| /* |
| * Copyright 2020 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #pragma once |
| |
| #include <ftl/enum.h> |
| #include <ftl/string.h> |
| |
| #include <bitset> |
| #include <cstdint> |
| #include <iterator> |
| #include <string> |
| #include <type_traits> |
| |
| // TODO(b/185536303): Align with FTL style. |
| |
| namespace android::ftl { |
| |
| /* A class for handling flags defined by an enum or enum class in a type-safe way. */ |
| template <typename F> |
| class Flags { |
| // F must be an enum or its underlying type is undefined. Theoretically we could specialize this |
| // further to avoid this restriction but in general we want to encourage the use of enums |
| // anyways. |
| static_assert(std::is_enum_v<F>, "Flags type must be an enum"); |
| using U = std::underlying_type_t<F>; |
| |
| public: |
| constexpr Flags(F f) : mFlags(static_cast<U>(f)) {} |
| constexpr Flags() : mFlags(0) {} |
| constexpr Flags(const Flags<F>& f) : mFlags(f.mFlags) {} |
| |
| // Provide a non-explicit construct for non-enum classes since they easily convert to their |
| // underlying types (e.g. when used with bitwise operators). For enum classes, however, we |
| // should force them to be explicitly constructed from their underlying types to make full use |
| // of the type checker. |
| template <typename T = U> |
| constexpr Flags(T t, std::enable_if_t<!is_scoped_enum_v<F>, T>* = nullptr) : mFlags(t) {} |
| |
| template <typename T = U> |
| explicit constexpr Flags(T t, std::enable_if_t<is_scoped_enum_v<F>, T>* = nullptr) |
| : mFlags(t) {} |
| |
| class Iterator { |
| using Bits = std::uint64_t; |
| static_assert(sizeof(U) <= sizeof(Bits)); |
| |
| public: |
| constexpr Iterator() = default; |
| Iterator(Flags<F> flags) : mRemainingFlags(flags.mFlags) { (*this)++; } |
| |
| // Pre-fix ++ |
| Iterator& operator++() { |
| if (mRemainingFlags.none()) { |
| mCurrFlag = 0; |
| } else { |
| // TODO: Replace with std::countr_zero in C++20. |
| const Bits bit = static_cast<Bits>(__builtin_ctzll(mRemainingFlags.to_ullong())); |
| mRemainingFlags.reset(static_cast<std::size_t>(bit)); |
| mCurrFlag = static_cast<U>(static_cast<Bits>(1) << bit); |
| } |
| return *this; |
| } |
| |
| // Post-fix ++ |
| Iterator operator++(int) { |
| Iterator iter = *this; |
| ++*this; |
| return iter; |
| } |
| |
| bool operator==(Iterator other) const { |
| return mCurrFlag == other.mCurrFlag && mRemainingFlags == other.mRemainingFlags; |
| } |
| |
| bool operator!=(Iterator other) const { return !(*this == other); } |
| |
| F operator*() const { return F{mCurrFlag}; } |
| |
| // iterator traits |
| |
| // In the future we could make this a bidirectional const iterator instead of a forward |
| // iterator but it doesn't seem worth the added complexity at this point. This could not, |
| // however, be made a non-const iterator as assigning one flag to another is a non-sensical |
| // operation. |
| using iterator_category = std::input_iterator_tag; |
| using value_type = F; |
| // Per the C++ spec, because input iterators are not assignable the iterator's reference |
| // type does not actually need to be a reference. In fact, making it a reference would imply |
| // that modifying it would change the underlying Flags object, which is obviously wrong for |
| // the same reason this can't be a non-const iterator. |
| using reference = F; |
| using difference_type = void; |
| using pointer = void; |
| |
| private: |
| std::bitset<sizeof(Bits) * 8> mRemainingFlags; |
| U mCurrFlag = 0; |
| }; |
| |
| /* |
| * Tests whether the given flag is set. |
| */ |
| bool test(F flag) const { |
| U f = static_cast<U>(flag); |
| return (f & mFlags) == f; |
| } |
| |
| /* Tests whether any of the given flags are set */ |
| bool any(Flags<F> f = ~Flags<F>()) const { return (mFlags & f.mFlags) != 0; } |
| |
| /* Tests whether all of the given flags are set */ |
| bool all(Flags<F> f) const { return (mFlags & f.mFlags) == f.mFlags; } |
| |
| constexpr Flags<F> operator|(Flags<F> rhs) const { return static_cast<F>(mFlags | rhs.mFlags); } |
| Flags<F>& operator|=(Flags<F> rhs) { |
| mFlags = mFlags | rhs.mFlags; |
| return *this; |
| } |
| |
| Flags<F> operator&(Flags<F> rhs) const { return static_cast<F>(mFlags & rhs.mFlags); } |
| Flags<F>& operator&=(Flags<F> rhs) { |
| mFlags = mFlags & rhs.mFlags; |
| return *this; |
| } |
| |
| Flags<F> operator^(Flags<F> rhs) const { return static_cast<F>(mFlags ^ rhs.mFlags); } |
| Flags<F>& operator^=(Flags<F> rhs) { |
| mFlags = mFlags ^ rhs.mFlags; |
| return *this; |
| } |
| |
| Flags<F> operator~() { return static_cast<F>(~mFlags); } |
| |
| bool operator==(Flags<F> rhs) const { return mFlags == rhs.mFlags; } |
| bool operator!=(Flags<F> rhs) const { return !operator==(rhs); } |
| |
| Flags<F>& operator=(const Flags<F>& rhs) { |
| mFlags = rhs.mFlags; |
| return *this; |
| } |
| |
| inline Flags<F>& clear(Flags<F> f = static_cast<F>(~static_cast<U>(0))) { |
| return *this &= ~f; |
| } |
| |
| Iterator begin() const { return Iterator(*this); } |
| |
| Iterator end() const { return Iterator(); } |
| |
| /* |
| * Returns the stored set of flags. |
| * |
| * Note that this returns the underlying type rather than the base enum class. This is because |
| * the value is no longer necessarily a strict member of the enum since the returned value could |
| * be multiple enum variants OR'd together. |
| */ |
| U get() const { return mFlags; } |
| |
| std::string string() const { |
| std::string result; |
| bool first = true; |
| U unstringified = 0; |
| for (const F f : *this) { |
| if (const auto flagName = flag_name(f)) { |
| appendFlag(result, flagName.value(), first); |
| } else { |
| unstringified |= static_cast<U>(f); |
| } |
| } |
| |
| if (unstringified != 0) { |
| constexpr auto radix = sizeof(U) == 1 ? Radix::kBin : Radix::kHex; |
| appendFlag(result, to_string(unstringified, radix), first); |
| } |
| |
| if (first) { |
| result += "0x0"; |
| } |
| |
| return result; |
| } |
| |
| private: |
| U mFlags; |
| |
| static void appendFlag(std::string& str, const std::string_view& flag, bool& first) { |
| if (first) { |
| first = false; |
| } else { |
| str += " | "; |
| } |
| str += flag; |
| } |
| }; |
| |
| // This namespace provides operator overloads for enum classes to make it easier to work with them |
| // as flags. In order to use these, add them via a `using namespace` declaration. |
| namespace flag_operators { |
| |
| template <typename F, typename = std::enable_if_t<is_scoped_enum_v<F>>> |
| inline Flags<F> operator~(F f) { |
| return static_cast<F>(~to_underlying(f)); |
| } |
| |
| template <typename F, typename = std::enable_if_t<is_scoped_enum_v<F>>> |
| constexpr Flags<F> operator|(F lhs, F rhs) { |
| return static_cast<F>(to_underlying(lhs) | to_underlying(rhs)); |
| } |
| |
| } // namespace flag_operators |
| } // namespace android::ftl |