blob: e8f2c11716724b1b623292b84ec93b54fdde2088 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "EncodedBuffer.h"
#include "io_util.h"
#include "protobuf.h"
#include <deque>
const size_t BUFFER_SIZE = 4 * 1024; // 4 KB
/**
* Read varint from iterator, the iterator will point to next available byte.
* Return the number of bytes of the varint.
*/
static uint32_t
read_raw_varint(FdBuffer::iterator* it)
{
uint32_t val = 0;
int i = 0;
bool hasNext = true;
while (hasNext) {
hasNext = ((**it & 0x80) != 0);
val += (**it & 0x7F) << (7*i);
(*it)++;
i++;
}
return val;
}
/**
* Write the field to buf based on the wire type, iterator will point to next field.
* If skip is set to true, no data will be written to buf. Return number of bytes written.
*/
static size_t
write_field_or_skip(FdBuffer::iterator* iter, vector<uint8_t>* buf, uint8_t wireType, bool skip)
{
FdBuffer::iterator snapshot = iter->snapshot();
size_t bytesToWrite = 0;
uint32_t varint = 0;
switch (wireType) {
case WIRE_TYPE_VARINT:
varint = read_raw_varint(iter);
if(!skip) return write_raw_varint(buf, varint);
break;
case WIRE_TYPE_FIXED64:
bytesToWrite = 8;
break;
case WIRE_TYPE_LENGTH_DELIMITED:
bytesToWrite = read_raw_varint(iter);
if(!skip) write_raw_varint(buf, bytesToWrite);
break;
case WIRE_TYPE_FIXED32:
bytesToWrite = 4;
break;
}
if (skip) {
*iter += bytesToWrite;
} else {
for (size_t i=0; i<bytesToWrite; i++) {
buf->push_back(**iter);
(*iter)++;
}
}
return skip ? 0 : *iter - snapshot;
}
/**
* Strip next field based on its private policy and request spec, then stores data in buf.
* Return NO_ERROR if succeeds, otherwise BAD_VALUE is returned to indicate bad data in FdBuffer.
*
* The iterator must point to the head of a protobuf formatted field for successful operation.
* After exit with NO_ERROR, iterator points to the next protobuf field's head.
*/
static status_t
stripField(FdBuffer::iterator* iter, vector<uint8_t>* buf, const Privacy* parentPolicy, const PrivacySpec& spec)
{
if (iter->outOfBound() || parentPolicy == NULL) return BAD_VALUE;
uint32_t varint = read_raw_varint(iter);
uint8_t wireType = read_wire_type(varint);
uint32_t fieldId = read_field_id(varint);
const Privacy* policy = parentPolicy->lookup(fieldId);
if (policy == NULL || !policy->IsMessageType() || !policy->HasChildren()) {
bool skip = !spec.CheckPremission(policy);
size_t amt = buf->size();
if (!skip) amt += write_header(buf, fieldId, wireType);
amt += write_field_or_skip(iter, buf, wireType, skip); // point to head of next field
return buf->size() != amt ? BAD_VALUE : NO_ERROR;
}
// current field is message type and its sub-fields have extra privacy policies
deque<vector<uint8_t>> q;
uint32_t msgSize = read_raw_varint(iter);
size_t finalSize = 0;
FdBuffer::iterator start = iter->snapshot();
while ((*iter - start) != (int)msgSize) {
vector<uint8_t> v;
status_t err = stripField(iter, &v, policy, spec);
if (err != NO_ERROR) return err;
if (v.empty()) continue;
q.push_back(v);
finalSize += v.size();
}
write_header(buf, fieldId, wireType);
write_raw_varint(buf, finalSize);
buf->reserve(finalSize); // reserve the size of the field
while (!q.empty()) {
vector<uint8_t> subField = q.front();
for (vector<uint8_t>::iterator it = subField.begin(); it != subField.end(); it++) {
buf->push_back(*it);
}
q.pop_front();
}
return NO_ERROR;
}
// ================================================================================
EncodedBuffer::EncodedBuffer(const FdBuffer& buffer, const Privacy* policy)
: mFdBuffer(buffer),
mPolicy(policy),
mBuffers(),
mSize(0)
{
}
EncodedBuffer::~EncodedBuffer()
{
}
status_t
EncodedBuffer::strip(const PrivacySpec& spec)
{
// optimization when no strip happens
if (mPolicy == NULL || !mPolicy->HasChildren() || spec.RequireAll()) {
if (spec.CheckPremission(mPolicy)) mSize = mFdBuffer.size();
return NO_ERROR;
}
FdBuffer::iterator it = mFdBuffer.begin();
vector<uint8_t> field;
field.reserve(BUFFER_SIZE);
while (it != mFdBuffer.end()) {
status_t err = stripField(&it, &field, mPolicy, spec);
if (err != NO_ERROR) return err;
if (field.size() > BUFFER_SIZE) { // rotate to another chunk if buffer size exceeds
mBuffers.push_back(field);
mSize += field.size();
field.clear();
}
}
if (!field.empty()) {
mBuffers.push_back(field);
mSize += field.size();
}
return NO_ERROR;
}
void
EncodedBuffer::clear()
{
mSize = 0;
mBuffers.clear();
}
size_t
EncodedBuffer::size() const { return mSize; }
status_t
EncodedBuffer::flush(int fd)
{
if (size() == mFdBuffer.size()) return mFdBuffer.flush(fd);
for (vector<vector<uint8_t>>::iterator it = mBuffers.begin(); it != mBuffers.end(); it++) {
status_t err = write_all(fd, it->data(), it->size());
if (err != NO_ERROR) return err;
}
return NO_ERROR;
}