| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "compile/Image.h" |
| |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| |
| #include "androidfw/ResourceTypes.h" |
| #include "androidfw/StringPiece.h" |
| |
| #include "util/Util.h" |
| |
| using android::StringPiece; |
| |
| namespace aapt { |
| |
| // Colors in the format 0xAARRGGBB (the way 9-patch expects it). |
| constexpr static const uint32_t kColorOpaqueWhite = 0xffffffffu; |
| constexpr static const uint32_t kColorOpaqueBlack = 0xff000000u; |
| constexpr static const uint32_t kColorOpaqueRed = 0xffff0000u; |
| |
| constexpr static const uint32_t kPrimaryColor = kColorOpaqueBlack; |
| constexpr static const uint32_t kSecondaryColor = kColorOpaqueRed; |
| |
| /** |
| * Returns the alpha value encoded in the 0xAARRGBB encoded pixel. |
| */ |
| static uint32_t get_alpha(uint32_t color); |
| |
| /** |
| * Determines whether a color on an ImageLine is valid. |
| * A 9patch image may use a transparent color as neutral, |
| * or a fully opaque white color as neutral, based on the |
| * pixel color at (0,0) of the image. One or the other is fine, |
| * but we need to ensure consistency throughout the image. |
| */ |
| class ColorValidator { |
| public: |
| virtual ~ColorValidator() = default; |
| |
| /** |
| * Returns true if the color specified is a neutral color |
| * (no padding, stretching, or optical bounds). |
| */ |
| virtual bool IsNeutralColor(uint32_t color) const = 0; |
| |
| /** |
| * Returns true if the color is either a neutral color |
| * or one denoting padding, stretching, or optical bounds. |
| */ |
| bool IsValidColor(uint32_t color) const { |
| switch (color) { |
| case kPrimaryColor: |
| case kSecondaryColor: |
| return true; |
| } |
| return IsNeutralColor(color); |
| } |
| }; |
| |
| // Walks an ImageLine and records Ranges of primary and secondary colors. |
| // The primary color is black and is used to denote a padding or stretching |
| // range, |
| // depending on which border we're iterating over. |
| // The secondary color is red and is used to denote optical bounds. |
| // |
| // An ImageLine is a templated-interface that would look something like this if |
| // it |
| // were polymorphic: |
| // |
| // class ImageLine { |
| // public: |
| // virtual int32_t GetLength() const = 0; |
| // virtual uint32_t GetColor(int32_t idx) const = 0; |
| // }; |
| // |
| template <typename ImageLine> |
| static bool FillRanges(const ImageLine* image_line, |
| const ColorValidator* color_validator, |
| std::vector<Range>* primary_ranges, |
| std::vector<Range>* secondary_ranges, |
| std::string* out_err) { |
| const int32_t length = image_line->GetLength(); |
| |
| uint32_t last_color = 0xffffffffu; |
| for (int32_t idx = 1; idx < length - 1; idx++) { |
| const uint32_t color = image_line->GetColor(idx); |
| if (!color_validator->IsValidColor(color)) { |
| *out_err = "found an invalid color"; |
| return false; |
| } |
| |
| if (color != last_color) { |
| // We are ending a range. Which range? |
| // note: encode the x offset without the final 1 pixel border. |
| if (last_color == kPrimaryColor) { |
| primary_ranges->back().end = idx - 1; |
| } else if (last_color == kSecondaryColor) { |
| secondary_ranges->back().end = idx - 1; |
| } |
| |
| // We are starting a range. Which range? |
| // note: encode the x offset without the final 1 pixel border. |
| if (color == kPrimaryColor) { |
| primary_ranges->push_back(Range(idx - 1, length - 2)); |
| } else if (color == kSecondaryColor) { |
| secondary_ranges->push_back(Range(idx - 1, length - 2)); |
| } |
| last_color = color; |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Iterates over a row in an image. Implements the templated ImageLine |
| * interface. |
| */ |
| class HorizontalImageLine { |
| public: |
| explicit HorizontalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset, |
| int32_t length) |
| : rows_(rows), xoffset_(xoffset), yoffset_(yoffset), length_(length) {} |
| |
| inline int32_t GetLength() const { return length_; } |
| |
| inline uint32_t GetColor(int32_t idx) const { |
| return NinePatch::PackRGBA(rows_[yoffset_] + (idx + xoffset_) * 4); |
| } |
| |
| private: |
| uint8_t** rows_; |
| int32_t xoffset_, yoffset_, length_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HorizontalImageLine); |
| }; |
| |
| /** |
| * Iterates over a column in an image. Implements the templated ImageLine |
| * interface. |
| */ |
| class VerticalImageLine { |
| public: |
| explicit VerticalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset, |
| int32_t length) |
| : rows_(rows), xoffset_(xoffset), yoffset_(yoffset), length_(length) {} |
| |
| inline int32_t GetLength() const { return length_; } |
| |
| inline uint32_t GetColor(int32_t idx) const { |
| return NinePatch::PackRGBA(rows_[yoffset_ + idx] + (xoffset_ * 4)); |
| } |
| |
| private: |
| uint8_t** rows_; |
| int32_t xoffset_, yoffset_, length_; |
| |
| DISALLOW_COPY_AND_ASSIGN(VerticalImageLine); |
| }; |
| |
| class DiagonalImageLine { |
| public: |
| explicit DiagonalImageLine(uint8_t** rows, int32_t xoffset, int32_t yoffset, |
| int32_t xstep, int32_t ystep, int32_t length) |
| : rows_(rows), |
| xoffset_(xoffset), |
| yoffset_(yoffset), |
| xstep_(xstep), |
| ystep_(ystep), |
| length_(length) {} |
| |
| inline int32_t GetLength() const { return length_; } |
| |
| inline uint32_t GetColor(int32_t idx) const { |
| return NinePatch::PackRGBA(rows_[yoffset_ + (idx * ystep_)] + |
| ((idx + xoffset_) * xstep_) * 4); |
| } |
| |
| private: |
| uint8_t** rows_; |
| int32_t xoffset_, yoffset_, xstep_, ystep_, length_; |
| |
| DISALLOW_COPY_AND_ASSIGN(DiagonalImageLine); |
| }; |
| |
| class TransparentNeutralColorValidator : public ColorValidator { |
| public: |
| bool IsNeutralColor(uint32_t color) const override { |
| return get_alpha(color) == 0; |
| } |
| }; |
| |
| class WhiteNeutralColorValidator : public ColorValidator { |
| public: |
| bool IsNeutralColor(uint32_t color) const override { |
| return color == kColorOpaqueWhite; |
| } |
| }; |
| |
| inline static uint32_t get_alpha(uint32_t color) { |
| return (color & 0xff000000u) >> 24; |
| } |
| |
| static bool PopulateBounds(const std::vector<Range>& padding, |
| const std::vector<Range>& layout_bounds, |
| const std::vector<Range>& stretch_regions, |
| const int32_t length, int32_t* padding_start, |
| int32_t* padding_end, int32_t* layout_start, |
| int32_t* layout_end, const StringPiece& edge_name, |
| std::string* out_err) { |
| if (padding.size() > 1) { |
| std::stringstream err_stream; |
| err_stream << "too many padding sections on " << edge_name << " border"; |
| *out_err = err_stream.str(); |
| return false; |
| } |
| |
| *padding_start = 0; |
| *padding_end = 0; |
| if (!padding.empty()) { |
| const Range& range = padding.front(); |
| *padding_start = range.start; |
| *padding_end = length - range.end; |
| } else if (!stretch_regions.empty()) { |
| // No padding was defined. Compute the padding from the first and last |
| // stretch regions. |
| *padding_start = stretch_regions.front().start; |
| *padding_end = length - stretch_regions.back().end; |
| } |
| |
| if (layout_bounds.size() > 2) { |
| std::stringstream err_stream; |
| err_stream << "too many layout bounds sections on " << edge_name |
| << " border"; |
| *out_err = err_stream.str(); |
| return false; |
| } |
| |
| *layout_start = 0; |
| *layout_end = 0; |
| if (layout_bounds.size() >= 1) { |
| const Range& range = layout_bounds.front(); |
| // If there is only one layout bound segment, it might not start at 0, but |
| // then it should |
| // end at length. |
| if (range.start != 0 && range.end != length) { |
| std::stringstream err_stream; |
| err_stream << "layout bounds on " << edge_name |
| << " border must start at edge"; |
| *out_err = err_stream.str(); |
| return false; |
| } |
| *layout_start = range.end; |
| |
| if (layout_bounds.size() >= 2) { |
| const Range& range = layout_bounds.back(); |
| if (range.end != length) { |
| std::stringstream err_stream; |
| err_stream << "layout bounds on " << edge_name |
| << " border must start at edge"; |
| *out_err = err_stream.str(); |
| return false; |
| } |
| *layout_end = length - range.start; |
| } |
| } |
| return true; |
| } |
| |
| static int32_t CalculateSegmentCount(const std::vector<Range>& stretch_regions, |
| int32_t length) { |
| if (stretch_regions.size() == 0) { |
| return 0; |
| } |
| |
| const bool start_is_fixed = stretch_regions.front().start != 0; |
| const bool end_is_fixed = stretch_regions.back().end != length; |
| int32_t modifier = 0; |
| if (start_is_fixed && end_is_fixed) { |
| modifier = 1; |
| } else if (!start_is_fixed && !end_is_fixed) { |
| modifier = -1; |
| } |
| return static_cast<int32_t>(stretch_regions.size()) * 2 + modifier; |
| } |
| |
| static uint32_t GetRegionColor(uint8_t** rows, const Bounds& region) { |
| // Sample the first pixel to compare against. |
| const uint32_t expected_color = |
| NinePatch::PackRGBA(rows[region.top] + region.left * 4); |
| for (int32_t y = region.top; y < region.bottom; y++) { |
| const uint8_t* row = rows[y]; |
| for (int32_t x = region.left; x < region.right; x++) { |
| const uint32_t color = NinePatch::PackRGBA(row + x * 4); |
| if (get_alpha(color) == 0) { |
| // The color is transparent. |
| // If the expectedColor is not transparent, NO_COLOR. |
| if (get_alpha(expected_color) != 0) { |
| return android::Res_png_9patch::NO_COLOR; |
| } |
| } else if (color != expected_color) { |
| return android::Res_png_9patch::NO_COLOR; |
| } |
| } |
| } |
| |
| if (get_alpha(expected_color) == 0) { |
| return android::Res_png_9patch::TRANSPARENT_COLOR; |
| } |
| return expected_color; |
| } |
| |
| // Fills out_colors with each 9-patch section's color. If the whole section is |
| // transparent, |
| // it gets the special TRANSPARENT color. If the whole section is the same |
| // color, it is assigned |
| // that color. Otherwise it gets the special NO_COLOR color. |
| // |
| // Note that the rows contain the 9-patch 1px border, and the indices in the |
| // stretch regions are |
| // already offset to exclude the border. This means that each time the rows are |
| // accessed, |
| // the indices must be offset by 1. |
| // |
| // width and height also include the 9-patch 1px border. |
| static void CalculateRegionColors( |
| uint8_t** rows, const std::vector<Range>& horizontal_stretch_regions, |
| const std::vector<Range>& vertical_stretch_regions, const int32_t width, |
| const int32_t height, std::vector<uint32_t>* out_colors) { |
| int32_t next_top = 0; |
| Bounds bounds; |
| auto row_iter = vertical_stretch_regions.begin(); |
| while (next_top != height) { |
| if (row_iter != vertical_stretch_regions.end()) { |
| if (next_top != row_iter->start) { |
| // This is a fixed segment. |
| // Offset the bounds by 1 to accommodate the border. |
| bounds.top = next_top + 1; |
| bounds.bottom = row_iter->start + 1; |
| next_top = row_iter->start; |
| } else { |
| // This is a stretchy segment. |
| // Offset the bounds by 1 to accommodate the border. |
| bounds.top = row_iter->start + 1; |
| bounds.bottom = row_iter->end + 1; |
| next_top = row_iter->end; |
| ++row_iter; |
| } |
| } else { |
| // This is the end, fixed section. |
| // Offset the bounds by 1 to accommodate the border. |
| bounds.top = next_top + 1; |
| bounds.bottom = height + 1; |
| next_top = height; |
| } |
| |
| int32_t next_left = 0; |
| auto col_iter = horizontal_stretch_regions.begin(); |
| while (next_left != width) { |
| if (col_iter != horizontal_stretch_regions.end()) { |
| if (next_left != col_iter->start) { |
| // This is a fixed segment. |
| // Offset the bounds by 1 to accommodate the border. |
| bounds.left = next_left + 1; |
| bounds.right = col_iter->start + 1; |
| next_left = col_iter->start; |
| } else { |
| // This is a stretchy segment. |
| // Offset the bounds by 1 to accommodate the border. |
| bounds.left = col_iter->start + 1; |
| bounds.right = col_iter->end + 1; |
| next_left = col_iter->end; |
| ++col_iter; |
| } |
| } else { |
| // This is the end, fixed section. |
| // Offset the bounds by 1 to accommodate the border. |
| bounds.left = next_left + 1; |
| bounds.right = width + 1; |
| next_left = width; |
| } |
| out_colors->push_back(GetRegionColor(rows, bounds)); |
| } |
| } |
| } |
| |
| // Calculates the insets of a row/column of pixels based on where the largest |
| // alpha value begins |
| // (on both sides). |
| template <typename ImageLine> |
| static void FindOutlineInsets(const ImageLine* image_line, int32_t* out_start, |
| int32_t* out_end) { |
| *out_start = 0; |
| *out_end = 0; |
| |
| const int32_t length = image_line->GetLength(); |
| if (length < 3) { |
| return; |
| } |
| |
| // If the length is odd, we want both sides to process the center pixel, |
| // so we use two different midpoints (to account for < and <= in the different |
| // loops). |
| const int32_t mid2 = length / 2; |
| const int32_t mid1 = mid2 + (length % 2); |
| |
| uint32_t max_alpha = 0; |
| for (int32_t i = 0; i < mid1 && max_alpha != 0xff; i++) { |
| uint32_t alpha = get_alpha(image_line->GetColor(i)); |
| if (alpha > max_alpha) { |
| max_alpha = alpha; |
| *out_start = i; |
| } |
| } |
| |
| max_alpha = 0; |
| for (int32_t i = length - 1; i >= mid2 && max_alpha != 0xff; i--) { |
| uint32_t alpha = get_alpha(image_line->GetColor(i)); |
| if (alpha > max_alpha) { |
| max_alpha = alpha; |
| *out_end = length - (i + 1); |
| } |
| } |
| return; |
| } |
| |
| template <typename ImageLine> |
| static uint32_t FindMaxAlpha(const ImageLine* image_line) { |
| const int32_t length = image_line->GetLength(); |
| uint32_t max_alpha = 0; |
| for (int32_t idx = 0; idx < length && max_alpha != 0xff; idx++) { |
| uint32_t alpha = get_alpha(image_line->GetColor(idx)); |
| if (alpha > max_alpha) { |
| max_alpha = alpha; |
| } |
| } |
| return max_alpha; |
| } |
| |
| // Pack the pixels in as 0xAARRGGBB (as 9-patch expects it). |
| uint32_t NinePatch::PackRGBA(const uint8_t* pixel) { |
| return (pixel[3] << 24) | (pixel[0] << 16) | (pixel[1] << 8) | pixel[2]; |
| } |
| |
| std::unique_ptr<NinePatch> NinePatch::Create(uint8_t** rows, |
| const int32_t width, |
| const int32_t height, |
| std::string* out_err) { |
| if (width < 3 || height < 3) { |
| *out_err = "image must be at least 3x3 (1x1 image with 1 pixel border)"; |
| return {}; |
| } |
| |
| std::vector<Range> horizontal_padding; |
| std::vector<Range> horizontal_layout_bounds; |
| std::vector<Range> vertical_padding; |
| std::vector<Range> vertical_layout_bounds; |
| std::vector<Range> unexpected_ranges; |
| std::unique_ptr<ColorValidator> color_validator; |
| |
| if (rows[0][3] == 0) { |
| color_validator = util::make_unique<TransparentNeutralColorValidator>(); |
| } else if (PackRGBA(rows[0]) == kColorOpaqueWhite) { |
| color_validator = util::make_unique<WhiteNeutralColorValidator>(); |
| } else { |
| *out_err = |
| "top-left corner pixel must be either opaque white or transparent"; |
| return {}; |
| } |
| |
| // Private constructor, can't use make_unique. |
| auto nine_patch = std::unique_ptr<NinePatch>(new NinePatch()); |
| |
| HorizontalImageLine top_row(rows, 0, 0, width); |
| if (!FillRanges(&top_row, color_validator.get(), |
| &nine_patch->horizontal_stretch_regions, &unexpected_ranges, |
| out_err)) { |
| return {}; |
| } |
| |
| if (!unexpected_ranges.empty()) { |
| const Range& range = unexpected_ranges[0]; |
| std::stringstream err_stream; |
| err_stream << "found unexpected optical bounds (red pixel) on top border " |
| << "at x=" << range.start + 1; |
| *out_err = err_stream.str(); |
| return {}; |
| } |
| |
| VerticalImageLine left_col(rows, 0, 0, height); |
| if (!FillRanges(&left_col, color_validator.get(), |
| &nine_patch->vertical_stretch_regions, &unexpected_ranges, |
| out_err)) { |
| return {}; |
| } |
| |
| if (!unexpected_ranges.empty()) { |
| const Range& range = unexpected_ranges[0]; |
| std::stringstream err_stream; |
| err_stream << "found unexpected optical bounds (red pixel) on left border " |
| << "at y=" << range.start + 1; |
| return {}; |
| } |
| |
| HorizontalImageLine bottom_row(rows, 0, height - 1, width); |
| if (!FillRanges(&bottom_row, color_validator.get(), &horizontal_padding, |
| &horizontal_layout_bounds, out_err)) { |
| return {}; |
| } |
| |
| if (!PopulateBounds(horizontal_padding, horizontal_layout_bounds, |
| nine_patch->horizontal_stretch_regions, width - 2, |
| &nine_patch->padding.left, &nine_patch->padding.right, |
| &nine_patch->layout_bounds.left, |
| &nine_patch->layout_bounds.right, "bottom", out_err)) { |
| return {}; |
| } |
| |
| VerticalImageLine right_col(rows, width - 1, 0, height); |
| if (!FillRanges(&right_col, color_validator.get(), &vertical_padding, |
| &vertical_layout_bounds, out_err)) { |
| return {}; |
| } |
| |
| if (!PopulateBounds(vertical_padding, vertical_layout_bounds, |
| nine_patch->vertical_stretch_regions, height - 2, |
| &nine_patch->padding.top, &nine_patch->padding.bottom, |
| &nine_patch->layout_bounds.top, |
| &nine_patch->layout_bounds.bottom, "right", out_err)) { |
| return {}; |
| } |
| |
| // Fill the region colors of the 9-patch. |
| const int32_t num_rows = |
| CalculateSegmentCount(nine_patch->horizontal_stretch_regions, width - 2); |
| const int32_t num_cols = |
| CalculateSegmentCount(nine_patch->vertical_stretch_regions, height - 2); |
| if ((int64_t)num_rows * (int64_t)num_cols > 0x7f) { |
| *out_err = "too many regions in 9-patch"; |
| return {}; |
| } |
| |
| nine_patch->region_colors.reserve(num_rows * num_cols); |
| CalculateRegionColors(rows, nine_patch->horizontal_stretch_regions, |
| nine_patch->vertical_stretch_regions, width - 2, |
| height - 2, &nine_patch->region_colors); |
| |
| // Compute the outline based on opacity. |
| |
| // Find left and right extent of 9-patch content on center row. |
| HorizontalImageLine mid_row(rows, 1, height / 2, width - 2); |
| FindOutlineInsets(&mid_row, &nine_patch->outline.left, |
| &nine_patch->outline.right); |
| |
| // Find top and bottom extent of 9-patch content on center column. |
| VerticalImageLine mid_col(rows, width / 2, 1, height - 2); |
| FindOutlineInsets(&mid_col, &nine_patch->outline.top, |
| &nine_patch->outline.bottom); |
| |
| const int32_t outline_width = |
| (width - 2) - nine_patch->outline.left - nine_patch->outline.right; |
| const int32_t outline_height = |
| (height - 2) - nine_patch->outline.top - nine_patch->outline.bottom; |
| |
| // Find the largest alpha value within the outline area. |
| HorizontalImageLine outline_mid_row( |
| rows, 1 + nine_patch->outline.left, |
| 1 + nine_patch->outline.top + (outline_height / 2), outline_width); |
| VerticalImageLine outline_mid_col( |
| rows, 1 + nine_patch->outline.left + (outline_width / 2), |
| 1 + nine_patch->outline.top, outline_height); |
| nine_patch->outline_alpha = |
| std::max(FindMaxAlpha(&outline_mid_row), FindMaxAlpha(&outline_mid_col)); |
| |
| // Assuming the image is a round rect, compute the radius by marching |
| // diagonally from the top left corner towards the center. |
| DiagonalImageLine diagonal(rows, 1 + nine_patch->outline.left, |
| 1 + nine_patch->outline.top, 1, 1, |
| std::min(outline_width, outline_height)); |
| int32_t top_left, bottom_right; |
| FindOutlineInsets(&diagonal, &top_left, &bottom_right); |
| |
| /* Determine source radius based upon inset: |
| * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r |
| * sqrt(2) * r = sqrt(2) * i + r |
| * (sqrt(2) - 1) * r = sqrt(2) * i |
| * r = sqrt(2) / (sqrt(2) - 1) * i |
| */ |
| nine_patch->outline_radius = 3.4142f * top_left; |
| return nine_patch; |
| } |
| |
| std::unique_ptr<uint8_t[]> NinePatch::SerializeBase(size_t* outLen) const { |
| android::Res_png_9patch data; |
| data.numXDivs = static_cast<uint8_t>(horizontal_stretch_regions.size()) * 2; |
| data.numYDivs = static_cast<uint8_t>(vertical_stretch_regions.size()) * 2; |
| data.numColors = static_cast<uint8_t>(region_colors.size()); |
| data.paddingLeft = padding.left; |
| data.paddingRight = padding.right; |
| data.paddingTop = padding.top; |
| data.paddingBottom = padding.bottom; |
| |
| auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[data.serializedSize()]); |
| android::Res_png_9patch::serialize( |
| data, (const int32_t*)horizontal_stretch_regions.data(), |
| (const int32_t*)vertical_stretch_regions.data(), region_colors.data(), |
| buffer.get()); |
| // Convert to file endianness. |
| reinterpret_cast<android::Res_png_9patch*>(buffer.get())->deviceToFile(); |
| |
| *outLen = data.serializedSize(); |
| return buffer; |
| } |
| |
| std::unique_ptr<uint8_t[]> NinePatch::SerializeLayoutBounds( |
| size_t* out_len) const { |
| size_t chunk_len = sizeof(uint32_t) * 4; |
| auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[chunk_len]); |
| uint8_t* cursor = buffer.get(); |
| |
| memcpy(cursor, &layout_bounds.left, sizeof(layout_bounds.left)); |
| cursor += sizeof(layout_bounds.left); |
| |
| memcpy(cursor, &layout_bounds.top, sizeof(layout_bounds.top)); |
| cursor += sizeof(layout_bounds.top); |
| |
| memcpy(cursor, &layout_bounds.right, sizeof(layout_bounds.right)); |
| cursor += sizeof(layout_bounds.right); |
| |
| memcpy(cursor, &layout_bounds.bottom, sizeof(layout_bounds.bottom)); |
| cursor += sizeof(layout_bounds.bottom); |
| |
| *out_len = chunk_len; |
| return buffer; |
| } |
| |
| std::unique_ptr<uint8_t[]> NinePatch::SerializeRoundedRectOutline( |
| size_t* out_len) const { |
| size_t chunk_len = sizeof(uint32_t) * 6; |
| auto buffer = std::unique_ptr<uint8_t[]>(new uint8_t[chunk_len]); |
| uint8_t* cursor = buffer.get(); |
| |
| memcpy(cursor, &outline.left, sizeof(outline.left)); |
| cursor += sizeof(outline.left); |
| |
| memcpy(cursor, &outline.top, sizeof(outline.top)); |
| cursor += sizeof(outline.top); |
| |
| memcpy(cursor, &outline.right, sizeof(outline.right)); |
| cursor += sizeof(outline.right); |
| |
| memcpy(cursor, &outline.bottom, sizeof(outline.bottom)); |
| cursor += sizeof(outline.bottom); |
| |
| *((float*)cursor) = outline_radius; |
| cursor += sizeof(outline_radius); |
| |
| *((uint32_t*)cursor) = outline_alpha; |
| |
| *out_len = chunk_len; |
| return buffer; |
| } |
| |
| ::std::ostream& operator<<(::std::ostream& out, const Range& range) { |
| return out << "[" << range.start << ", " << range.end << ")"; |
| } |
| |
| ::std::ostream& operator<<(::std::ostream& out, const Bounds& bounds) { |
| return out << "l=" << bounds.left << " t=" << bounds.top |
| << " r=" << bounds.right << " b=" << bounds.bottom; |
| } |
| |
| ::std::ostream& operator<<(::std::ostream& out, const NinePatch& nine_patch) { |
| return out << "horizontalStretch:" |
| << util::Joiner(nine_patch.horizontal_stretch_regions, " ") |
| << " verticalStretch:" |
| << util::Joiner(nine_patch.vertical_stretch_regions, " ") |
| << " padding: " << nine_patch.padding |
| << ", bounds: " << nine_patch.layout_bounds |
| << ", outline: " << nine_patch.outline |
| << " rad=" << nine_patch.outline_radius |
| << " alpha=" << nine_patch.outline_alpha; |
| } |
| |
| } // namespace aapt |