blob: d039e5f9eb39f4e0229aaa0283444916d9274698 [file] [log] [blame]
/*
* Shared Dragonfly functionality
* Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
* Copyright (c) 2019, The Linux Foundation
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "utils/includes.h"
#include "utils/common.h"
#include "utils/const_time.h"
#include "crypto/crypto.h"
#include "dragonfly.h"
int dragonfly_suitable_group(int group, int ecc_only)
{
/* Enforce REVmd rules on which SAE groups are suitable for production
* purposes: FFC groups whose prime is >= 3072 bits and ECC groups
* defined over a prime field whose prime is >= 256 bits. Furthermore,
* ECC groups defined over a characteristic 2 finite field and ECC
* groups with a co-factor greater than 1 are not suitable. Disable
* groups that use Brainpool curves as well for now since they leak more
* timing information due to the prime not being close to a power of
* two. */
return group == 19 || group == 20 || group == 21 ||
(!ecc_only &&
(group == 15 || group == 16 || group == 17 || group == 18));
}
unsigned int dragonfly_min_pwe_loop_iter(int group)
{
if (group == 22 || group == 23 || group == 24) {
/* FFC groups for which pwd-value is likely to be >= p
* frequently */
return 40;
}
if (group == 1 || group == 2 || group == 5 || group == 14 ||
group == 15 || group == 16 || group == 17 || group == 18) {
/* FFC groups that have prime that is close to a power of two */
return 1;
}
/* Default to 40 (this covers most ECC groups) */
return 40;
}
int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime,
struct crypto_bignum **qr,
struct crypto_bignum **qnr)
{
*qr = *qnr = NULL;
while (!(*qr) || !(*qnr)) {
struct crypto_bignum *tmp;
int res;
tmp = crypto_bignum_init();
if (!tmp || crypto_bignum_rand(tmp, prime) < 0) {
crypto_bignum_deinit(tmp, 0);
break;
}
res = crypto_bignum_legendre(tmp, prime);
if (res == 1 && !(*qr)) {
*qr = tmp;
} else if (res == -1 && !(*qnr)) {
*qnr = tmp;
} else {
crypto_bignum_deinit(tmp, 0);
if (res == -2)
break;
}
}
if (*qr && *qnr)
return 0;
crypto_bignum_deinit(*qr, 0);
crypto_bignum_deinit(*qnr, 0);
*qr = *qnr = NULL;
return -1;
}
static struct crypto_bignum *
dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime)
{
struct crypto_bignum *tmp, *pm1, *one;
tmp = crypto_bignum_init();
pm1 = crypto_bignum_init();
one = crypto_bignum_init_set((const u8 *) "\x01", 1);
if (!tmp || !pm1 || !one ||
crypto_bignum_sub(prime, one, pm1) < 0 ||
crypto_bignum_rand(tmp, pm1) < 0 ||
crypto_bignum_add(tmp, one, tmp) < 0) {
crypto_bignum_deinit(tmp, 0);
tmp = NULL;
}
crypto_bignum_deinit(pm1, 0);
crypto_bignum_deinit(one, 0);
return tmp;
}
int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
const u8 *qr, const u8 *qnr,
const struct crypto_bignum *val)
{
struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
int check, res = -1;
u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
const struct crypto_bignum *prime;
size_t prime_len;
unsigned int mask;
prime = crypto_ec_get_prime(ec);
prime_len = crypto_ec_prime_len(ec);
/*
* Use a blinding technique to mask val while determining whether it is
* a quadratic residue modulo p to avoid leaking timing information
* while determining the Legendre symbol.
*
* v = val
* r = a random number between 1 and p-1, inclusive
* num = (v * r * r) modulo p
*/
r = dragonfly_get_rand_1_to_p_1(prime);
if (!r)
return -1;
num = crypto_bignum_init();
if (!num ||
crypto_bignum_mulmod(val, r, prime, num) < 0 ||
crypto_bignum_mulmod(num, r, prime, num) < 0)
goto fail;
/*
* Need to minimize differences in handling different cases, so try to
* avoid branches and timing differences.
*
* If r is odd:
* num = (num * qr) module p
* LGR(num, p) = 1 ==> quadratic residue
* else:
* num = (num * qnr) module p
* LGR(num, p) = -1 ==> quadratic residue
*
* mask is set to !odd(r)
*/
mask = const_time_is_zero(crypto_bignum_is_odd(r));
const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
if (!qr_or_qnr ||
crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0)
goto fail;
/* branchless version of check = odd(r) ? 1 : -1, */
check = const_time_select_int(mask, -1, 1);
/* Determine the Legendre symbol on the masked value */
res = crypto_bignum_legendre(num, prime);
if (res == -2) {
res = -1;
goto fail;
}
/* branchless version of res = res == check
* (res is -1, 0, or 1; check is -1 or 1) */
mask = const_time_eq(res, check);
res = const_time_select_int(mask, 1, 0);
fail:
crypto_bignum_deinit(num, 1);
crypto_bignum_deinit(r, 1);
crypto_bignum_deinit(qr_or_qnr, 1);
return res;
}
static int dragonfly_get_rand_2_to_r_1(struct crypto_bignum *val,
const struct crypto_bignum *order)
{
return crypto_bignum_rand(val, order) == 0 &&
!crypto_bignum_is_zero(val) &&
!crypto_bignum_is_one(val);
}
int dragonfly_generate_scalar(const struct crypto_bignum *order,
struct crypto_bignum *_rand,
struct crypto_bignum *_mask,
struct crypto_bignum *scalar)
{
int count;
/* Select two random values rand,mask such that 1 < rand,mask < r and
* rand + mask mod r > 1. */
for (count = 0; count < 100; count++) {
if (dragonfly_get_rand_2_to_r_1(_rand, order) &&
dragonfly_get_rand_2_to_r_1(_mask, order) &&
crypto_bignum_add(_rand, _mask, scalar) == 0 &&
crypto_bignum_mod(scalar, order, scalar) == 0 &&
!crypto_bignum_is_zero(scalar) &&
!crypto_bignum_is_one(scalar))
return 0;
}
/* This should not be reachable in practice if the random number
* generation is working. */
wpa_printf(MSG_INFO,
"dragonfly: Unable to get randomness for own scalar");
return -1;
}
/* res = sqrt(val) */
int dragonfly_sqrt(struct crypto_ec *ec, const struct crypto_bignum *val,
struct crypto_bignum *res)
{
const struct crypto_bignum *prime;
struct crypto_bignum *tmp, *one;
int ret = 0;
u8 prime_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
size_t prime_len;
/* For prime p such that p = 3 mod 4, sqrt(w) = w^((p+1)/4) mod p */
prime = crypto_ec_get_prime(ec);
prime_len = crypto_ec_prime_len(ec);
tmp = crypto_bignum_init();
one = crypto_bignum_init_uint(1);
if (crypto_bignum_to_bin(prime, prime_bin, sizeof(prime_bin),
prime_len) < 0 ||
(prime_bin[prime_len - 1] & 0x03) != 3 ||
!tmp || !one ||
/* tmp = (p+1)/4 */
crypto_bignum_add(prime, one, tmp) < 0 ||
crypto_bignum_rshift(tmp, 2, tmp) < 0 ||
/* res = sqrt(val) */
crypto_bignum_exptmod(val, tmp, prime, res) < 0)
ret = -1;
crypto_bignum_deinit(tmp, 0);
crypto_bignum_deinit(one, 0);
return ret;
}