannot be relied upon. Therefore, don't return it. |
| present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR); |
| } else { |
| ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); |
| |
| err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, |
| &query_value); |
| if (err != android::OK || query_value < 0) { |
| ALOGE( |
| "NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) " |
| "value=%d", |
| strerror(-err), err, query_value); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value); |
| |
| err = |
| window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value); |
| if (err != android::OK || query_value < 0) { |
| ALOGE( |
| "NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d", |
| strerror(-err), err, query_value); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| uint32_t max_buffer_count = static_cast<uint32_t>(query_value); |
| |
| if (min_undequeued_buffers + 1 < max_buffer_count) |
| present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR); |
| present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR); |
| } |
| |
| VkPhysicalDevicePresentationPropertiesANDROID present_properties; |
| QueryPresentationProperties(pdev, &present_properties); |
| if (present_properties.sharedImage) { |
| present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR); |
| present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR); |
| } |
| |
| return CopyWithIncomplete(present_modes, modes, count); |
| } |
| |
| VKAPI_ATTR |
| VkResult GetDeviceGroupPresentCapabilitiesKHR( |
| VkDevice, |
| VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) { |
| ATRACE_CALL(); |
| |
| ALOGV_IF(pDeviceGroupPresentCapabilities->sType != |
| VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR, |
| "vkGetDeviceGroupPresentCapabilitiesKHR: invalid " |
| "VkDeviceGroupPresentCapabilitiesKHR structure type %d", |
| pDeviceGroupPresentCapabilities->sType); |
| |
| memset(pDeviceGroupPresentCapabilities->presentMask, 0, |
| sizeof(pDeviceGroupPresentCapabilities->presentMask)); |
| |
| // assume device group of size 1 |
| pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0; |
| pDeviceGroupPresentCapabilities->modes = |
| VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetDeviceGroupSurfacePresentModesKHR( |
| VkDevice, |
| VkSurfaceKHR, |
| VkDeviceGroupPresentModeFlagsKHR* pModes) { |
| ATRACE_CALL(); |
| |
| *pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice, |
| VkSurfaceKHR surface, |
| uint32_t* pRectCount, |
| VkRect2D* pRects) { |
| ATRACE_CALL(); |
| |
| if (!pRects) { |
| *pRectCount = 1; |
| } else { |
| uint32_t count = std::min(*pRectCount, 1u); |
| bool incomplete = *pRectCount < 1; |
| |
| *pRectCount = count; |
| |
| if (incomplete) { |
| return VK_INCOMPLETE; |
| } |
| |
| int err; |
| ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); |
| |
| int width = 0, height = 0; |
| err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", |
| strerror(-err), err); |
| } |
| err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", |
| strerror(-err), err); |
| } |
| |
| pRects[0].offset.x = 0; |
| pRects[0].offset.y = 0; |
| pRects[0].extent = VkExtent2D{static_cast<uint32_t>(width), |
| static_cast<uint32_t>(height)}; |
| } |
| return VK_SUCCESS; |
| } |
| |
| static void DestroySwapchainInternal(VkDevice device, |
| VkSwapchainKHR swapchain_handle, |
| const VkAllocationCallbacks* allocator) { |
| ATRACE_CALL(); |
| |
| const auto& dispatch = GetData(device).driver; |
| Swapchain* swapchain = SwapchainFromHandle(swapchain_handle); |
| if (!swapchain) { |
| return; |
| } |
| |
| bool active = swapchain->surface.swapchain_handle == swapchain_handle; |
| ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr; |
| |
| if (window && swapchain->frame_timestamps_enabled) { |
| native_window_enable_frame_timestamps(window, false); |
| } |
| |
| for (uint32_t i = 0; i < swapchain->num_images; i++) { |
| ReleaseSwapchainImage(device, swapchain->shared, window, -1, |
| swapchain->images[i], false); |
| } |
| |
| if (active) { |
| swapchain->surface.swapchain_handle = VK_NULL_HANDLE; |
| } |
| |
| if (!allocator) { |
| allocator = &GetData(device).allocator; |
| } |
| |
| swapchain->~Swapchain(); |
| allocator->pfnFree(allocator->pUserData, swapchain); |
| } |
| |
| static VkResult getProducerUsage(const VkDevice& device, |
| const VkSwapchainCreateInfoKHR* create_info, |
| const VkSwapchainImageUsageFlagsANDROID swapchain_image_usage, |
| bool create_protected_swapchain, |
| uint64_t* producer_usage) { |
| // Get the physical device to query the appropriate producer usage |
| const VkPhysicalDevice& pdev = GetData(device).driver_physical_device; |
| const InstanceData& instance_data = GetData(pdev); |
| const InstanceDriverTable& instance_dispatch = instance_data.driver; |
| if (instance_dispatch.GetPhysicalDeviceImageFormatProperties2 || |
| instance_dispatch.GetPhysicalDeviceImageFormatProperties2KHR) { |
| // Look through the create_info pNext chain passed to createSwapchainKHR |
| // for an image compression control struct. |
| // if one is found AND the appropriate extensions are enabled, create a |
| // VkImageCompressionControlEXT structure to pass on to |
| // GetPhysicalDeviceImageFormatProperties2 |
| void* compression_control_pNext = nullptr; |
| VkImageCompressionControlEXT image_compression = {}; |
| const VkSwapchainCreateInfoKHR* create_infos = create_info; |
| while (create_infos->pNext) { |
| create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(create_infos->pNext); |
| switch (create_infos->sType) { |
| case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: { |
| const VkImageCompressionControlEXT* compression_infos = |
| reinterpret_cast<const VkImageCompressionControlEXT*>(create_infos); |
| image_compression = *compression_infos; |
| image_compression.pNext = nullptr; |
| compression_control_pNext = &image_compression; |
| } break; |
| default: |
| // Ignore all other info structs |
| break; |
| } |
| } |
| |
| // call GetPhysicalDeviceImageFormatProperties2KHR |
| VkPhysicalDeviceExternalImageFormatInfo external_image_format_info = { |
| .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO, |
| .pNext = compression_control_pNext, |
| .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, |
| }; |
| |
| // AHB does not have an sRGB format so we can't pass it to GPDIFP |
| // We need to convert the format to unorm if it is srgb |
| VkFormat format = create_info->imageFormat; |
| if (format == VK_FORMAT_R8G8B8A8_SRGB) { |
| format = VK_FORMAT_R8G8B8A8_UNORM; |
| } |
| |
| VkPhysicalDeviceImageFormatInfo2 image_format_info = { |
| .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, |
| .pNext = &external_image_format_info, |
| .format = format, |
| .type = VK_IMAGE_TYPE_2D, |
| .tiling = VK_IMAGE_TILING_OPTIMAL, |
| .usage = create_info->imageUsage, |
| .flags = create_protected_swapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u, |
| }; |
| |
| VkAndroidHardwareBufferUsageANDROID ahb_usage; |
| ahb_usage.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID; |
| ahb_usage.pNext = nullptr; |
| |
| VkImageFormatProperties2 image_format_properties; |
| image_format_properties.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2; |
| image_format_properties.pNext = &ahb_usage; |
| |
| if (instance_dispatch.GetPhysicalDeviceImageFormatProperties2) { |
| VkResult result = instance_dispatch.GetPhysicalDeviceImageFormatProperties2( |
| pdev, &image_format_info, &image_format_properties); |
| if (result != VK_SUCCESS) { |
| ALOGE("VkGetPhysicalDeviceImageFormatProperties2 for AHB usage failed: %d", result); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| else { |
| VkResult result = instance_dispatch.GetPhysicalDeviceImageFormatProperties2KHR( |
| pdev, &image_format_info, |
| &image_format_properties); |
| if (result != VK_SUCCESS) { |
| ALOGE("VkGetPhysicalDeviceImageFormatProperties2KHR for AHB usage failed: %d", |
| result); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| |
| // Determine if USAGE_FRONT_BUFFER is needed. |
| // GPDIFP2 has no means of using VkSwapchainImageUsageFlagsANDROID when |
| // querying for producer_usage. So androidHardwareBufferUsage will not |
| // contain USAGE_FRONT_BUFFER. We need to manually check for usage here. |
| if (!(swapchain_image_usage & VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID)) { |
| *producer_usage = ahb_usage.androidHardwareBufferUsage; |
| return VK_SUCCESS; |
| } |
| |
| // Check if USAGE_FRONT_BUFFER is supported for this swapchain |
| AHardwareBuffer_Desc ahb_desc = { |
| .width = create_info->imageExtent.width, |
| .height = create_info->imageExtent.height, |
| .layers = create_info->imageArrayLayers, |
| .format = create_info->imageFormat, |
| .usage = ahb_usage.androidHardwareBufferUsage | AHARDWAREBUFFER_USAGE_FRONT_BUFFER, |
| .stride = 0, // stride is always ignored when calling isSupported() |
| }; |
| |
| // If FRONT_BUFFER is not supported, |
| // then we need to call GetSwapchainGrallocUsageXAndroid below |
| if (AHardwareBuffer_isSupported(&ahb_desc)) { |
| *producer_usage = ahb_usage.androidHardwareBufferUsage; |
| *producer_usage |= AHARDWAREBUFFER_USAGE_FRONT_BUFFER; |
| return VK_SUCCESS; |
| } |
| } |
| |
| uint64_t native_usage = 0; |
| void* usage_info_pNext = nullptr; |
| VkResult result; |
| VkImageCompressionControlEXT image_compression = {}; |
| const auto& dispatch = GetData(device).driver; |
| if (dispatch.GetSwapchainGrallocUsage4ANDROID) { |
| ATRACE_BEGIN("GetSwapchainGrallocUsage4ANDROID"); |
| VkGrallocUsageInfo2ANDROID gralloc_usage_info = {}; |
| gralloc_usage_info.sType = |
| VK_STRUCTURE_TYPE_GRALLOC_USAGE_INFO_2_ANDROID; |
| gralloc_usage_info.format = create_info->imageFormat; |
| gralloc_usage_info.imageUsage = create_info->imageUsage; |
| gralloc_usage_info.swapchainImageUsage = swapchain_image_usage; |
| |
| // Look through the pNext chain for an image compression control struct |
| // if one is found AND the appropriate extensions are enabled, |
| // append it to be the gralloc usage pNext chain |
| const VkSwapchainCreateInfoKHR* create_infos = create_info; |
| while (create_infos->pNext) { |
| create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>( |
| create_infos->pNext); |
| switch (create_infos->sType) { |
| case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: { |
| const VkImageCompressionControlEXT* compression_infos = |
| reinterpret_cast<const VkImageCompressionControlEXT*>( |
| create_infos); |
| image_compression = *compression_infos; |
| image_compression.pNext = nullptr; |
| usage_info_pNext = &image_compression; |
| } break; |
| |
| default: |
| // Ignore all other info structs |
| break; |
| } |
| } |
| gralloc_usage_info.pNext = usage_info_pNext; |
| |
| result = dispatch.GetSwapchainGrallocUsage4ANDROID( |
| device, &gralloc_usage_info, &native_usage); |
| ATRACE_END(); |
| if (result != VK_SUCCESS) { |
| ALOGE("vkGetSwapchainGrallocUsage4ANDROID failed: %d", result); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } else if (dispatch.GetSwapchainGrallocUsage3ANDROID) { |
| ATRACE_BEGIN("GetSwapchainGrallocUsage3ANDROID"); |
| VkGrallocUsageInfoANDROID gralloc_usage_info = {}; |
| gralloc_usage_info.sType = VK_STRUCTURE_TYPE_GRALLOC_USAGE_INFO_ANDROID; |
| gralloc_usage_info.format = create_info->imageFormat; |
| gralloc_usage_info.imageUsage = create_info->imageUsage; |
| |
| // Look through the pNext chain for an image compression control struct |
| // if one is found AND the appropriate extensions are enabled, |
| // append it to be the gralloc usage pNext chain |
| const VkSwapchainCreateInfoKHR* create_infos = create_info; |
| while (create_infos->pNext) { |
| create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>( |
| create_infos->pNext); |
| switch (create_infos->sType) { |
| case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: { |
| const VkImageCompressionControlEXT* compression_infos = |
| reinterpret_cast<const VkImageCompressionControlEXT*>( |
| create_infos); |
| image_compression = *compression_infos; |
| image_compression.pNext = nullptr; |
| usage_info_pNext = &image_compression; |
| } break; |
| |
| default: |
| // Ignore all other info structs |
| break; |
| } |
| } |
| gralloc_usage_info.pNext = usage_info_pNext; |
| |
| result = dispatch.GetSwapchainGrallocUsage3ANDROID( |
| device, &gralloc_usage_info, &native_usage); |
| ATRACE_END(); |
| if (result != VK_SUCCESS) { |
| ALOGE("vkGetSwapchainGrallocUsage3ANDROID failed: %d", result); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } else if (dispatch.GetSwapchainGrallocUsage2ANDROID) { |
| uint64_t consumer_usage, producer_usage; |
| ATRACE_BEGIN("GetSwapchainGrallocUsage2ANDROID"); |
| result = dispatch.GetSwapchainGrallocUsage2ANDROID( |
| device, create_info->imageFormat, create_info->imageUsage, |
| swapchain_image_usage, &consumer_usage, &producer_usage); |
| ATRACE_END(); |
| if (result != VK_SUCCESS) { |
| ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| native_usage = |
| convertGralloc1ToBufferUsage(producer_usage, consumer_usage); |
| } else if (dispatch.GetSwapchainGrallocUsageANDROID) { |
| ATRACE_BEGIN("GetSwapchainGrallocUsageANDROID"); |
| int32_t legacy_usage = 0; |
| result = dispatch.GetSwapchainGrallocUsageANDROID( |
| device, create_info->imageFormat, create_info->imageUsage, |
| &legacy_usage); |
| ATRACE_END(); |
| if (result != VK_SUCCESS) { |
| ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| native_usage = static_cast<uint64_t>(legacy_usage); |
| } |
| *producer_usage = native_usage; |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult CreateSwapchainKHR(VkDevice device, |
| const VkSwapchainCreateInfoKHR* create_info, |
| const VkAllocationCallbacks* allocator, |
| VkSwapchainKHR* swapchain_handle) { |
| ATRACE_CALL(); |
| |
| int err; |
| VkResult result = VK_SUCCESS; |
| |
| ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64 |
| " minImageCount=%u imageFormat=%u imageColorSpace=%u" |
| " imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u" |
| " oldSwapchain=0x%" PRIx64, |
| reinterpret_cast<uint64_t>(create_info->surface), |
| create_info->minImageCount, create_info->imageFormat, |
| create_info->imageColorSpace, create_info->imageExtent.width, |
| create_info->imageExtent.height, create_info->imageUsage, |
| create_info->preTransform, create_info->presentMode, |
| reinterpret_cast<uint64_t>(create_info->oldSwapchain)); |
| |
| if (!allocator) |
| allocator = &GetData(device).allocator; |
| |
| PixelFormat native_pixel_format = |
| GetNativePixelFormat(create_info->imageFormat); |
| DataSpace native_dataspace = |
| GetNativeDataspace(create_info->imageColorSpace, native_pixel_format); |
| if (native_dataspace == DataSpace::UNKNOWN) { |
| ALOGE( |
| "CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) " |
| "failed: Unsupported color space", |
| create_info->imageColorSpace); |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| ALOGV_IF(create_info->imageArrayLayers != 1, |
| "swapchain imageArrayLayers=%u not supported", |
| create_info->imageArrayLayers); |
| ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0, |
| "swapchain preTransform=%#x not supported", |
| create_info->preTransform); |
| ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR || |
| create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR || |
| create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR || |
| create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR), |
| "swapchain presentMode=%u not supported", |
| create_info->presentMode); |
| |
| Surface& surface = *SurfaceFromHandle(create_info->surface); |
| |
| if (surface.swapchain_handle != create_info->oldSwapchain) { |
| ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64 |
| " because it already has active swapchain 0x%" PRIx64 |
| " but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64, |
| reinterpret_cast<uint64_t>(create_info->surface), |
| reinterpret_cast<uint64_t>(surface.swapchain_handle), |
| reinterpret_cast<uint64_t>(create_info->oldSwapchain)); |
| return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR; |
| } |
| if (create_info->oldSwapchain != VK_NULL_HANDLE) |
| OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain)); |
| |
| // -- Reset the native window -- |
| // The native window might have been used previously, and had its properties |
| // changed from defaults. That will affect the answer we get for queries |
| // like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we |
| // attempt such queries. |
| |
| // The native window only allows dequeueing all buffers before any have |
| // been queued, since after that point at least one is assumed to be in |
| // non-FREE state at any given time. Disconnecting and re-connecting |
| // orphans the previous buffers, getting us back to the state where we can |
| // dequeue all buffers. |
| // |
| // This is not necessary if the surface was never used previously. |
| // |
| // TODO(http://b/134186185) recycle swapchain images more efficiently |
| ANativeWindow* window = surface.window.get(); |
| if (surface.used_by_swapchain) { |
| err = native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL); |
| ALOGW_IF(err != android::OK, |
| "native_window_api_disconnect failed: %s (%d)", strerror(-err), |
| err); |
| err = native_window_api_connect(window, NATIVE_WINDOW_API_EGL); |
| ALOGW_IF(err != android::OK, |
| "native_window_api_connect failed: %s (%d)", strerror(-err), |
| err); |
| } |
| |
| err = |
| window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, nsecs_t{-1}); |
| if (err != android::OK) { |
| ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| int swap_interval = |
| create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1; |
| err = window->setSwapInterval(window, swap_interval); |
| if (err != android::OK) { |
| ALOGE("native_window->setSwapInterval(1) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = native_window_set_shared_buffer_mode(window, false); |
| if (err != android::OK) { |
| ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = native_window_set_auto_refresh(window, false); |
| if (err != android::OK) { |
| ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| // -- Configure the native window -- |
| |
| const auto& dispatch = GetData(device).driver; |
| |
| err = native_window_set_buffers_format( |
| window, static_cast<int>(native_pixel_format)); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffers_format(%s) failed: %s (%d)", |
| toString(native_pixel_format).c_str(), strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| /* Respect consumer default dataspace upon HAL_DATASPACE_ARBITRARY. */ |
| if (native_dataspace != DataSpace::ARBITRARY) { |
| err = native_window_set_buffers_data_space( |
| window, static_cast<android_dataspace_t>(native_dataspace)); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)", |
| native_dataspace, strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| |
| err = native_window_set_buffers_dimensions( |
| window, static_cast<int>(create_info->imageExtent.width), |
| static_cast<int>(create_info->imageExtent.height)); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)", |
| create_info->imageExtent.width, create_info->imageExtent.height, |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| // VkSwapchainCreateInfo::preTransform indicates the transformation the app |
| // applied during rendering. native_window_set_transform() expects the |
| // inverse: the transform the app is requesting that the compositor perform |
| // during composition. With native windows, pre-transform works by rendering |
| // with the same transform the compositor is applying (as in Vulkan), but |
| // then requesting the inverse transform, so that when the compositor does |
| // it's job the two transforms cancel each other out and the compositor ends |
| // up applying an identity transform to the app's buffer. |
| err = native_window_set_buffers_transform( |
| window, InvertTransformToNative(create_info->preTransform)); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)", |
| InvertTransformToNative(create_info->preTransform), |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = native_window_set_scaling_mode( |
| window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); |
| if (err != android::OK) { |
| ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0; |
| if (IsSharedPresentMode(create_info->presentMode)) { |
| swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID; |
| err = native_window_set_shared_buffer_mode(window, true); |
| if (err != android::OK) { |
| ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| |
| if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) { |
| err = native_window_set_auto_refresh(window, true); |
| if (err != android::OK) { |
| ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| |
| int query_value; |
| // TODO: Now that we are calling into GPDSC2 directly, this query may be redundant |
| // the call to std::max(min_buffer_count, num_images) may be redundant as well |
| err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, |
| &query_value); |
| if (err != android::OK || query_value < 0) { |
| ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err, |
| query_value); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| const uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value); |
| |
| // Lower layer insists that we have at least min_undequeued_buffers + 1 |
| // buffers. This is wasteful and we'd like to relax it in the shared case, |
| // but not all the pieces are in place for that to work yet. Note we only |
| // lie to the lower layer--we don't want to give the app back a swapchain |
| // with extra images (which they can't actually use!). |
| const uint32_t min_buffer_count = min_undequeued_buffers + 1; |
| |
| // Call into GPDSC2 to get the minimum and maximum allowable buffer count for the surface of |
| // interest. This step is only necessary if the app requests a number of images |
| // (create_info->minImageCount) that is less or more than the surface capabilities. |
| // An app should be calling GPDSC2 and using those values to set create_info, but in the |
| // event that the app has hard-coded image counts an error can occur |
| VkSurfacePresentModeEXT present_mode = { |
| VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT, |
| nullptr, |
| create_info->presentMode |
| }; |
| VkPhysicalDeviceSurfaceInfo2KHR surface_info2 = { |
| VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR, |
| &present_mode, |
| create_info->surface |
| }; |
| VkSurfaceCapabilities2KHR surface_capabilities2 = { |
| VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR, |
| nullptr, |
| {}, |
| }; |
| result = GetPhysicalDeviceSurfaceCapabilities2KHR(GetData(device).driver_physical_device, |
| &surface_info2, &surface_capabilities2); |
| |
| uint32_t num_images = create_info->minImageCount; |
| num_images = std::clamp(num_images, |
| surface_capabilities2.surfaceCapabilities.minImageCount, |
| surface_capabilities2.surfaceCapabilities.maxImageCount); |
| |
| const uint32_t buffer_count = std::max(min_buffer_count, num_images); |
| err = native_window_set_buffer_count(window, buffer_count); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", buffer_count, |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| // In shared mode the num_images must be one regardless of how many |
| // buffers were allocated for the buffer queue. |
| if (swapchain_image_usage & VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID) { |
| num_images = 1; |
| } |
| |
| // Look through the create_info pNext chain passed to createSwapchainKHR |
| // for an image compression control struct. |
| // if one is found AND the appropriate extensions are enabled, create a |
| // VkImageCompressionControlEXT structure to pass on to VkImageCreateInfo |
| // TODO check for imageCompressionControlSwapchain feature is enabled |
| void* usage_info_pNext = nullptr; |
| VkImageCompressionControlEXT image_compression = {}; |
| const VkSwapchainCreateInfoKHR* create_infos = create_info; |
| while (create_infos->pNext) { |
| create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(create_infos->pNext); |
| switch (create_infos->sType) { |
| case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: { |
| const VkImageCompressionControlEXT* compression_infos = |
| reinterpret_cast<const VkImageCompressionControlEXT*>(create_infos); |
| image_compression = *compression_infos; |
| image_compression.pNext = nullptr; |
| usage_info_pNext = &image_compression; |
| } break; |
| |
| default: |
| // Ignore all other info structs |
| break; |
| } |
| } |
| |
| // Get the appropriate native_usage for the images |
| // Get the consumer usage |
| uint64_t native_usage = surface.consumer_usage; |
| // Determine if the swapchain is protected |
| bool create_protected_swapchain = false; |
| if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) { |
| create_protected_swapchain = true; |
| native_usage |= BufferUsage::PROTECTED; |
| } |
| // Get the producer usage |
| uint64_t producer_usage; |
| result = getProducerUsage(device, create_info, swapchain_image_usage, create_protected_swapchain, &producer_usage); |
| if (result != VK_SUCCESS) { |
| return result; |
| } |
| native_usage |= producer_usage; |
| |
| err = native_window_set_usage(window, native_usage); |
| if (err != android::OK) { |
| ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| int transform_hint; |
| err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| int64_t refresh_duration; |
| err = native_window_get_refresh_cycle_duration(window, &refresh_duration); |
| if (err != android::OK) { |
| ALOGE("native_window_get_refresh_cycle_duration query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| // -- Allocate our Swapchain object -- |
| // After this point, we must deallocate the swapchain on error. |
| |
| void* mem = allocator->pfnAllocation(allocator->pUserData, |
| sizeof(Swapchain), alignof(Swapchain), |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| |
| if (!mem) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| |
| Swapchain* swapchain = new (mem) |
| Swapchain(surface, num_images, create_info->presentMode, |
| TranslateVulkanToNativeTransform(create_info->preTransform), |
| refresh_duration); |
| VkSwapchainImageCreateInfoANDROID swapchain_image_create = { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wold-style-cast" |
| .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID, |
| #pragma clang diagnostic pop |
| .pNext = usage_info_pNext, |
| .usage = swapchain_image_usage, |
| }; |
| VkNativeBufferANDROID image_native_buffer = { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wold-style-cast" |
| .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, |
| #pragma clang diagnostic pop |
| .pNext = &swapchain_image_create, |
| }; |
| |
| VkImageCreateInfo image_create = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, |
| .pNext = nullptr, |
| .flags = create_protected_swapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u, |
| .imageType = VK_IMAGE_TYPE_2D, |
| .format = create_info->imageFormat, |
| .extent = { |
| create_info->imageExtent.width, |
| create_info->imageExtent.height, |
| 1 |
| }, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .samples = VK_SAMPLE_COUNT_1_BIT, |
| .tiling = VK_IMAGE_TILING_OPTIMAL, |
| .usage = create_info->imageUsage, |
| .sharingMode = create_info->imageSharingMode, |
| .queueFamilyIndexCount = create_info->queueFamilyIndexCount, |
| .pQueueFamilyIndices = create_info->pQueueFamilyIndices, |
| }; |
| |
| // Note: don't do deferred allocation for shared present modes. There's only one buffer |
| // involved so very little benefit. |
| if ((create_info->flags & VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT) && |
| !IsSharedPresentMode(create_info->presentMode)) { |
| // Don't want to touch the underlying gralloc buffers yet; |
| // instead just create unbound VkImages which will later be bound to memory inside |
| // AcquireNextImage. |
| VkImageSwapchainCreateInfoKHR image_swapchain_create = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR, |
| .pNext = nullptr, |
| .swapchain = HandleFromSwapchain(swapchain), |
| }; |
| image_create.pNext = &image_swapchain_create; |
| |
| for (uint32_t i = 0; i < num_images; i++) { |
| Swapchain::Image& img = swapchain->images[i]; |
| img.buffer = nullptr; |
| img.dequeued = false; |
| |
| result = dispatch.CreateImage(device, &image_create, nullptr, &img.image); |
| if (result != VK_SUCCESS) { |
| ALOGD("vkCreateImage w/ for deferred swapchain image failed: %u", result); |
| break; |
| } |
| } |
| } else { |
| // -- Dequeue all buffers and create a VkImage for each -- |
| // Any failures during or after this must cancel the dequeued buffers. |
| |
| for (uint32_t i = 0; i < num_images; i++) { |
| Swapchain::Image& img = swapchain->images[i]; |
| |
| ANativeWindowBuffer* buffer; |
| err = window->dequeueBuffer(window, &buffer, &img.dequeue_fence); |
| if (err != android::OK) { |
| ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err); |
| switch (-err) { |
| case ENOMEM: |
| result = VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| break; |
| default: |
| result = VK_ERROR_SURFACE_LOST_KHR; |
| break; |
| } |
| break; |
| } |
| img.buffer = buffer; |
| img.dequeued = true; |
| |
| image_native_buffer.handle = img.buffer->handle; |
| image_native_buffer.stride = img.buffer->stride; |
| image_native_buffer.format = img.buffer->format; |
| image_native_buffer.usage = int(img.buffer->usage); |
| android_convertGralloc0To1Usage(int(img.buffer->usage), |
| &image_native_buffer.usage2.producer, |
| &image_native_buffer.usage2.consumer); |
| image_native_buffer.usage3 = img.buffer->usage; |
| image_native_buffer.ahb = |
| ANativeWindowBuffer_getHardwareBuffer(img.buffer.get()); |
| image_create.pNext = &image_native_buffer; |
| |
| ATRACE_BEGIN("CreateImage"); |
| result = |
| dispatch.CreateImage(device, &image_create, nullptr, &img.image); |
| ATRACE_END(); |
| if (result != VK_SUCCESS) { |
| ALOGD("vkCreateImage w/ native buffer failed: %u", result); |
| break; |
| } |
| } |
| |
| // -- Cancel all buffers, returning them to the queue -- |
| // If an error occurred before, also destroy the VkImage and release the |
| // buffer reference. Otherwise, we retain a strong reference to the buffer. |
| for (uint32_t i = 0; i < num_images; i++) { |
| Swapchain::Image& img = swapchain->images[i]; |
| if (img.dequeued) { |
| if (!swapchain->shared) { |
| window->cancelBuffer(window, img.buffer.get(), |
| img.dequeue_fence); |
| img.dequeue_fence = -1; |
| img.dequeued = false; |
| } |
| } |
| } |
| } |
| |
| if (result != VK_SUCCESS) { |
| DestroySwapchainInternal(device, HandleFromSwapchain(swapchain), |
| allocator); |
| return result; |
| } |
| |
| if (transform_hint != swapchain->pre_transform) { |
| // Log that the app is not doing pre-rotation. |
| android::GraphicsEnv::getInstance().setTargetStats( |
| android::GpuStatsInfo::Stats::FALSE_PREROTATION); |
| } |
| |
| // Set stats for creating a Vulkan swapchain |
| android::GraphicsEnv::getInstance().setTargetStats( |
| android::GpuStatsInfo::Stats::CREATED_VULKAN_SWAPCHAIN); |
| |
| surface.used_by_swapchain = true; |
| surface.swapchain_handle = HandleFromSwapchain(swapchain); |
| *swapchain_handle = surface.swapchain_handle; |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| void DestroySwapchainKHR(VkDevice device, |
| VkSwapchainKHR swapchain_handle, |
| const VkAllocationCallbacks* allocator) { |
| ATRACE_CALL(); |
| |
| DestroySwapchainInternal(device, swapchain_handle, allocator); |
| } |
| |
| VKAPI_ATTR |
| VkResult GetSwapchainImagesKHR(VkDevice, |
| VkSwapchainKHR swapchain_handle, |
| uint32_t* count, |
| VkImage* images) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle, |
| "getting images for non-active swapchain 0x%" PRIx64 |
| "; only dequeued image handles are valid", |
| reinterpret_cast<uint64_t>(swapchain_handle)); |
| VkResult result = VK_SUCCESS; |
| if (images) { |
| uint32_t n = swapchain.num_images; |
| if (*count < swapchain.num_images) { |
| n = *count; |
| result = VK_INCOMPLETE; |
| } |
| for (uint32_t i = 0; i < n; i++) |
| images[i] = swapchain.images[i].image; |
| *count = n; |
| } else { |
| *count = swapchain.num_images; |
| } |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult AcquireNextImageKHR(VkDevice device, |
| VkSwapchainKHR swapchain_handle, |
| uint64_t timeout, |
| VkSemaphore semaphore, |
| VkFence vk_fence, |
| uint32_t* image_index) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| ANativeWindow* window = swapchain.surface.window.get(); |
| VkResult result; |
| int err; |
| |
| if (swapchain.surface.swapchain_handle != swapchain_handle) |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| |
| if (swapchain.shared) { |
| // In shared mode, we keep the buffer dequeued all the time, so we don't |
| // want to dequeue a buffer here. Instead, just ask the driver to ensure |
| // the semaphore and fence passed to us will be signalled. |
| *image_index = 0; |
| result = GetData(device).driver.AcquireImageANDROID( |
| device, swapchain.images[*image_index].image, -1, semaphore, vk_fence); |
| return result; |
| } |
| |
| const nsecs_t acquire_next_image_timeout = |
| timeout > (uint64_t)std::numeric_limits<nsecs_t>::max() ? -1 : timeout; |
| if (acquire_next_image_timeout != swapchain.acquire_next_image_timeout) { |
| // Cache the timeout to avoid the duplicate binder cost. |
| err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, |
| acquire_next_image_timeout); |
| if (err != android::OK) { |
| ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| swapchain.acquire_next_image_timeout = acquire_next_image_timeout; |
| } |
| |
| ANativeWindowBuffer* buffer; |
| int fence_fd; |
| err = window->dequeueBuffer(window, &buffer, &fence_fd); |
| if (err == android::TIMED_OUT || err == android::INVALID_OPERATION) { |
| ALOGW("dequeueBuffer timed out: %s (%d)", strerror(-err), err); |
| return timeout ? VK_TIMEOUT : VK_NOT_READY; |
| } else if (err != android::OK) { |
| ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| uint32_t idx; |
| for (idx = 0; idx < swapchain.num_images; idx++) { |
| if (swapchain.images[idx].buffer.get() == buffer) { |
| swapchain.images[idx].dequeued = true; |
| swapchain.images[idx].dequeue_fence = fence_fd; |
| break; |
| } |
| } |
| |
| // If this is a deferred alloc swapchain, this may be the first time we've |
| // seen a particular buffer. If so, there should be an empty slot. Find it, |
| // and bind the gralloc buffer to the VkImage for that slot. If there is no |
| // empty slot, then we dequeued an unexpected buffer. Non-deferred swapchains |
| // will also take this path, but will never have an empty slot since we |
| // populated them all upfront. |
| if (idx == swapchain.num_images) { |
| for (idx = 0; idx < swapchain.num_images; idx++) { |
| if (!swapchain.images[idx].buffer) { |
| // Note: this structure is technically required for |
| // Vulkan correctness, even though the driver is probably going |
| // to use everything from the VkNativeBufferANDROID below. |
| // This is kindof silly, but it's how we did the ANB |
| // side of VK_KHR_swapchain v69, so we're stuck with it unless |
| // we want to go tinkering with the ANB spec some more. |
| VkBindImageMemorySwapchainInfoKHR bimsi = { |
| .sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR, |
| .pNext = nullptr, |
| .swapchain = swapchain_handle, |
| .imageIndex = idx, |
| }; |
| VkNativeBufferANDROID nb = { |
| .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, |
| .pNext = &bimsi, |
| .handle = buffer->handle, |
| .stride = buffer->stride, |
| .format = buffer->format, |
| .usage = int(buffer->usage), |
| .usage3 = buffer->usage, |
| .ahb = ANativeWindowBuffer_getHardwareBuffer(buffer), |
| }; |
| android_convertGralloc0To1Usage(int(buffer->usage), |
| &nb.usage2.producer, |
| &nb.usage2.consumer); |
| VkBindImageMemoryInfo bimi = { |
| .sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO, |
| .pNext = &nb, |
| .image = swapchain.images[idx].image, |
| .memory = VK_NULL_HANDLE, |
| .memoryOffset = 0, |
| }; |
| result = GetData(device).driver.BindImageMemory2(device, 1, &bimi); |
| if (result != VK_SUCCESS) { |
| // This shouldn't really happen. If it does, something is probably |
| // unrecoverably wrong with the swapchain and its images. Cancel |
| // the buffer and declare the swapchain broken. |
| ALOGE("failed to do deferred gralloc buffer bind"); |
| window->cancelBuffer(window, buffer, fence_fd); |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| swapchain.images[idx].dequeued = true; |
| swapchain.images[idx].dequeue_fence = fence_fd; |
| swapchain.images[idx].buffer = buffer; |
| break; |
| } |
| } |
| } |
| |
| // The buffer doesn't match any slot. This shouldn't normally happen, but is |
| // possible if the bufferqueue is reconfigured behind libvulkan's back. If this |
| // happens, just declare the swapchain to be broken and the app will recreate it. |
| if (idx == swapchain.num_images) { |
| ALOGE("dequeueBuffer returned unrecognized buffer"); |
| window->cancelBuffer(window, buffer, fence_fd); |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| int fence_clone = -1; |
| if (fence_fd != -1) { |
| fence_clone = dup(fence_fd); |
| if (fence_clone == -1) { |
| ALOGE("dup(fence) failed, stalling until signalled: %s (%d)", |
| strerror(errno), errno); |
| sync_wait(fence_fd, -1 /* forever */); |
| } |
| } |
| |
| result = GetData(device).driver.AcquireImageANDROID( |
| device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence); |
| if (result != VK_SUCCESS) { |
| // NOTE: we're relying on AcquireImageANDROID to close fence_clone, |
| // even if the call fails. We could close it ourselves on failure, but |
| // that would create a race condition if the driver closes it on a |
| // failure path: some other thread might create an fd with the same |
| // number between the time the driver closes it and the time we close |
| // it. We must assume one of: the driver *always* closes it even on |
| // failure, or *never* closes it on failure. |
| window->cancelBuffer(window, buffer, fence_fd); |
| swapchain.images[idx].dequeued = false; |
| swapchain.images[idx].dequeue_fence = -1; |
| return result; |
| } |
| |
| *image_index = idx; |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult AcquireNextImage2KHR(VkDevice device, |
| const VkAcquireNextImageInfoKHR* pAcquireInfo, |
| uint32_t* pImageIndex) { |
| ATRACE_CALL(); |
| |
| return AcquireNextImageKHR(device, pAcquireInfo->swapchain, |
| pAcquireInfo->timeout, pAcquireInfo->semaphore, |
| pAcquireInfo->fence, pImageIndex); |
| } |
| |
| static VkResult WorstPresentResult(VkResult a, VkResult b) { |
| // See the error ranking for vkQueuePresentKHR at the end of section 29.6 |
| // (in spec version 1.0.14). |
| static const VkResult kWorstToBest[] = { |
| VK_ERROR_DEVICE_LOST, |
| VK_ERROR_SURFACE_LOST_KHR, |
| VK_ERROR_OUT_OF_DATE_KHR, |
| VK_ERROR_OUT_OF_DEVICE_MEMORY, |
| VK_ERROR_OUT_OF_HOST_MEMORY, |
| VK_SUBOPTIMAL_KHR, |
| }; |
| for (auto result : kWorstToBest) { |
| if (a == result || b == result) |
| return result; |
| } |
| ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a); |
| ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b); |
| return a != VK_SUCCESS ? a : b; |
| } |
| |
| // KHR_incremental_present aspect of QueuePresentKHR |
| static void SetSwapchainSurfaceDamage(ANativeWindow *window, const VkPresentRegionKHR *pRegion) { |
| std::vector<android_native_rect_t> rects(pRegion->rectangleCount); |
| for (auto i = 0u; i < pRegion->rectangleCount; i++) { |
| auto const& rect = pRegion->pRectangles[i]; |
| if (rect.layer > 0) { |
| ALOGV("vkQueuePresentKHR ignoring invalid layer (%u); using layer 0 instead", |
| rect.layer); |
| } |
| |
| rects[i].left = rect.offset.x; |
| rects[i].bottom = rect.offset.y; |
| rects[i].right = rect.offset.x + rect.extent.width; |
| rects[i].top = rect.offset.y + rect.extent.height; |
| } |
| native_window_set_surface_damage(window, rects.data(), rects.size()); |
| } |
| |
| // GOOGLE_display_timing aspect of QueuePresentKHR |
| static void SetSwapchainFrameTimestamp(Swapchain &swapchain, const VkPresentTimeGOOGLE *pTime) { |
| ANativeWindow *window = swapchain.surface.window.get(); |
| |
| // We don't know whether the app will actually use GOOGLE_display_timing |
| // with a particular swapchain until QueuePresent; enable it on the BQ |
| // now if needed |
| if (!swapchain.frame_timestamps_enabled) { |
| ALOGV("Calling native_window_enable_frame_timestamps(true)"); |
| native_window_enable_frame_timestamps(window, true); |
| swapchain.frame_timestamps_enabled = true; |
| } |
| |
| // Record the nativeFrameId so it can be later correlated to |
| // this present. |
| uint64_t nativeFrameId = 0; |
| int err = native_window_get_next_frame_id( |
| window, &nativeFrameId); |
| if (err != android::OK) { |
| ALOGE("Failed to get next native frame ID."); |
| } |
| |
| // Add a new timing record with the user's presentID and |
| // the nativeFrameId. |
| swapchain.timing.emplace_back(pTime, nativeFrameId); |
| if (swapchain.timing.size() > MAX_TIMING_INFOS) { |
| swapchain.timing.erase( |
| swapchain.timing.begin(), |
| swapchain.timing.begin() + swapchain.timing.size() - MAX_TIMING_INFOS); |
| } |
| if (pTime->desiredPresentTime) { |
| ALOGV( |
| "Calling native_window_set_buffers_timestamp(%" PRId64 ")", |
| pTime->desiredPresentTime); |
| native_window_set_buffers_timestamp( |
| window, |
| static_cast<int64_t>(pTime->desiredPresentTime)); |
| } |
| } |
| |
| // EXT_swapchain_maintenance1 present mode change |
| static bool SetSwapchainPresentMode(ANativeWindow *window, VkPresentModeKHR mode) { |
| // There is no dynamic switching between non-shared present modes. |
| // All we support is switching between demand and continuous refresh. |
| if (!IsSharedPresentMode(mode)) |
| return true; |
| |
| int err = native_window_set_auto_refresh(window, |
| mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR); |
| if (err != android::OK) { |
| ALOGE("native_window_set_auto_refresh() failed: %s (%d)", |
| strerror(-err), err); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static VkResult PresentOneSwapchain( |
| VkQueue queue, |
| Swapchain& swapchain, |
| uint32_t imageIndex, |
| const VkPresentRegionKHR *pRegion, |
| const VkPresentTimeGOOGLE *pTime, |
| VkFence presentFence, |
| const VkPresentModeKHR *pPresentMode, |
| uint32_t waitSemaphoreCount, |
| const VkSemaphore *pWaitSemaphores) { |
| |
| VkDevice device = GetData(queue).driver_device; |
| const auto& dispatch = GetData(queue).driver; |
| |
| Swapchain::Image& img = swapchain.images[imageIndex]; |
| VkResult swapchain_result = VK_SUCCESS; |
| VkResult result; |
| int err; |
| |
| // XXX: long standing issue: QueueSignalReleaseImageANDROID consumes the |
| // wait semaphores, so this doesn't actually work for the multiple swapchain |
| // case. |
| int fence = -1; |
| result = dispatch.QueueSignalReleaseImageANDROID( |
| queue, waitSemaphoreCount, |
| pWaitSemaphores, img.image, &fence); |
| if (result != VK_SUCCESS) { |
| ALOGE("QueueSignalReleaseImageANDROID failed: %d", result); |
| swapchain_result = result; |
| } |
| if (img.release_fence >= 0) |
| close(img.release_fence); |
| img.release_fence = fence < 0 ? -1 : dup(fence); |
| |
| if (swapchain.surface.swapchain_handle == HandleFromSwapchain(&swapchain)) { |
| ANativeWindow* window = swapchain.surface.window.get(); |
| if (swapchain_result == VK_SUCCESS) { |
| |
| if (presentFence != VK_NULL_HANDLE) { |
| int fence_copy = fence < 0 ? -1 : dup(fence); |
| VkImportFenceFdInfoKHR iffi = { |
| VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR, |
| nullptr, |
| presentFence, |
| VK_FENCE_IMPORT_TEMPORARY_BIT, |
| VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT, |
| fence_copy, |
| }; |
| if (VK_SUCCESS != dispatch.ImportFenceFdKHR(device, &iffi) && fence_copy >= 0) { |
| // ImportFenceFdKHR takes ownership only if it succeeds |
| close(fence_copy); |
| } |
| } |
| |
| if (pRegion) { |
| SetSwapchainSurfaceDamage(window, pRegion); |
| } |
| if (pTime) { |
| SetSwapchainFrameTimestamp(swapchain, pTime); |
| } |
| if (pPresentMode) { |
| if (!SetSwapchainPresentMode(window, *pPresentMode)) |
| swapchain_result = WorstPresentResult(swapchain_result, |
| VK_ERROR_SURFACE_LOST_KHR); |
| } |
| |
| err = window->queueBuffer(window, img.buffer.get(), fence); |
| // queueBuffer always closes fence, even on error |
| if (err != android::OK) { |
| ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err); |
| swapchain_result = WorstPresentResult( |
| swapchain_result, VK_ERROR_SURFACE_LOST_KHR); |
| } else { |
| if (img.dequeue_fence >= 0) { |
| close(img.dequeue_fence); |
| img.dequeue_fence = -1; |
| } |
| img.dequeued = false; |
| } |
| |
| // If the swapchain is in shared mode, immediately dequeue the |
| // buffer so it can be presented again without an intervening |
| // call to AcquireNextImageKHR. We expect to get the same buffer |
| // back from every call to dequeueBuffer in this mode. |
| if (swapchain.shared && swapchain_result == VK_SUCCESS) { |
| ANativeWindowBuffer* buffer; |
| int fence_fd; |
| err = window->dequeueBuffer(window, &buffer, &fence_fd); |
| if (err != android::OK) { |
| ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err); |
| swapchain_result = WorstPresentResult(swapchain_result, |
| VK_ERROR_SURFACE_LOST_KHR); |
| } else if (img.buffer != buffer) { |
| ALOGE("got wrong image back for shared swapchain"); |
| swapchain_result = WorstPresentResult(swapchain_result, |
| VK_ERROR_SURFACE_LOST_KHR); |
| } else { |
| img.dequeue_fence = fence_fd; |
| img.dequeued = true; |
| } |
| } |
| } |
| if (swapchain_result != VK_SUCCESS) { |
| OrphanSwapchain(device, &swapchain); |
| } |
| // Android will only return VK_SUBOPTIMAL_KHR for vkQueuePresentKHR, |
| // and only when the window's transform/rotation changes. Extent |
| // changes will not cause VK_SUBOPTIMAL_KHR because of the |
| // application issues that were caused when the following transform |
| // change was added. |
| int window_transform_hint; |
| err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, |
| &window_transform_hint); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", |
| strerror(-err), err); |
| swapchain_result = WorstPresentResult( |
| swapchain_result, VK_ERROR_SURFACE_LOST_KHR); |
| } |
| if (swapchain.pre_transform != window_transform_hint) { |
| swapchain_result = |
| WorstPresentResult(swapchain_result, VK_SUBOPTIMAL_KHR); |
| } |
| } else { |
| ReleaseSwapchainImage(device, swapchain.shared, nullptr, fence, |
| img, true); |
| swapchain_result = VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| return swapchain_result; |
| } |
| |
| VKAPI_ATTR |
| VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) { |
| ATRACE_CALL(); |
| |
| ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, |
| "vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d", |
| present_info->sType); |
| |
| VkResult final_result = VK_SUCCESS; |
| |
| // Look at the pNext chain for supported extension structs: |
| const VkPresentRegionsKHR* present_regions = nullptr; |
| const VkPresentTimesInfoGOOGLE* present_times = nullptr; |
| const VkSwapchainPresentFenceInfoEXT* present_fences = nullptr; |
| const VkSwapchainPresentModeInfoEXT* present_modes = nullptr; |
| |
| const VkPresentRegionsKHR* next = |
| reinterpret_cast<const VkPresentRegionsKHR*>(present_info->pNext); |
| while (next) { |
| switch (next->sType) { |
| case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR: |
| present_regions = next; |
| break; |
| case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE: |
| present_times = |
| reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(next); |
| break; |
| case VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_FENCE_INFO_EXT: |
| present_fences = |
| reinterpret_cast<const VkSwapchainPresentFenceInfoEXT*>(next); |
| break; |
| case VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODE_INFO_EXT: |
| present_modes = |
| reinterpret_cast<const VkSwapchainPresentModeInfoEXT*>(next); |
| break; |
| default: |
| ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x", |
| next->sType); |
| break; |
| } |
| next = reinterpret_cast<const VkPresentRegionsKHR*>(next->pNext); |
| } |
| ALOGV_IF( |
| present_regions && |
| present_regions->swapchainCount != present_info->swapchainCount, |
| "VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount"); |
| ALOGV_IF(present_times && |
| present_times->swapchainCount != present_info->swapchainCount, |
| "VkPresentTimesInfoGOOGLE::swapchainCount != " |
| "VkPresentInfo::swapchainCount"); |
| ALOGV_IF(present_fences && |
| present_fences->swapchainCount != present_info->swapchainCount, |
| "VkSwapchainPresentFenceInfoEXT::swapchainCount != " |
| "VkPresentInfo::swapchainCount"); |
| ALOGV_IF(present_modes && |
| present_modes->swapchainCount != present_info->swapchainCount, |
| "VkSwapchainPresentModeInfoEXT::swapchainCount != " |
| "VkPresentInfo::swapchainCount"); |
| |
| const VkPresentRegionKHR* regions = |
| (present_regions) ? present_regions->pRegions : nullptr; |
| const VkPresentTimeGOOGLE* times = |
| (present_times) ? present_times->pTimes : nullptr; |
| |
| for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) { |
| Swapchain& swapchain = |
| *SwapchainFromHandle(present_info->pSwapchains[sc]); |
| |
| VkResult swapchain_result = PresentOneSwapchain( |
| queue, |
| swapchain, |
| present_info->pImageIndices[sc], |
| (regions && !swapchain.mailbox_mode) ? ®ions[sc] : nullptr, |
| times ? ×[sc] : nullptr, |
| present_fences ? present_fences->pFences[sc] : VK_NULL_HANDLE, |
| present_modes ? &present_modes->pPresentModes[sc] : nullptr, |
| present_info->waitSemaphoreCount, |
| present_info->pWaitSemaphores); |
| |
| if (present_info->pResults) |
| present_info->pResults[sc] = swapchain_result; |
| |
| if (swapchain_result != final_result) |
| final_result = WorstPresentResult(final_result, swapchain_result); |
| } |
| |
| return final_result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetRefreshCycleDurationGOOGLE( |
| VkDevice, |
| VkSwapchainKHR swapchain_handle, |
| VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| VkResult result = swapchain.get_refresh_duration(pDisplayTimingProperties->refreshDuration); |
| |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPastPresentationTimingGOOGLE( |
| VkDevice, |
| VkSwapchainKHR swapchain_handle, |
| uint32_t* count, |
| VkPastPresentationTimingGOOGLE* timings) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| if (swapchain.surface.swapchain_handle != swapchain_handle) { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| ANativeWindow* window = swapchain.surface.window.get(); |
| VkResult result = VK_SUCCESS; |
| |
| if (!swapchain.frame_timestamps_enabled) { |
| ALOGV("Calling native_window_enable_frame_timestamps(true)"); |
| native_window_enable_frame_timestamps(window, true); |
| swapchain.frame_timestamps_enabled = true; |
| } |
| |
| if (timings) { |
| // Get the latest ready timing count before copying, since the copied |
| // timing info will be erased in copy_ready_timings function. |
| uint32_t n = get_num_ready_timings(swapchain); |
| copy_ready_timings(swapchain, count, timings); |
| // Check the *count here against the recorded ready timing count, since |
| // *count can be overwritten per spec describes. |
| if (*count < n) { |
| result = VK_INCOMPLETE; |
| } |
| } else { |
| *count = get_num_ready_timings(swapchain); |
| } |
| |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetSwapchainStatusKHR( |
| VkDevice, |
| VkSwapchainKHR swapchain_handle) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| VkResult result = VK_SUCCESS; |
| |
| if (swapchain.surface.swapchain_handle != swapchain_handle) { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| // TODO(b/143296009): Implement this function properly |
| |
| return result; |
| } |
| |
| VKAPI_ATTR void SetHdrMetadataEXT( |
| VkDevice, |
| uint32_t swapchainCount, |
| const VkSwapchainKHR* pSwapchains, |
| const VkHdrMetadataEXT* pHdrMetadataEXTs) { |
| ATRACE_CALL(); |
| |
| for (uint32_t idx = 0; idx < swapchainCount; idx++) { |
| Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]); |
| if (!swapchain) |
| continue; |
| |
| if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue; |
| |
| ANativeWindow* window = swapchain->surface.window.get(); |
| |
| VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx]; |
| const android_smpte2086_metadata smpteMetdata = { |
| {vulkanMetadata.displayPrimaryRed.x, |
| vulkanMetadata.displayPrimaryRed.y}, |
| {vulkanMetadata.displayPrimaryGreen.x, |
| vulkanMetadata.displayPrimaryGreen.y}, |
| {vulkanMetadata.displayPrimaryBlue.x, |
| vulkanMetadata.displayPrimaryBlue.y}, |
| {vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y}, |
| vulkanMetadata.maxLuminance, |
| vulkanMetadata.minLuminance}; |
| native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata); |
| |
| const android_cta861_3_metadata cta8613Metadata = { |
| vulkanMetadata.maxContentLightLevel, |
| vulkanMetadata.maxFrameAverageLightLevel}; |
| native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata); |
| } |
| |
| return; |
| } |
| |
| static void InterceptBindImageMemory2( |
| uint32_t bind_info_count, |
| const VkBindImageMemoryInfo* bind_infos, |
| std::vector<VkNativeBufferANDROID>* out_native_buffers, |
| std::vector<VkBindImageMemoryInfo>* out_bind_infos) { |
| out_native_buffers->clear(); |
| out_bind_infos->clear(); |
| |
| if (!bind_info_count) |
| return; |
| |
| std::unordered_set<uint32_t> intercepted_indexes; |
| |
| for (uint32_t idx = 0; idx < bind_info_count; idx++) { |
| auto info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>( |
| bind_infos[idx].pNext); |
| while (info && |
| info->sType != |
| VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR) { |
| info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>( |
| info->pNext); |
| } |
| |
| if (!info) |
| continue; |
| |
| ALOG_ASSERT(info->swapchain != VK_NULL_HANDLE, |
| "swapchain handle must not be NULL"); |
| const Swapchain* swapchain = SwapchainFromHandle(info->swapchain); |
| ALOG_ASSERT( |
| info->imageIndex < swapchain->num_images, |
| "imageIndex must be less than the number of images in swapchain"); |
| |
| ANativeWindowBuffer* buffer = |
| swapchain->images[info->imageIndex].buffer.get(); |
| VkNativeBufferANDROID native_buffer = { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wold-style-cast" |
| .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, |
| #pragma clang diagnostic pop |
| .pNext = bind_infos[idx].pNext, |
| .handle = buffer->handle, |
| .stride = buffer->stride, |
| .format = buffer->format, |
| .usage = int(buffer->usage), |
| .usage3 = buffer->usage, |
| .ahb = ANativeWindowBuffer_getHardwareBuffer(buffer), |
| }; |
| android_convertGralloc0To1Usage(int(buffer->usage), |
| &native_buffer.usage2.producer, |
| &native_buffer.usage2.consumer); |
| // Reserve enough space to avoid letting re-allocation invalidate the |
| // addresses of the elements inside. |
| out_native_buffers->reserve(bind_info_count); |
| out_native_buffers->emplace_back(native_buffer); |
| |
| // Reserve the space now since we know how much is needed now. |
| out_bind_infos->reserve(bind_info_count); |
| out_bind_infos->emplace_back(bind_infos[idx]); |
| out_bind_infos->back().pNext = &out_native_buffers->back(); |
| |
| intercepted_indexes.insert(idx); |
| } |
| |
| if (intercepted_indexes.empty()) |
| return; |
| |
| for (uint32_t idx = 0; idx < bind_info_count; idx++) { |
| if (intercepted_indexes.count(idx)) |
| continue; |
| out_bind_infos->emplace_back(bind_infos[idx]); |
| } |
| } |
| |
| VKAPI_ATTR |
| VkResult BindImageMemory2(VkDevice device, |
| uint32_t bindInfoCount, |
| const VkBindImageMemoryInfo* pBindInfos) { |
| ATRACE_CALL(); |
| |
| // out_native_buffers is for maintaining the lifecycle of the constructed |
| // VkNativeBufferANDROID objects inside InterceptBindImageMemory2. |
| std::vector<VkNativeBufferANDROID> out_native_buffers; |
| std::vector<VkBindImageMemoryInfo> out_bind_infos; |
| InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers, |
| &out_bind_infos); |
| return GetData(device).driver.BindImageMemory2( |
| device, bindInfoCount, |
| out_bind_infos.empty() ? pBindInfos : out_bind_infos.data()); |
| } |
| |
| VKAPI_ATTR |
| VkResult BindImageMemory2KHR(VkDevice device, |
| uint32_t bindInfoCount, |
| const VkBindImageMemoryInfo* pBindInfos) { |
| ATRACE_CALL(); |
| |
| std::vector<VkNativeBufferANDROID> out_native_buffers; |
| std::vector<VkBindImageMemoryInfo> out_bind_infos; |
| InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers, |
| &out_bind_infos); |
| return GetData(device).driver.BindImageMemory2KHR( |
| device, bindInfoCount, |
| out_bind_infos.empty() ? pBindInfos : out_bind_infos.data()); |
| } |
| |
| VKAPI_ATTR |
| VkResult ReleaseSwapchainImagesEXT(VkDevice /*device*/, |
| const VkReleaseSwapchainImagesInfoEXT* pReleaseInfo) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(pReleaseInfo->swapchain); |
| ANativeWindow* window = swapchain.surface.window.get(); |
| |
| // If in shared present mode, don't actually release the image back to the BQ. |
| // Both sides share it forever. |
| if (swapchain.shared) |
| return VK_SUCCESS; |
| |
| for (uint32_t i = 0; i < pReleaseInfo->imageIndexCount; i++) { |
| Swapchain::Image& img = swapchain.images[pReleaseInfo->pImageIndices[i]]; |
| window->cancelBuffer(window, img.buffer.get(), img.dequeue_fence); |
| |
| // cancelBuffer has taken ownership of the dequeue fence |
| img.dequeue_fence = -1; |
| // if we're still holding a release fence, get rid of it now |
| if (img.release_fence >= 0) { |
| close(img.release_fence); |
| img.release_fence = -1; |
| } |
| img.dequeued = false; |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| } // namespace driver |
| } // namespace vulkan |