blob: ec68de75d6af6f86419043bb75ea5857195d1197 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <csignal>
#include "mediautils/TimerThread.h"
#define LOG_TAG "TimeCheck"
#include <optional>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include <audio_utils/clock.h>
#include <mediautils/EventLog.h>
#include <mediautils/FixedString.h>
#include <mediautils/MethodStatistics.h>
#include <mediautils/TimeCheck.h>
#include <mediautils/TidWrapper.h>
#include <utils/Log.h>
#if defined(__ANDROID__)
#include "debuggerd/handler.h"
#endif
namespace android::mediautils {
// This function appropriately signals a pid to dump a backtrace if we are
// running on device (and the HAL exists). If we are not running on an Android
// device, there is no HAL to signal (so we do nothing).
static inline void signalAudioHAL([[maybe_unused]] pid_t pid) {
#if defined(__ANDROID__)
sigqueue(pid, DEBUGGER_SIGNAL, {.sival_int = 0});
#endif
}
/**
* Returns the std::string "HH:MM:SS.MSc" from a system_clock time_point.
*/
std::string formatTime(std::chrono::system_clock::time_point t) {
auto time_string = audio_utils_time_string_from_ns(
std::chrono::nanoseconds(t.time_since_epoch()).count());
// The time string is 19 characters (including null termination).
// Example: "03-27 16:47:06.187"
// MM DD HH MM SS MS
// We offset by 6 to get HH:MM:SS.MSc
//
return time_string.time + 6; // offset to remove month/day.
}
/**
* Finds the end of the common time prefix.
*
* This is as an option to remove the common time prefix to avoid
* unnecessary duplicated strings.
*
* \param time1 a time string
* \param time2 a time string
* \return the position where the common time prefix ends. For abbreviated
* printing of time2, offset the character pointer by this position.
*/
static size_t commonTimePrefixPosition(std::string_view time1, std::string_view time2) {
const size_t endPos = std::min(time1.size(), time2.size());
size_t i;
// Find location of the first mismatch between strings
for (i = 0; ; ++i) {
if (i == endPos) {
return i; // strings match completely to the length of one of the strings.
}
if (time1[i] != time2[i]) {
break;
}
if (time1[i] == '\0') {
return i; // "printed" strings match completely. No need to check further.
}
}
// Go backwards until we find a delimeter or space.
for (; i > 0
&& isdigit(time1[i]) // still a number
&& time1[i - 1] != ' '
; --i) {
}
return i;
}
/**
* Returns the unique suffix of time2 that isn't present in time1.
*
* If time2 is identical to time1, then an empty string_view is returned.
* This method is used to elide the common prefix when printing times.
*/
std::string_view timeSuffix(std::string_view time1, std::string_view time2) {
const size_t pos = commonTimePrefixPosition(time1, time2);
return time2.substr(pos);
}
// Audio HAL server pids vector used to generate audio HAL processes tombstone
// when audioserver watchdog triggers.
// We use a lockless storage to avoid potential deadlocks in the context of watchdog
// trigger.
// Protection again simultaneous writes is not needed given one update takes place
// during AudioFlinger construction and other comes necessarily later once the IAudioFlinger
// interface is available.
// The use of an atomic index just guaranties that current vector is fully initialized
// when read.
/* static */
void TimeCheck::accessAudioHalPids(std::vector<pid_t>* pids, bool update) {
static constexpr int kNumAudioHalPidsVectors = 3;
static std::vector<pid_t> audioHalPids[kNumAudioHalPidsVectors];
static std::atomic<unsigned> curAudioHalPids = 0;
if (update) {
audioHalPids[(curAudioHalPids++ + 1) % kNumAudioHalPidsVectors] = *pids;
} else {
*pids = audioHalPids[curAudioHalPids % kNumAudioHalPidsVectors];
}
}
/* static */
void TimeCheck::setAudioHalPids(const std::vector<pid_t>& pids) {
accessAudioHalPids(&(const_cast<std::vector<pid_t>&>(pids)), true);
}
/* static */
std::vector<pid_t> TimeCheck::getAudioHalPids() {
std::vector<pid_t> pids;
accessAudioHalPids(&pids, false);
return pids;
}
/* static */
TimerThread& TimeCheck::getTimeCheckThread() {
static TimerThread sTimeCheckThread{};
return sTimeCheckThread;
}
/* static */
std::string TimeCheck::toString() {
// note pending and retired are individually locked for maximum concurrency,
// snapshot is not instantaneous at a single time.
return getTimeCheckThread().getSnapshotAnalysis().toString();
}
TimeCheck::TimeCheck(std::string_view tag, OnTimerFunc&& onTimer, Duration requestedTimeoutDuration,
Duration secondChanceDuration, bool crashOnTimeout)
: mTimeCheckHandler{ std::make_shared<TimeCheckHandler>(
tag, std::move(onTimer), crashOnTimeout, requestedTimeoutDuration,
secondChanceDuration, std::chrono::system_clock::now(), getThreadIdWrapper()) }
, mTimerHandle(requestedTimeoutDuration.count() == 0
/* for TimeCheck we don't consider a non-zero secondChanceDuration here */
? getTimeCheckThread().trackTask(mTimeCheckHandler->tag)
: getTimeCheckThread().scheduleTask(
mTimeCheckHandler->tag,
// Pass in all the arguments by value to this task for safety.
// The thread could call the callback before the constructor is finished.
// The destructor is not blocked on callback.
[ timeCheckHandler = mTimeCheckHandler ](TimerThread::Handle timerHandle) {
timeCheckHandler->onTimeout(timerHandle);
},
requestedTimeoutDuration,
secondChanceDuration)) {}
TimeCheck::~TimeCheck() {
if (mTimeCheckHandler) {
mTimeCheckHandler->onCancel(mTimerHandle);
}
}
/* static */
std::string TimeCheck::analyzeTimeouts(
float requestedTimeoutMs, float elapsedSteadyMs, float elapsedSystemMs) {
// Track any OS clock issues with suspend.
// It is possible that the elapsedSystemMs is much greater than elapsedSteadyMs if
// a suspend occurs; however, we always expect the timeout ms should always be slightly
// less than the elapsed steady ms regardless of whether a suspend occurs or not.
std::string s("Timeout ms ");
s.append(std::to_string(requestedTimeoutMs))
.append(" elapsed steady ms ").append(std::to_string(elapsedSteadyMs))
.append(" elapsed system ms ").append(std::to_string(elapsedSystemMs));
// Is there something unusual?
static constexpr float TOLERANCE_CONTEXT_SWITCH_MS = 200.f;
if (requestedTimeoutMs > elapsedSteadyMs || requestedTimeoutMs > elapsedSystemMs) {
s.append("\nError: early expiration - "
"requestedTimeoutMs should be less than elapsed time");
}
if (elapsedSteadyMs > elapsedSystemMs + TOLERANCE_CONTEXT_SWITCH_MS) {
s.append("\nWarning: steady time should not advance faster than system time");
}
// This has been found in suspend stress testing.
if (elapsedSteadyMs > requestedTimeoutMs + TOLERANCE_CONTEXT_SWITCH_MS) {
s.append("\nWarning: steady time significantly exceeds timeout "
"- possible thread stall or aborted suspend");
}
// This has been found in suspend stress testing.
if (elapsedSystemMs > requestedTimeoutMs + TOLERANCE_CONTEXT_SWITCH_MS) {
s.append("\nInformation: system time significantly exceeds timeout "
"- possible suspend");
}
return s;
}
// To avoid any potential race conditions, the timer handle
// (expiration = clock steady start + timeout) is passed into the callback.
void TimeCheck::TimeCheckHandler::onCancel(TimerThread::Handle timerHandle) const
{
if (TimeCheck::getTimeCheckThread().cancelTask(timerHandle) && onTimer) {
const std::chrono::steady_clock::time_point endSteadyTime =
std::chrono::steady_clock::now();
const float elapsedSteadyMs = std::chrono::duration_cast<FloatMs>(
endSteadyTime - timerHandle + timeoutDuration).count();
// send the elapsed steady time for statistics.
onTimer(false /* timeout */, elapsedSteadyMs);
}
}
// To avoid any potential race conditions, the timer handle
// (expiration = clock steady start + timeout) is passed into the callback.
void TimeCheck::TimeCheckHandler::onTimeout(TimerThread::Handle timerHandle) const
{
const std::chrono::steady_clock::time_point endSteadyTime = std::chrono::steady_clock::now();
const std::chrono::system_clock::time_point endSystemTime = std::chrono::system_clock::now();
// timerHandle incorporates the timeout
const float elapsedSteadyMs = std::chrono::duration_cast<FloatMs>(
endSteadyTime - (timerHandle - timeoutDuration)).count();
const float elapsedSystemMs = std::chrono::duration_cast<FloatMs>(
endSystemTime - startSystemTime).count();
const float requestedTimeoutMs = std::chrono::duration_cast<FloatMs>(
timeoutDuration).count();
const float secondChanceMs = std::chrono::duration_cast<FloatMs>(
secondChanceDuration).count();
if (onTimer) {
onTimer(true /* timeout */, elapsedSteadyMs);
}
if (!crashOnTimeout) return;
// Generate the TimerThread summary string early before sending signals to the
// HAL processes which can affect thread behavior.
const auto snapshotAnalysis = getTimeCheckThread().getSnapshotAnalysis(4 /* retiredCount */);
// Generate audio HAL processes tombstones and allow time to complete
// before forcing restart
std::vector<pid_t> pids = TimeCheck::getAudioHalPids();
std::string halPids = "HAL pids [ ";
if (pids.size() != 0) {
for (const auto& pid : pids) {
ALOGI("requesting tombstone for pid: %d", pid);
halPids.append(std::to_string(pid)).append(" ");
signalAudioHAL(pid);
}
sleep(1);
} else {
ALOGI("No HAL process pid available, skipping tombstones");
}
halPids.append("]");
LOG_EVENT_STRING(LOGTAG_AUDIO_BINDER_TIMEOUT, tag.c_str());
// Create abort message string - caution: this can be very large.
const std::string abortMessage = std::string("TimeCheck timeout for ")
.append(tag)
.append(" scheduled ").append(formatTime(startSystemTime))
.append(" on thread ").append(std::to_string(tid)).append("\n")
.append(analyzeTimeouts(requestedTimeoutMs + secondChanceMs,
elapsedSteadyMs, elapsedSystemMs)).append("\n")
.append(halPids).append("\n")
.append(snapshotAnalysis.toString());
// In many cases, the initial timeout stack differs from the abort backtrace because
// (1) the time difference between initial timeout and the final abort signal
// and (2) signalling the HAL audio service may cause
// the thread to unblock and continue.
// Note: LOG_ALWAYS_FATAL limits the size of the string - per log/log.h:
// Log message text may be truncated to less than an
// implementation-specific limit (1023 bytes).
//
// Here, we send the string through android-base/logging.h LOG()
// to avoid the size limitation. LOG(FATAL) does an abort whereas
// LOG(FATAL_WITHOUT_ABORT) does not abort.
static constexpr pid_t invalidPid = TimerThread::SnapshotAnalysis::INVALID_PID;
pid_t tidToAbort = invalidPid;
if (snapshotAnalysis.suspectTid != invalidPid) {
tidToAbort = snapshotAnalysis.suspectTid;
} else if (snapshotAnalysis.timeoutTid != invalidPid) {
tidToAbort = snapshotAnalysis.timeoutTid;
}
LOG(FATAL_WITHOUT_ABORT) << abortMessage;
const auto ret = abortTid(tidToAbort);
if (ret < 0) {
LOG(FATAL) << "TimeCheck thread signal failed, aborting process. "
"errno: " << errno << base::ErrnoNumberAsString(errno);
}
}
// Automatically create a TimeCheck class for a class and method.
// This is used for Audio HAL support.
mediautils::TimeCheck makeTimeCheckStatsForClassMethod(
std::string_view className, std::string_view methodName) {
std::shared_ptr<MethodStatistics<std::string>> statistics =
mediautils::getStatisticsForClass(className);
if (!statistics) return {}; // empty TimeCheck.
return mediautils::TimeCheck(
FixedString62(className).append("::").append(methodName),
[ safeMethodName = FixedString30(methodName),
stats = std::move(statistics) ]
(bool timeout, float elapsedMs) {
if (timeout) {
; // ignored, there is no timeout value.
} else {
stats->event(safeMethodName.asStringView(), elapsedMs);
}
}, {} /* timeoutDuration */, {} /* secondChanceDuration */, false /* crashOnTimeout */);
}
} // namespace android::mediautils