blob: ad27af391c37a8450c986f5b064e666c856107f3 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "TimerThread"
#include <optional>
#include <sstream>
#include <unistd.h>
#include <vector>
#include <audio_utils/mutex.h>
#include <mediautils/MediaUtilsDelayed.h>
#include <mediautils/TidWrapper.h>
#include <mediautils/TimerThread.h>
#include <utils/Log.h>
#include <utils/ThreadDefs.h>
using namespace std::chrono_literals;
namespace android::mediautils {
extern std::string formatTime(std::chrono::system_clock::time_point t);
extern std::string_view timeSuffix(std::string_view time1, std::string_view time2);
TimerThread::Handle TimerThread::scheduleTask(
std::string_view tag, TimerCallback&& func,
Duration timeoutDuration, Duration secondChanceDuration) {
const auto now = std::chrono::system_clock::now();
auto request = std::make_shared<const Request>(now, now +
std::chrono::duration_cast<std::chrono::system_clock::duration>(timeoutDuration),
secondChanceDuration, getThreadIdWrapper(), tag);
return mMonitorThread.add(std::move(request), std::move(func), timeoutDuration);
}
TimerThread::Handle TimerThread::trackTask(std::string_view tag) {
const auto now = std::chrono::system_clock::now();
auto request = std::make_shared<const Request>(now, now,
Duration{} /* secondChanceDuration */, getThreadIdWrapper(), tag);
return mNoTimeoutMap.add(std::move(request));
}
bool TimerThread::cancelTask(Handle handle) {
std::shared_ptr<const Request> request = isNoTimeoutHandle(handle) ?
mNoTimeoutMap.remove(handle) : mMonitorThread.remove(handle);
if (!request) return false;
mRetiredQueue.add(std::move(request));
return true;
}
std::string TimerThread::SnapshotAnalysis::toString(bool showTimeoutStack) const {
// Note: These request queues are snapshot very close together but
// not at "identical" times as we don't use a class-wide lock.
std::string analysisSummary = std::string("\nanalysis [ ").append(description).append(" ]");
std::string timeoutStack;
std::string blockedStack;
std::string mutexWaitChainStack;
if (showTimeoutStack && timeoutTid != -1) {
timeoutStack = std::string(suspectTid == timeoutTid ? "\ntimeout/blocked(" : "\ntimeout(")
.append(std::to_string(timeoutTid)).append(") callstack [\n")
.append(getCallStackStringForTid(timeoutTid)).append("]");
}
if (suspectTid != -1 && suspectTid != timeoutTid) {
blockedStack = std::string("\nblocked(")
.append(std::to_string(suspectTid)).append(") callstack [\n")
.append(getCallStackStringForTid(suspectTid)).append("]");
}
if (!mutexWaitChain.empty()) {
mutexWaitChainStack.append("\nmutex wait chain [\n");
// the wait chain omits the initial timeout tid (which is good as we don't
// need to suppress it).
for (size_t i = 0; i < mutexWaitChain.size(); ++i) {
const auto& [tid, name] = mutexWaitChain[i];
mutexWaitChainStack.append("{ tid: ").append(std::to_string(tid))
.append(" (holding ").append(name).append(")");
if (tid == timeoutTid) {
mutexWaitChainStack.append(" TIMEOUT_STACK }\n");
} else if (tid == suspectTid) {
mutexWaitChainStack.append(" BLOCKED_STACK }\n");
} else if (hasMutexCycle && i == mutexWaitChain.size() - 1) {
// for a cycle, the last pid in the chain is repeated.
mutexWaitChainStack.append(" CYCLE_STACK }\n");
} else {
mutexWaitChainStack.append(" callstack [\n")
.append(getCallStackStringForTid(tid)).append("] }\n");
}
}
mutexWaitChainStack.append("]");
}
return std::string("now ")
.append(formatTime(std::chrono::system_clock::now()))
.append("\nsecondChanceCount ")
.append(std::to_string(secondChanceCount))
.append(analysisSummary)
.append("\ntimeout [ ")
.append(requestsToString(timeoutRequests))
.append(" ]\npending [ ")
.append(requestsToString(pendingRequests))
.append(" ]\nretired [ ")
.append(requestsToString(retiredRequests))
.append(" ]")
.append(timeoutStack)
.append(blockedStack)
.append(mutexWaitChainStack);
}
// A HAL method is where the substring "Hidl" is in the class name.
// The tag should look like: ... Hidl ... :: ...
// When the audio HAL is updated to AIDL perhaps we will use instead
// a global directory of HAL classes.
//
// See MethodStatistics.cpp:
// mediautils::getStatisticsClassesForModule(METHOD_STATISTICS_MODULE_NAME_AUDIO_HIDL)
//
/* static */
bool TimerThread::isRequestFromHal(const std::shared_ptr<const Request>& request) {
const size_t hidlPos = request->tag.asStringView().find("Hidl");
if (hidlPos == std::string::npos) return false;
// should be a separator afterwards Hidl which indicates the string was in the class.
const size_t separatorPos = request->tag.asStringView().find("::", hidlPos);
return separatorPos != std::string::npos;
}
struct TimerThread::SnapshotAnalysis TimerThread::getSnapshotAnalysis(size_t retiredCount) const {
struct SnapshotAnalysis analysis{};
// The following snapshot of the TimerThread state will be utilized for
// analysis. Note, there is no lock around these calls, so there could be
// a state update between them.
mTimeoutQueue.copyRequests(analysis.timeoutRequests);
mRetiredQueue.copyRequests(analysis.retiredRequests, retiredCount);
analysis.pendingRequests = getPendingRequests();
analysis.secondChanceCount = mMonitorThread.getSecondChanceCount();
// No call has timed out, so there is no analysis to be done.
if (analysis.timeoutRequests.empty()) {
return analysis;
}
// for now look at last timeout (in our case, the only timeout)
const std::shared_ptr<const Request> timeout = analysis.timeoutRequests.back();
analysis.timeoutTid = timeout->tid;
std::string& description = analysis.description;
// audio mutex specific wait chain analysis
auto deadlockInfo = audio_utils::mutex::deadlock_detection(analysis.timeoutTid);
ALOGD("%s: deadlockInfo: %s", __func__, deadlockInfo.to_string().c_str());
if (!deadlockInfo.empty()) {
if (!description.empty()) description.append("\n");
description.append(deadlockInfo.to_string());
}
analysis.hasMutexCycle = deadlockInfo.has_cycle;
analysis.mutexWaitChain = std::move(deadlockInfo.chain);
// no pending requests, we don't attempt to use temporal correlation between a recent call.
if (analysis.pendingRequests.empty()) {
return analysis;
}
// pending Requests that are problematic.
std::vector<std::shared_ptr<const Request>> pendingExact;
std::vector<std::shared_ptr<const Request>> pendingPossible;
// We look at pending requests that were scheduled no later than kPendingDuration
// after the timeout request. This prevents false matches with calls
// that naturally block for a short period of time
// such as HAL write() and read().
//
constexpr Duration kPendingDuration = 1000ms;
for (const auto& pending : analysis.pendingRequests) {
// If the pending tid is the same as timeout tid, problem identified.
if (pending->tid == timeout->tid) {
pendingExact.emplace_back(pending);
continue;
}
// if the pending tid is scheduled within time limit
if (pending->scheduled - timeout->scheduled < kPendingDuration) {
pendingPossible.emplace_back(pending);
}
}
if (!pendingExact.empty()) {
const auto& request = pendingExact.front();
const bool hal = isRequestFromHal(request);
if (hal) {
if (!description.empty()) description.append("\n");
description.append("Blocked directly due to HAL call: ")
.append(request->toString());
analysis.suspectTid = request->tid;
}
}
if (description.empty() && !pendingPossible.empty()) {
for (const auto& request : pendingPossible) {
const bool hal = isRequestFromHal(request);
if (hal) {
// The first blocked call is the most likely one.
// Recent calls might be temporarily blocked
// calls such as write() or read() depending on kDuration.
description = std::string("Blocked possibly due to HAL call: ")
.append(request->toString());
analysis.suspectTid= request->tid;
}
}
}
return analysis;
}
std::vector<std::shared_ptr<const TimerThread::Request>> TimerThread::getPendingRequests() const {
constexpr size_t kEstimatedPendingRequests = 8; // approx 128 byte alloc.
std::vector<std::shared_ptr<const Request>> pendingRequests;
pendingRequests.reserve(kEstimatedPendingRequests); // preallocate vector out of lock.
// following are internally locked calls, which add to our local pendingRequests.
mMonitorThread.copyRequests(pendingRequests);
mNoTimeoutMap.copyRequests(pendingRequests);
// Sort in order of scheduled time.
std::sort(pendingRequests.begin(), pendingRequests.end(),
[](const std::shared_ptr<const Request>& r1,
const std::shared_ptr<const Request>& r2) {
return r1->scheduled < r2->scheduled;
});
return pendingRequests;
}
std::string TimerThread::pendingToString() const {
return requestsToString(getPendingRequests());
}
std::string TimerThread::retiredToString(size_t n) const {
std::vector<std::shared_ptr<const Request>> retiredRequests;
mRetiredQueue.copyRequests(retiredRequests, n);
// Dump to string
return requestsToString(retiredRequests);
}
std::string TimerThread::timeoutToString(size_t n) const {
std::vector<std::shared_ptr<const Request>> timeoutRequests;
mTimeoutQueue.copyRequests(timeoutRequests, n);
// Dump to string
return requestsToString(timeoutRequests);
}
std::string TimerThread::Request::toString() const {
const auto scheduledString = formatTime(scheduled);
const auto deadlineString = formatTime(deadline);
return std::string(tag)
.append(" scheduled ").append(scheduledString)
.append(" deadline ").append(timeSuffix(scheduledString, deadlineString))
.append(" tid ").append(std::to_string(tid));
}
void TimerThread::RequestQueue::add(std::shared_ptr<const Request> request) {
std::lock_guard lg(mRQMutex);
mRequestQueue.emplace_back(std::chrono::system_clock::now(), std::move(request));
if (mRequestQueue.size() > mRequestQueueMax) {
mRequestQueue.pop_front();
}
}
void TimerThread::RequestQueue::copyRequests(
std::vector<std::shared_ptr<const Request>>& requests, size_t n) const {
std::lock_guard lg(mRQMutex);
const size_t size = mRequestQueue.size();
size_t i = n >= size ? 0 : size - n;
for (; i < size; ++i) {
const auto &[time, request] = mRequestQueue[i];
requests.emplace_back(request);
}
}
TimerThread::Handle TimerThread::NoTimeoutMap::add(std::shared_ptr<const Request> request) {
std::lock_guard lg(mNTMutex);
// A unique handle is obtained by mNoTimeoutRequests.fetch_add(1),
// This need not be under a lock, but we do so anyhow.
const Handle handle = getUniqueHandle_l();
mMap[handle] = request;
return handle;
}
std::shared_ptr<const TimerThread::Request> TimerThread::NoTimeoutMap::remove(Handle handle) {
std::lock_guard lg(mNTMutex);
auto it = mMap.find(handle);
if (it == mMap.end()) return {};
auto request = it->second;
mMap.erase(it);
return request;
}
void TimerThread::NoTimeoutMap::copyRequests(
std::vector<std::shared_ptr<const Request>>& requests) const {
std::lock_guard lg(mNTMutex);
for (const auto &[handle, request] : mMap) {
requests.emplace_back(request);
}
}
TimerThread::MonitorThread::MonitorThread(RequestQueue& timeoutQueue)
: mTimeoutQueue(timeoutQueue)
, mThread([this] { threadFunc(); }) {
pthread_setname_np(mThread.native_handle(), "TimerThread");
pthread_setschedprio(mThread.native_handle(), PRIORITY_URGENT_AUDIO);
}
TimerThread::MonitorThread::~MonitorThread() {
{
std::lock_guard _l(mMutex);
mShouldExit = true;
mCond.notify_all();
}
mThread.join();
}
void TimerThread::MonitorThread::threadFunc() {
std::unique_lock _l(mMutex);
::android::base::ScopedLockAssertion lock_assertion(mMutex);
while (!mShouldExit) {
Handle nextDeadline = INVALID_HANDLE;
Handle now = INVALID_HANDLE;
if (!mMonitorRequests.empty()) {
nextDeadline = mMonitorRequests.begin()->first;
now = std::chrono::steady_clock::now();
if (nextDeadline < now) {
auto node = mMonitorRequests.extract(mMonitorRequests.begin());
// Deadline has expired, handle the request.
auto secondChanceDuration = node.mapped().first->secondChanceDuration;
if (secondChanceDuration.count() != 0) {
// We now apply the second chance duration to find the clock
// monotonic second deadline. The unique key is then the
// pair<second_deadline, first_deadline>.
//
// The second chance prevents a false timeout should there be
// any clock monotonic advancement during suspend.
auto newHandle = now + secondChanceDuration;
ALOGD("%s: TimeCheck second chance applied for %s",
__func__, node.mapped().first->tag.c_str()); // should be rare event.
mSecondChanceRequests.emplace_hint(mSecondChanceRequests.end(),
std::make_pair(newHandle, nextDeadline),
std::move(node.mapped()));
// increment second chance counter.
mSecondChanceCount.fetch_add(1 /* arg */, std::memory_order_relaxed);
} else {
{
_l.unlock();
// We add Request to retired queue early so that it can be dumped out.
mTimeoutQueue.add(std::move(node.mapped().first));
node.mapped().second(nextDeadline);
// Caution: we don't hold lock when we call TimerCallback,
// but this is the timeout case! We will crash soon,
// maybe before returning.
// anything left over is released here outside lock.
}
// reacquire the lock - if something was added, we loop immediately to check.
_l.lock();
}
// always process expiring monitor requests first.
continue;
}
}
// now process any second chance requests.
if (!mSecondChanceRequests.empty()) {
Handle secondDeadline = mSecondChanceRequests.begin()->first.first;
if (now == INVALID_HANDLE) now = std::chrono::steady_clock::now();
if (secondDeadline < now) {
auto node = mSecondChanceRequests.extract(mSecondChanceRequests.begin());
{
_l.unlock();
// We add Request to retired queue early so that it can be dumped out.
mTimeoutQueue.add(std::move(node.mapped().first));
const Handle originalHandle = node.key().second;
node.mapped().second(originalHandle);
// Caution: we don't hold lock when we call TimerCallback.
// This is benign issue - we permit concurrent operations
// while in the callback to the MonitorQueue.
//
// Anything left over is released here outside lock.
}
// reacquire the lock - if something was added, we loop immediately to check.
_l.lock();
continue;
}
// update the deadline.
if (nextDeadline == INVALID_HANDLE) {
nextDeadline = secondDeadline;
} else {
nextDeadline = std::min(nextDeadline, secondDeadline);
}
}
if (nextDeadline != INVALID_HANDLE) {
mCond.wait_until(_l, nextDeadline);
} else {
mCond.wait(_l);
}
}
}
TimerThread::Handle TimerThread::MonitorThread::add(
std::shared_ptr<const Request> request, TimerCallback&& func, Duration timeout) {
std::lock_guard _l(mMutex);
const Handle handle = getUniqueHandle_l(timeout);
mMonitorRequests.emplace_hint(mMonitorRequests.end(),
handle, std::make_pair(std::move(request), std::move(func)));
mCond.notify_all();
return handle;
}
std::shared_ptr<const TimerThread::Request> TimerThread::MonitorThread::remove(Handle handle) {
std::pair<std::shared_ptr<const Request>, TimerCallback> data;
std::unique_lock ul(mMutex);
::android::base::ScopedLockAssertion lock_assertion(mMutex);
if (const auto it = mMonitorRequests.find(handle);
it != mMonitorRequests.end()) {
data = std::move(it->second);
mMonitorRequests.erase(it);
ul.unlock(); // manually release lock here so func (data.second)
// is released outside of lock.
return data.first; // request
}
// this check is O(N), but since the second chance requests are ordered
// in terms of earliest expiration time, we would expect better than average results.
for (auto it = mSecondChanceRequests.begin(); it != mSecondChanceRequests.end(); ++it) {
if (it->first.second == handle) {
data = std::move(it->second);
mSecondChanceRequests.erase(it);
ul.unlock(); // manually release lock here so func (data.second)
// is released outside of lock.
return data.first; // request
}
}
return {};
}
void TimerThread::MonitorThread::copyRequests(
std::vector<std::shared_ptr<const Request>>& requests) const {
std::lock_guard lg(mMutex);
for (const auto &[deadline, monitorpair] : mMonitorRequests) {
requests.emplace_back(monitorpair.first);
}
// we combine the second map with the first map - this is
// everything that is pending on the monitor thread.
// The second map will be older than the first map so this
// is in order.
for (const auto &[deadline, monitorpair] : mSecondChanceRequests) {
requests.emplace_back(monitorpair.first);
}
}
} // namespace android::mediautils