| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_THREAD_H_ |
| #define ART_RUNTIME_THREAD_H_ |
| |
| #include <atomic> |
| #include <bitset> |
| #include <deque> |
| #include <iosfwd> |
| #include <list> |
| #include <memory> |
| #include <string> |
| |
| #include "base/atomic.h" |
| #include "base/bit_field.h" |
| #include "base/bit_utils.h" |
| #include "base/enums.h" |
| #include "base/locks.h" |
| #include "base/macros.h" |
| #include "base/safe_map.h" |
| #include "base/value_object.h" |
| #include "entrypoints/jni/jni_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "handle.h" |
| #include "handle_scope.h" |
| #include "interpreter/interpreter_cache.h" |
| #include "interpreter/shadow_frame.h" |
| #include "javaheapprof/javaheapsampler.h" |
| #include "jvalue.h" |
| #include "managed_stack.h" |
| #include "offsets.h" |
| #include "read_barrier_config.h" |
| #include "reflective_handle_scope.h" |
| #include "runtime_globals.h" |
| #include "runtime_stats.h" |
| #include "suspend_reason.h" |
| #include "thread_state.h" |
| |
| namespace unwindstack { |
| class AndroidLocalUnwinder; |
| } // namespace unwindstack |
| |
| namespace art HIDDEN { |
| |
| namespace gc { |
| namespace accounting { |
| template<class T> class AtomicStack; |
| } // namespace accounting |
| namespace collector { |
| class SemiSpace; |
| } // namespace collector |
| } // namespace gc |
| |
| namespace instrumentation { |
| struct InstrumentationStackFrame; |
| } // namespace instrumentation |
| |
| namespace mirror { |
| class Array; |
| class Class; |
| class ClassLoader; |
| class Object; |
| template<class T> class ObjectArray; |
| template<class T> class PrimitiveArray; |
| using IntArray = PrimitiveArray<int32_t>; |
| class StackTraceElement; |
| class String; |
| class Throwable; |
| } // namespace mirror |
| |
| namespace verifier { |
| class VerifierDeps; |
| } // namespace verifier |
| |
| class ArtMethod; |
| class BaseMutex; |
| class ClassLinker; |
| class Closure; |
| class Context; |
| class DeoptimizationContextRecord; |
| class DexFile; |
| class FrameIdToShadowFrame; |
| class IsMarkedVisitor; |
| class JavaVMExt; |
| class JNIEnvExt; |
| class Monitor; |
| class RootVisitor; |
| class ScopedObjectAccessAlreadyRunnable; |
| class ShadowFrame; |
| class StackedShadowFrameRecord; |
| class Thread; |
| class ThreadList; |
| enum VisitRootFlags : uint8_t; |
| |
| // A piece of data that can be held in the CustomTls. The destructor will be called during thread |
| // shutdown. The thread the destructor is called on is not necessarily the same thread it was stored |
| // on. |
| class TLSData { |
| public: |
| virtual ~TLSData() {} |
| }; |
| |
| // Thread priorities. These must match the Thread.MIN_PRIORITY, |
| // Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY constants. |
| enum ThreadPriority { |
| kMinThreadPriority = 1, |
| kNormThreadPriority = 5, |
| kMaxThreadPriority = 10, |
| }; |
| |
| enum class ThreadFlag : uint32_t { |
| // If set, implies that suspend_count_ > 0 and the Thread should enter the safepoint handler. |
| kSuspendRequest = 1u << 0, |
| |
| // Request that the thread do some checkpoint work and then continue. |
| kCheckpointRequest = 1u << 1, |
| |
| // Request that the thread do empty checkpoint and then continue. |
| kEmptyCheckpointRequest = 1u << 2, |
| |
| // Register that at least 1 suspend barrier needs to be passed. |
| // Changes to this flag are guarded by suspend_count_lock_ . |
| kActiveSuspendBarrier = 1u << 3, |
| |
| // Marks that a "flip function" needs to be executed on this thread. |
| // Set only while holding thread_list_lock_. |
| kPendingFlipFunction = 1u << 4, |
| |
| // Marks that the "flip function" is being executed by another thread. |
| // |
| // This is used to guard against multiple threads trying to run the |
| // "flip function" for the same thread while the thread is suspended. |
| // |
| // Set when we have some way to ensure that the thread cannot disappear out from under us, |
| // Either: |
| // 1) Set by the thread itself, |
| // 2) by a thread holding thread_list_lock_, or |
| // 3) while the target has a pending suspension request. |
| // Once set, prevents a thread from exiting. |
| kRunningFlipFunction = 1u << 5, |
| |
| // We are responsible for resuming all other threads. We ignore suspension requests, |
| // but not checkpoint requests, until a more opportune time. GC code should |
| // in any case not check for such requests; other clients of SuspendAll might. |
| // Prevents a situation in which we are asked to suspend just before we suspend all |
| // other threads, and then notice the suspension request and suspend ourselves, |
| // leading to deadlock. Guarded by suspend_count_lock_ . |
| // TODO(b/296639267): Generalize use to prevent SuspendAll from blocking |
| // in-progress GC. |
| kSuspensionImmune = 1u << 6, |
| |
| // Request that compiled JNI stubs do not transition to Native or Runnable with |
| // inlined code, but take a slow path for monitoring method entry and exit events. |
| kMonitorJniEntryExit = 1u << 7, |
| |
| // Indicates the last flag. Used for checking that the flags do not overlap thread state. |
| kLastFlag = kMonitorJniEntryExit |
| }; |
| |
| enum class StackedShadowFrameType { |
| kShadowFrameUnderConstruction, |
| kDeoptimizationShadowFrame, |
| }; |
| |
| // The type of method that triggers deoptimization. It contains info on whether |
| // the deoptimized method should advance dex_pc. |
| enum class DeoptimizationMethodType { |
| kKeepDexPc, // dex pc is required to be kept upon deoptimization. |
| kDefault // dex pc may or may not advance depending on other conditions. |
| }; |
| |
| // For the CC colector, normal weak reference access can be disabled on a per-thread basis, while |
| // processing references. After finishing, the reference processor asynchronously sets the |
| // per-thread flags back to kEnabled with release memory ordering semantics. Each mutator thread |
| // should check its flag with acquire semantics before assuming that it is enabled. However, |
| // that is often too expensive, so the reading thread sets it to kVisiblyEnabled after seeing it |
| // kEnabled. The Reference.get() intrinsic can thus read it in relaxed mode, and reread (by |
| // resorting to the slow path) with acquire semantics if it sees a value of kEnabled rather than |
| // kVisiblyEnabled. |
| enum class WeakRefAccessState : int32_t { |
| kVisiblyEnabled = 0, // Enabled, and previously read with acquire load by this thread. |
| kEnabled, |
| kDisabled |
| }; |
| |
| // See Thread.tlsPtr_.active_suspend1_barriers below for explanation. |
| struct WrappedSuspend1Barrier { |
| WrappedSuspend1Barrier() : barrier_(1), next_(nullptr) {} |
| AtomicInteger barrier_; |
| struct WrappedSuspend1Barrier* next_ GUARDED_BY(Locks::thread_suspend_count_lock_); |
| }; |
| |
| // Mostly opaque structure allocated by the client of NotifyOnThreadExit. Allows a client to |
| // check whether the thread still exists after temporarily releasing thread_list_lock_, usually |
| // because we need to wait for something. |
| class ThreadExitFlag { |
| public: |
| ThreadExitFlag() : exited_(false) {} |
| bool HasExited() REQUIRES(Locks::thread_list_lock_) { return exited_; } |
| |
| private: |
| // All ThreadExitFlags associated with a thread and with exited_ == false are in a doubly linked |
| // list. tlsPtr_.thread_exit_flags points to the first element. first.prev_ and last.next_ are |
| // null. This list contains no ThreadExitFlags with exited_ == true; |
| ThreadExitFlag* next_ GUARDED_BY(Locks::thread_list_lock_); |
| ThreadExitFlag* prev_ GUARDED_BY(Locks::thread_list_lock_); |
| bool exited_ GUARDED_BY(Locks::thread_list_lock_); |
| friend class Thread; |
| }; |
| |
| // This should match RosAlloc::kNumThreadLocalSizeBrackets. |
| static constexpr size_t kNumRosAllocThreadLocalSizeBracketsInThread = 16; |
| |
| static constexpr size_t kSharedMethodHotnessThreshold = 0x1fff; |
| |
| // Thread's stack layout for implicit stack overflow checks: |
| // |
| // +---------------------+ <- highest address of stack memory |
| // | | |
| // . . <- SP |
| // | | |
| // | | |
| // +---------------------+ <- stack_end |
| // | | |
| // | Gap | |
| // | | |
| // +---------------------+ <- stack_begin |
| // | | |
| // | Protected region | |
| // | | |
| // +---------------------+ <- lowest address of stack memory |
| // |
| // The stack always grows down in memory. At the lowest address is a region of memory |
| // that is set mprotect(PROT_NONE). Any attempt to read/write to this region will |
| // result in a segmentation fault signal. At any point, the thread's SP will be somewhere |
| // between the stack_end and the highest address in stack memory. An implicit stack |
| // overflow check is a read of memory at a certain offset below the current SP (8K typically). |
| // If the thread's SP is below the stack_end address this will be a read into the protected |
| // region. If the SP is above the stack_end address, the thread is guaranteed to have |
| // at least 8K of space. Because stack overflow checks are only performed in generated code, |
| // if the thread makes a call out to a native function (through JNI), that native function |
| // might only have 4K of memory (if the SP is adjacent to stack_end). |
| |
| class EXPORT Thread { |
| public: |
| static const size_t kStackOverflowImplicitCheckSize; |
| static constexpr bool kVerifyStack = kIsDebugBuild; |
| |
| // Creates a new native thread corresponding to the given managed peer. |
| // Used to implement Thread.start. |
| static void CreateNativeThread(JNIEnv* env, jobject peer, size_t stack_size, bool daemon); |
| |
| // Attaches the calling native thread to the runtime, returning the new native peer. |
| // Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls. |
| static Thread* Attach(const char* thread_name, |
| bool as_daemon, |
| jobject thread_group, |
| bool create_peer, |
| bool should_run_callbacks); |
| // Attaches the calling native thread to the runtime, returning the new native peer. |
| static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_peer); |
| |
| // Reset internal state of child thread after fork. |
| void InitAfterFork(); |
| |
| // Get the currently executing thread, frequently referred to as 'self'. This call has reasonably |
| // high cost and so we favor passing self around when possible. |
| // TODO: mark as PURE so the compiler may coalesce and remove? |
| static Thread* Current(); |
| |
| // Get the thread from the JNI environment. |
| static Thread* ForEnv(JNIEnv* env); |
| |
| // For implicit overflow checks we reserve an extra piece of memory at the bottom of the stack |
| // (lowest memory). The higher portion of the memory is protected against reads and the lower is |
| // available for use while throwing the StackOverflow exception. |
| ALWAYS_INLINE static size_t GetStackOverflowProtectedSize(); |
| |
| // On a runnable thread, check for pending thread suspension request and handle if pending. |
| void AllowThreadSuspension() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Process pending thread suspension request and handle if pending. |
| void CheckSuspend(bool implicit = false) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Process a pending empty checkpoint if pending. |
| void CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex); |
| void CheckEmptyCheckpointFromMutex(); |
| |
| static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, |
| ObjPtr<mirror::Object> thread_peer) |
| REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, jobject thread) |
| REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Translates 172 to pAllocArrayFromCode and so on. |
| template<PointerSize size_of_pointers> |
| static void DumpThreadOffset(std::ostream& os, uint32_t offset); |
| |
| // Dumps a one-line summary of thread state (used for operator<<). |
| void ShortDump(std::ostream& os) const; |
| |
| // Order of threads for ANRs (ANRs can be trimmed, so we print important ones first). |
| enum class DumpOrder : uint8_t { |
| kMain, // Always print the main thread first (there might not be one). |
| kBlocked, // Then print all threads that are blocked due to waiting on lock. |
| kLocked, // Then print all threads that are holding some lock already. |
| kDefault, // Print all other threads which might not be interesting for ANR. |
| }; |
| |
| // Dumps the detailed thread state and the thread stack (used for SIGQUIT). |
| DumpOrder Dump(std::ostream& os, |
| bool dump_native_stack = true, |
| bool force_dump_stack = false) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| DumpOrder Dump(std::ostream& os, |
| unwindstack::AndroidLocalUnwinder& unwinder, |
| bool dump_native_stack = true, |
| bool force_dump_stack = false) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| DumpOrder DumpJavaStack(std::ostream& os, |
| bool check_suspended = true, |
| bool dump_locks = true) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Dumps the SIGQUIT per-thread header. 'thread' can be null for a non-attached thread, in which |
| // case we use 'tid' to identify the thread, and we'll include as much information as we can. |
| static void DumpState(std::ostream& os, const Thread* thread, pid_t tid) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| ThreadState GetState() const { |
| return GetStateAndFlags(std::memory_order_relaxed).GetState(); |
| } |
| |
| ThreadState SetState(ThreadState new_state); |
| |
| int GetSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) { |
| return tls32_.suspend_count; |
| } |
| |
| int GetUserCodeSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_, |
| Locks::user_code_suspension_lock_) { |
| return tls32_.user_code_suspend_count; |
| } |
| |
| bool IsSuspended() const { |
| // We need to ensure that once we return true, all prior accesses to the Java data by "this" |
| // thread are complete. Hence we need "acquire" ordering here, and "release" when the flags |
| // are set. |
| StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_acquire); |
| return state_and_flags.GetState() != ThreadState::kRunnable && |
| state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest); |
| } |
| |
| void DecrDefineClassCount() { |
| tls32_.define_class_counter--; |
| } |
| |
| void IncrDefineClassCount() { |
| tls32_.define_class_counter++; |
| } |
| uint32_t GetDefineClassCount() const { |
| return tls32_.define_class_counter; |
| } |
| |
| // Increment suspend count and optionally install at most one suspend barrier. |
| // Must hold thread_list_lock, OR be called with self == this, so that the Thread cannot |
| // disappear while we're running. If it's known that this == self, and thread_list_lock_ |
| // is not held, FakeMutexLock should be used to fake-acquire thread_list_lock_ for |
| // static checking purposes. |
| ALWAYS_INLINE |
| void IncrementSuspendCount(Thread* self, |
| AtomicInteger* suspendall_barrier, |
| WrappedSuspend1Barrier* suspend1_barrier, |
| SuspendReason reason) REQUIRES(Locks::thread_suspend_count_lock_) |
| REQUIRES(Locks::thread_list_lock_); |
| |
| // The same, but default reason to kInternal, and barriers to nullptr. |
| ALWAYS_INLINE void IncrementSuspendCount(Thread* self) REQUIRES(Locks::thread_suspend_count_lock_) |
| REQUIRES(Locks::thread_list_lock_); |
| |
| // Follows one of the above calls. For_user_code indicates if SuspendReason was kForUserCode. |
| // Generally will need to be closely followed by Thread::resume_cond_->Broadcast(self); |
| // since there may be waiters. DecrementSuspendCount() itself does not do this, since we often |
| // wake more than a single thread. |
| ALWAYS_INLINE void DecrementSuspendCount(Thread* self, bool for_user_code = false) |
| REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| private: |
| NO_RETURN static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread); |
| |
| public: |
| // Requests a checkpoint closure to run on another thread. The closure will be run when the |
| // thread notices the request, either in an explicit runtime CheckSuspend() call, or in a call |
| // originating from a compiler generated suspend point check. This returns true if the closure |
| // was added and will (eventually) be executed. It returns false if this was impossible |
| // because the thread was suspended, and we thus did nothing. |
| // |
| // Since multiple closures can be queued and some closures can delay other threads from running, |
| // no closure should attempt to suspend another thread while running. |
| // TODO We should add some debug option that verifies this. |
| // |
| // This guarantees that the RequestCheckpoint invocation happens-before the function invocation: |
| // RequestCheckpointFunction holds thread_suspend_count_lock_, and RunCheckpointFunction |
| // acquires it. |
| bool RequestCheckpoint(Closure* function) |
| REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution. This is |
| // due to the fact that Thread::Current() needs to go to sleep to allow the targeted thread to |
| // execute the checkpoint for us if it is Runnable. The wait_state is the state that the thread |
| // will go into while it is awaiting the checkpoint to be run. |
| // The closure may be run on Thread::Current() on behalf of "this" thread. |
| // Thus for lock ordering purposes, the closure should be runnable by the caller. This also |
| // sometimes makes it reasonable to pass ThreadState::kRunnable as wait_state: We may wait on |
| // a condition variable for the "this" thread to act, but for lock ordering purposes, this is |
| // exactly as though Thread::Current() had run the closure. |
| // NB Since multiple closures can be queued and some closures can delay other threads from running |
| // no closure should attempt to suspend another thread while running. |
| bool RequestSynchronousCheckpoint(Closure* function, |
| ThreadState wait_state = ThreadState::kWaiting) |
| REQUIRES_SHARED(Locks::mutator_lock_) RELEASE(Locks::thread_list_lock_) |
| REQUIRES(!Locks::thread_suspend_count_lock_); |
| |
| bool RequestEmptyCheckpoint() |
| REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| Closure* GetFlipFunction() { return tlsPtr_.flip_function.load(std::memory_order_relaxed); } |
| |
| // Set the flip function. This is done with all threads suspended, except for the calling thread. |
| void SetFlipFunction(Closure* function) REQUIRES(Locks::thread_suspend_count_lock_) |
| REQUIRES(Locks::thread_list_lock_); |
| |
| // Wait for the flip function to complete if still running on another thread. Assumes the "this" |
| // thread remains live. |
| void WaitForFlipFunction(Thread* self) const REQUIRES(!Locks::thread_suspend_count_lock_); |
| |
| // An enhanced version of the above that uses tef to safely return if the thread exited in the |
| // meantime. |
| void WaitForFlipFunctionTestingExited(Thread* self, ThreadExitFlag* tef) |
| REQUIRES(!Locks::thread_suspend_count_lock_, !Locks::thread_list_lock_); |
| |
| gc::accounting::AtomicStack<mirror::Object>* GetThreadLocalMarkStack() { |
| CHECK(gUseReadBarrier); |
| return tlsPtr_.thread_local_mark_stack; |
| } |
| void SetThreadLocalMarkStack(gc::accounting::AtomicStack<mirror::Object>* stack) { |
| CHECK(gUseReadBarrier); |
| tlsPtr_.thread_local_mark_stack = stack; |
| } |
| |
| uint8_t* GetThreadLocalGcBuffer() { |
| DCHECK(gUseUserfaultfd); |
| return tlsPtr_.thread_local_gc_buffer; |
| } |
| void SetThreadLocalGcBuffer(uint8_t* buf) { |
| DCHECK(gUseUserfaultfd); |
| tlsPtr_.thread_local_gc_buffer = buf; |
| } |
| |
| // Called when thread detected that the thread_suspend_count_ was non-zero. Gives up share of |
| // mutator_lock_ and waits until it is resumed and thread_suspend_count_ is zero. |
| // Should be called only when the kSuspensionImmune flag is clear. Requires this == Current(); |
| void FullSuspendCheck(bool implicit = false) |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Transition from non-runnable to runnable state acquiring share on mutator_lock_. |
| ALWAYS_INLINE ThreadState TransitionFromSuspendedToRunnable() |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| SHARED_LOCK_FUNCTION(Locks::mutator_lock_); |
| |
| // Transition from runnable into a state where mutator privileges are denied. Releases share of |
| // mutator lock. |
| ALWAYS_INLINE void TransitionFromRunnableToSuspended(ThreadState new_state) |
| REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_) |
| UNLOCK_FUNCTION(Locks::mutator_lock_); |
| |
| // Once called thread suspension will cause an assertion failure. |
| const char* StartAssertNoThreadSuspension(const char* cause) ACQUIRE(Roles::uninterruptible_) { |
| Roles::uninterruptible_.Acquire(); // No-op. |
| if (kIsDebugBuild) { |
| CHECK(cause != nullptr); |
| const char* previous_cause = tlsPtr_.last_no_thread_suspension_cause; |
| tls32_.no_thread_suspension++; |
| tlsPtr_.last_no_thread_suspension_cause = cause; |
| return previous_cause; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // End region where no thread suspension is expected. |
| void EndAssertNoThreadSuspension(const char* old_cause) RELEASE(Roles::uninterruptible_) { |
| if (kIsDebugBuild) { |
| CHECK_IMPLIES(old_cause == nullptr, tls32_.no_thread_suspension == 1); |
| CHECK_GT(tls32_.no_thread_suspension, 0U); |
| tls32_.no_thread_suspension--; |
| tlsPtr_.last_no_thread_suspension_cause = old_cause; |
| } |
| Roles::uninterruptible_.Release(); // No-op. |
| } |
| |
| // End region where no thread suspension is expected. Returns the current open region in case we |
| // want to reopen it. Used for ScopedAllowThreadSuspension. Not supported if no_thread_suspension |
| // is larger than one. |
| const char* EndAssertNoThreadSuspension() RELEASE(Roles::uninterruptible_) WARN_UNUSED { |
| const char* ret = nullptr; |
| if (kIsDebugBuild) { |
| CHECK_EQ(tls32_.no_thread_suspension, 1u); |
| tls32_.no_thread_suspension--; |
| ret = tlsPtr_.last_no_thread_suspension_cause; |
| tlsPtr_.last_no_thread_suspension_cause = nullptr; |
| } |
| Roles::uninterruptible_.Release(); // No-op. |
| return ret; |
| } |
| |
| void AssertThreadSuspensionIsAllowable(bool check_locks = true) const; |
| |
| // Return true if thread suspension is allowable. |
| bool IsThreadSuspensionAllowable() const; |
| |
| bool IsDaemon() const { |
| return tls32_.daemon; |
| } |
| |
| size_t NumberOfHeldMutexes() const; |
| |
| bool HoldsLock(ObjPtr<mirror::Object> object) const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| /* |
| * Changes the priority of this thread to match that of the java.lang.Thread object. |
| * |
| * We map a priority value from 1-10 to Linux "nice" values, where lower |
| * numbers indicate higher priority. |
| */ |
| void SetNativePriority(int newPriority); |
| |
| /* |
| * Returns the priority of this thread by querying the system. |
| * This is useful when attaching a thread through JNI. |
| * |
| * Returns a value from 1 to 10 (compatible with java.lang.Thread values). |
| */ |
| int GetNativePriority() const; |
| |
| // Guaranteed to be non-zero. |
| uint32_t GetThreadId() const { |
| return tls32_.thin_lock_thread_id; |
| } |
| |
| pid_t GetTid() const { |
| return tls32_.tid; |
| } |
| |
| // Returns the java.lang.Thread's name, or null if this Thread* doesn't have a peer. |
| ObjPtr<mirror::String> GetThreadName() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Sets 'name' to the java.lang.Thread's name. This requires no transition to managed code, |
| // allocation, or locking. |
| void GetThreadName(std::string& name) const; |
| |
| // Sets the thread's name. |
| void SetThreadName(const char* name) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Returns the thread-specific CPU-time clock in microseconds or -1 if unavailable. |
| uint64_t GetCpuMicroTime() const; |
| |
| mirror::Object* GetPeer() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(Thread::Current() == this) << "Use GetPeerFromOtherThread instead"; |
| CHECK(tlsPtr_.jpeer == nullptr); |
| return tlsPtr_.opeer; |
| } |
| // GetPeer is not safe if called on another thread in the middle of the thread flip and |
| // the thread's stack may have not been flipped yet and peer may be a from-space (stale) ref. |
| // This function will force a flip for the other thread if necessary. |
| // Since we hold a shared mutator lock, a new flip function cannot be concurrently installed. |
| // The target thread must be suspended, so that it cannot disappear during the call. |
| // We should ideally not hold thread_list_lock_ . GetReferenceKind in ti_heap.cc, currently does |
| // hold it, but in a context in which we do not invoke EnsureFlipFunctionStarted(). |
| mirror::Object* GetPeerFromOtherThread() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // A version of the above that requires thread_list_lock_, but does not require the thread to |
| // be suspended. This may temporarily release thread_list_lock_. It thus needs a ThreadExitFlag |
| // describing the thread's status, so we can tell if it exited in the interim. Returns null if |
| // the thread exited. |
| mirror::Object* LockedGetPeerFromOtherThread(ThreadExitFlag* tef) |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::thread_list_lock_); |
| |
| // A convenience version of the above that creates the ThreadExitFlag locally. This is often |
| // unsafe if more than one thread is being processed. A prior call may have released |
| // thread_list_lock_, and thus the NotifyOnThreadExit() call here could see a deallocated |
| // Thread. We must hold the thread_list_lock continuously between obtaining the Thread* |
| // and calling NotifyOnThreadExit(). |
| mirror::Object* LockedGetPeerFromOtherThread() REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(Locks::thread_list_lock_) { |
| ThreadExitFlag tef; |
| NotifyOnThreadExit(&tef); |
| mirror::Object* result = LockedGetPeerFromOtherThread(&tef); |
| UnregisterThreadExitFlag(&tef); |
| return result; |
| } |
| |
| bool HasPeer() const { |
| return tlsPtr_.jpeer != nullptr || tlsPtr_.opeer != nullptr; |
| } |
| |
| RuntimeStats* GetStats() { |
| return &tls64_.stats; |
| } |
| |
| bool IsStillStarting() const; |
| |
| bool IsExceptionPending() const { |
| return tlsPtr_.exception != nullptr; |
| } |
| |
| bool IsAsyncExceptionPending() const { |
| return tlsPtr_.async_exception != nullptr; |
| } |
| |
| mirror::Throwable* GetException() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| return tlsPtr_.exception; |
| } |
| |
| void AssertPendingException() const; |
| void AssertPendingOOMException() const REQUIRES_SHARED(Locks::mutator_lock_); |
| void AssertNoPendingException() const; |
| void AssertNoPendingExceptionForNewException(const char* msg) const; |
| |
| void SetException(ObjPtr<mirror::Throwable> new_exception) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Set an exception that is asynchronously thrown from a different thread. This will be checked |
| // periodically and might overwrite the current 'Exception'. This can only be called from a |
| // checkpoint. |
| // |
| // The caller should also make sure that the thread has been deoptimized so that the exception |
| // could be detected on back-edges. |
| void SetAsyncException(ObjPtr<mirror::Throwable> new_exception) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void ClearException() REQUIRES_SHARED(Locks::mutator_lock_) { |
| tlsPtr_.exception = nullptr; |
| } |
| |
| // Move the current async-exception to the main exception. This should be called when the current |
| // thread is ready to deal with any async exceptions. Returns true if there is an async exception |
| // that needs to be dealt with, false otherwise. |
| bool ObserveAsyncException() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Find catch block and perform long jump to appropriate exception handle. When |
| // is_method_exit_exception is true, the exception was thrown by the method exit callback and we |
| // should not send method unwind for the method on top of the stack since method exit callback was |
| // already called. |
| NO_RETURN void QuickDeliverException(bool is_method_exit_exception = false) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| Context* GetLongJumpContext(); |
| void ReleaseLongJumpContext(Context* context) { |
| if (tlsPtr_.long_jump_context != nullptr) { |
| ReleaseLongJumpContextInternal(); |
| } |
| tlsPtr_.long_jump_context = context; |
| } |
| |
| // Get the current method and dex pc. If there are errors in retrieving the dex pc, this will |
| // abort the runtime iff abort_on_error is true. |
| ArtMethod* GetCurrentMethod(uint32_t* dex_pc, |
| bool check_suspended = true, |
| bool abort_on_error = true) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Returns whether the given exception was thrown by the current Java method being executed |
| // (Note that this includes native Java methods). |
| bool IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void SetTopOfStack(ArtMethod** top_method) { |
| tlsPtr_.managed_stack.SetTopQuickFrame(top_method); |
| } |
| |
| void SetTopOfStackGenericJniTagged(ArtMethod** top_method) { |
| tlsPtr_.managed_stack.SetTopQuickFrameGenericJniTagged(top_method); |
| } |
| |
| void SetTopOfShadowStack(ShadowFrame* top) { |
| tlsPtr_.managed_stack.SetTopShadowFrame(top); |
| } |
| |
| bool HasManagedStack() const { |
| return tlsPtr_.managed_stack.HasTopQuickFrame() || tlsPtr_.managed_stack.HasTopShadowFrame(); |
| } |
| |
| // If 'msg' is null, no detail message is set. |
| void ThrowNewException(const char* exception_class_descriptor, const char* msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); |
| |
| // If 'msg' is null, no detail message is set. An exception must be pending, and will be |
| // used as the new exception's cause. |
| void ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); |
| |
| void ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) |
| __attribute__((format(printf, 3, 4))) |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); |
| |
| void ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); |
| |
| // OutOfMemoryError is special, because we need to pre-allocate an instance. |
| // Only the GC should call this. |
| void ThrowOutOfMemoryError(const char* msg) REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Roles::uninterruptible_); |
| |
| static void Startup(); |
| static void FinishStartup(); |
| static void Shutdown(); |
| |
| // Notify this thread's thread-group that this thread has started. |
| // Note: the given thread-group is used as a fast path and verified in debug build. If the value |
| // is null, the thread's thread-group is loaded from the peer. |
| void NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group = nullptr) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Request notification when this thread is unregistered, typically because it has exited. |
| // |
| // The ThreadExitFlag status is only changed when we remove the thread from the thread list, |
| // which we only do once no suspend requests are outstanding, and no flip-functions are still |
| // running. |
| // |
| // The caller must allocate a fresh ThreadExitFlag, and pass it in. The caller is responsible |
| // for either waiting until the thread has exited, or unregistering the ThreadExitFlag, and |
| // then, and only then, deallocating the ThreadExitFlag. (This scheme avoids an allocation and |
| // questions about what to do if the allocation fails. Allows detection of thread exit after |
| // temporary release of thread_list_lock_) |
| void NotifyOnThreadExit(ThreadExitFlag* tef) REQUIRES(Locks::thread_list_lock_); |
| void UnregisterThreadExitFlag(ThreadExitFlag* tef) REQUIRES(Locks::thread_list_lock_); |
| |
| // Is the ThreadExitFlag currently registered in this thread, which has not yet terminated? |
| // Intended only for testing. |
| bool IsRegistered(ThreadExitFlag* query_tef) REQUIRES(Locks::thread_list_lock_); |
| |
| // For debuggable builds, CHECK that neither first nor last, nor any ThreadExitFlag with an |
| // address in-between, is currently registered with any thread. |
| static void DCheckUnregisteredEverywhere(ThreadExitFlag* first, ThreadExitFlag* last) |
| REQUIRES(!Locks::thread_list_lock_); |
| |
| // Called when thread is unregistered. May be called repeatedly, in which case only newly |
| // registered clients are processed. |
| void SignalExitFlags() REQUIRES(Locks::thread_list_lock_); |
| |
| // JNI methods |
| JNIEnvExt* GetJniEnv() const { |
| return tlsPtr_.jni_env; |
| } |
| |
| // Convert a jobject into a Object* |
| ObjPtr<mirror::Object> DecodeJObject(jobject obj) const REQUIRES_SHARED(Locks::mutator_lock_); |
| // Checks if the weak global ref has been cleared by the GC without decoding it. |
| bool IsJWeakCleared(jweak obj) const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| mirror::Object* GetMonitorEnterObject() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| return tlsPtr_.monitor_enter_object; |
| } |
| |
| void SetMonitorEnterObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { |
| tlsPtr_.monitor_enter_object = obj; |
| } |
| |
| // Implements java.lang.Thread.interrupted. |
| bool Interrupted(); |
| // Implements java.lang.Thread.isInterrupted. |
| bool IsInterrupted(); |
| void Interrupt(Thread* self) REQUIRES(!wait_mutex_); |
| void SetInterrupted(bool i) { |
| tls32_.interrupted.store(i, std::memory_order_seq_cst); |
| } |
| void Notify() REQUIRES(!wait_mutex_); |
| |
| ALWAYS_INLINE void PoisonObjectPointers() { |
| ++poison_object_cookie_; |
| } |
| |
| ALWAYS_INLINE static void PoisonObjectPointersIfDebug(); |
| |
| ALWAYS_INLINE uintptr_t GetPoisonObjectCookie() const { |
| return poison_object_cookie_; |
| } |
| |
| // Parking for 0ns of relative time means an untimed park, negative (though |
| // should be handled in java code) returns immediately |
| void Park(bool is_absolute, int64_t time) REQUIRES_SHARED(Locks::mutator_lock_); |
| void Unpark(); |
| |
| private: |
| void NotifyLocked(Thread* self) REQUIRES(wait_mutex_); |
| |
| public: |
| Mutex* GetWaitMutex() const LOCK_RETURNED(wait_mutex_) { |
| return wait_mutex_; |
| } |
| |
| ConditionVariable* GetWaitConditionVariable() const REQUIRES(wait_mutex_) { |
| return wait_cond_; |
| } |
| |
| Monitor* GetWaitMonitor() const REQUIRES(wait_mutex_) { |
| return wait_monitor_; |
| } |
| |
| void SetWaitMonitor(Monitor* mon) REQUIRES(wait_mutex_) { |
| wait_monitor_ = mon; |
| } |
| |
| // Waiter link-list support. |
| Thread* GetWaitNext() const { |
| return tlsPtr_.wait_next; |
| } |
| |
| void SetWaitNext(Thread* next) { |
| tlsPtr_.wait_next = next; |
| } |
| |
| jobject GetClassLoaderOverride() { |
| return tlsPtr_.class_loader_override; |
| } |
| |
| void SetClassLoaderOverride(jobject class_loader_override); |
| |
| // Create the internal representation of a stack trace, that is more time |
| // and space efficient to compute than the StackTraceElement[]. |
| jobject CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Convert an internal stack trace representation (returned by CreateInternalStackTrace) to a |
| // StackTraceElement[]. If output_array is null, a new array is created, otherwise as many |
| // frames as will fit are written into the given array. If stack_depth is non-null, it's updated |
| // with the number of valid frames in the returned array. |
| static jobjectArray InternalStackTraceToStackTraceElementArray( |
| const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, |
| jobjectArray output_array = nullptr, int* stack_depth = nullptr) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| static jint InternalStackTraceToStackFrameInfoArray( |
| const ScopedObjectAccessAlreadyRunnable& soa, |
| jlong mode, // See java.lang.StackStreamFactory for the mode flags |
| jobject internal, |
| jint startLevel, |
| jint batchSize, |
| jint startIndex, |
| jobjectArray output_array) // java.lang.StackFrameInfo[] |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| jobjectArray CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| bool HasDebuggerShadowFrames() const { |
| return tlsPtr_.frame_id_to_shadow_frame != nullptr; |
| } |
| |
| // This is done by GC using a checkpoint (or in a stop-the-world pause). |
| void SweepInterpreterCache(IsMarkedVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void VisitRoots(RootVisitor* visitor, VisitRootFlags flags) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void VisitReflectiveTargets(ReflectiveValueVisitor* visitor) |
| REQUIRES(Locks::mutator_lock_); |
| |
| // Check that the thread state is valid. Try to fail if the thread has erroneously terminated. |
| // Note that once the thread has been terminated, it can also be deallocated. But even if the |
| // thread state has been overwritten, the value is unlikely to be in the correct range. |
| void VerifyState() { |
| if (kIsDebugBuild) { |
| ThreadState state = GetState(); |
| StateAndFlags::ValidateThreadState(state); |
| DCHECK_NE(state, ThreadState::kTerminated); |
| } |
| } |
| |
| void VerifyStack() REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (kVerifyStack) { |
| VerifyStackImpl(); |
| } |
| } |
| |
| // |
| // Offsets of various members of native Thread class, used by compiled code. |
| // |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThinLockIdOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, thin_lock_thread_id)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> TidOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, tid)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> InterruptedOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, interrupted)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> WeakRefAccessEnabledOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, weak_ref_access_enabled)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThreadFlagsOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, state_and_flags)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> IsGcMarkingOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, is_gc_marking)); |
| } |
| |
| template <PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> DeoptCheckRequiredOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, is_deopt_check_required)); |
| } |
| |
| static constexpr size_t IsGcMarkingSize() { |
| return sizeof(tls32_.is_gc_marking); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> SharedMethodHotnessOffset() { |
| return ThreadOffset<pointer_size>( |
| OFFSETOF_MEMBER(Thread, tls32_) + |
| OFFSETOF_MEMBER(tls_32bit_sized_values, shared_method_hotness)); |
| } |
| |
| // Deoptimize the Java stack. |
| void DeoptimizeWithDeoptimizationException(JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThreadOffsetFromTlsPtr(size_t tls_ptr_offset) { |
| size_t base = OFFSETOF_MEMBER(Thread, tlsPtr_); |
| size_t scale = (pointer_size > kRuntimePointerSize) ? |
| static_cast<size_t>(pointer_size) / static_cast<size_t>(kRuntimePointerSize) : 1; |
| size_t shrink = (kRuntimePointerSize > pointer_size) ? |
| static_cast<size_t>(kRuntimePointerSize) / static_cast<size_t>(pointer_size) : 1; |
| return ThreadOffset<pointer_size>(base + ((tls_ptr_offset * scale) / shrink)); |
| } |
| |
| public: |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> QuickEntryPointOffset( |
| size_t quick_entrypoint_offset) { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, quick_entrypoints) + quick_entrypoint_offset); |
| } |
| |
| static constexpr uint32_t QuickEntryPointOffsetWithSize(size_t quick_entrypoint_offset, |
| PointerSize pointer_size) { |
| if (pointer_size == PointerSize::k32) { |
| return QuickEntryPointOffset<PointerSize::k32>(quick_entrypoint_offset). |
| Uint32Value(); |
| } else { |
| return QuickEntryPointOffset<PointerSize::k64>(quick_entrypoint_offset). |
| Uint32Value(); |
| } |
| } |
| |
| template<PointerSize pointer_size> |
| static ThreadOffset<pointer_size> JniEntryPointOffset(size_t jni_entrypoint_offset) { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, jni_entrypoints) + jni_entrypoint_offset); |
| } |
| |
| // Return the entry point offset integer value for ReadBarrierMarkRegX, where X is `reg`. |
| template <PointerSize pointer_size> |
| static constexpr int32_t ReadBarrierMarkEntryPointsOffset(size_t reg) { |
| // The entry point list defines 30 ReadBarrierMarkRegX entry points. |
| DCHECK_LT(reg, 30u); |
| // The ReadBarrierMarkRegX entry points are ordered by increasing |
| // register number in Thread::tls_Ptr_.quick_entrypoints. |
| return QUICK_ENTRYPOINT_OFFSET(pointer_size, pReadBarrierMarkReg00).Int32Value() |
| + static_cast<size_t>(pointer_size) * reg; |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> SelfOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, self)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ExceptionOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, exception)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> PeerOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, opeer)); |
| } |
| |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> CardTableOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, card_table)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThreadSuspendTriggerOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, suspend_trigger)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThreadLocalPosOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| thread_local_pos)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThreadLocalEndOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| thread_local_end)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThreadLocalObjectsOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| thread_local_objects)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> RosAllocRunsOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| rosalloc_runs)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThreadLocalAllocStackTopOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| thread_local_alloc_stack_top)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> ThreadLocalAllocStackEndOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| thread_local_alloc_stack_end)); |
| } |
| |
| template <PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> TraceBufferIndexOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, method_trace_buffer_index)); |
| } |
| |
| template <PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> TraceBufferPtrOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, method_trace_buffer)); |
| } |
| |
| // Size of stack less any space reserved for stack overflow |
| size_t GetStackSize() const { |
| return tlsPtr_.stack_size - (tlsPtr_.stack_end - tlsPtr_.stack_begin); |
| } |
| |
| ALWAYS_INLINE uint8_t* GetStackEndForInterpreter(bool implicit_overflow_check) const; |
| |
| uint8_t* GetStackEnd() const { |
| return tlsPtr_.stack_end; |
| } |
| |
| // Set the stack end to that to be used during a stack overflow |
| void SetStackEndForStackOverflow() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Set the stack end to that to be used during regular execution |
| ALWAYS_INLINE void ResetDefaultStackEnd(); |
| |
| bool IsHandlingStackOverflow() const { |
| return tlsPtr_.stack_end == tlsPtr_.stack_begin; |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> StackEndOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, stack_end)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> JniEnvOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, jni_env)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> TopOfManagedStackOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) + |
| ManagedStack::TaggedTopQuickFrameOffset()); |
| } |
| |
| const ManagedStack* GetManagedStack() const { |
| return &tlsPtr_.managed_stack; |
| } |
| |
| // Linked list recording fragments of managed stack. |
| void PushManagedStackFragment(ManagedStack* fragment) { |
| tlsPtr_.managed_stack.PushManagedStackFragment(fragment); |
| } |
| void PopManagedStackFragment(const ManagedStack& fragment) { |
| tlsPtr_.managed_stack.PopManagedStackFragment(fragment); |
| } |
| |
| ALWAYS_INLINE ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame); |
| ALWAYS_INLINE ShadowFrame* PopShadowFrame(); |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> TopShadowFrameOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>( |
| OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) + |
| ManagedStack::TopShadowFrameOffset()); |
| } |
| |
| // Is the given obj in one of this thread's JNI transition frames? |
| bool IsJniTransitionReference(jobject obj) const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Convert a global (or weak global) jobject into a Object* |
| ObjPtr<mirror::Object> DecodeGlobalJObject(jobject obj) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| BaseHandleScope* GetTopHandleScope() REQUIRES_SHARED(Locks::mutator_lock_) { |
| return tlsPtr_.top_handle_scope; |
| } |
| |
| void PushHandleScope(BaseHandleScope* handle_scope) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_EQ(handle_scope->GetLink(), tlsPtr_.top_handle_scope); |
| tlsPtr_.top_handle_scope = handle_scope; |
| } |
| |
| BaseHandleScope* PopHandleScope() REQUIRES_SHARED(Locks::mutator_lock_) { |
| BaseHandleScope* handle_scope = tlsPtr_.top_handle_scope; |
| DCHECK(handle_scope != nullptr); |
| tlsPtr_.top_handle_scope = tlsPtr_.top_handle_scope->GetLink(); |
| return handle_scope; |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> TopHandleScopeOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| top_handle_scope)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> MutatorLockOffset() { |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| mutator_lock)); |
| } |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> HeldMutexOffset(LockLevel level) { |
| DCHECK_LT(enum_cast<size_t>(level), arraysize(tlsPtr_.held_mutexes)); |
| return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, |
| held_mutexes[level])); |
| } |
| |
| BaseReflectiveHandleScope* GetTopReflectiveHandleScope() { |
| return tlsPtr_.top_reflective_handle_scope; |
| } |
| |
| void PushReflectiveHandleScope(BaseReflectiveHandleScope* scope) { |
| DCHECK_EQ(scope->GetLink(), tlsPtr_.top_reflective_handle_scope); |
| DCHECK_EQ(scope->GetThread(), this); |
| tlsPtr_.top_reflective_handle_scope = scope; |
| } |
| |
| BaseReflectiveHandleScope* PopReflectiveHandleScope() { |
| BaseReflectiveHandleScope* handle_scope = tlsPtr_.top_reflective_handle_scope; |
| DCHECK(handle_scope != nullptr); |
| tlsPtr_.top_reflective_handle_scope = tlsPtr_.top_reflective_handle_scope->GetLink(); |
| return handle_scope; |
| } |
| |
| bool GetIsGcMarking() const { |
| DCHECK(gUseReadBarrier); |
| return tls32_.is_gc_marking; |
| } |
| |
| void SetIsGcMarkingAndUpdateEntrypoints(bool is_marking); |
| |
| bool IsDeoptCheckRequired() const { return tls32_.is_deopt_check_required; } |
| |
| void SetDeoptCheckRequired(bool flag) { tls32_.is_deopt_check_required = flag; } |
| |
| bool GetWeakRefAccessEnabled() const; // Only safe for current thread. |
| |
| void SetWeakRefAccessEnabled(bool enabled) { |
| DCHECK(gUseReadBarrier); |
| WeakRefAccessState new_state = enabled ? |
| WeakRefAccessState::kEnabled : WeakRefAccessState::kDisabled; |
| tls32_.weak_ref_access_enabled.store(new_state, std::memory_order_release); |
| } |
| |
| uint32_t GetDisableThreadFlipCount() const { |
| return tls32_.disable_thread_flip_count; |
| } |
| |
| void IncrementDisableThreadFlipCount() { |
| ++tls32_.disable_thread_flip_count; |
| } |
| |
| void DecrementDisableThreadFlipCount() { |
| DCHECK_GT(tls32_.disable_thread_flip_count, 0U); |
| --tls32_.disable_thread_flip_count; |
| } |
| |
| // Returns true if the thread is a runtime thread (eg from a ThreadPool). |
| bool IsRuntimeThread() const { |
| return is_runtime_thread_; |
| } |
| |
| void SetIsRuntimeThread(bool is_runtime_thread) { |
| is_runtime_thread_ = is_runtime_thread; |
| } |
| |
| uint32_t CorePlatformApiCookie() { |
| return core_platform_api_cookie_; |
| } |
| |
| void SetCorePlatformApiCookie(uint32_t cookie) { |
| core_platform_api_cookie_ = cookie; |
| } |
| |
| // Returns true if the thread is allowed to load java classes. |
| bool CanLoadClasses() const; |
| |
| // Returns the fake exception used to activate deoptimization. |
| static mirror::Throwable* GetDeoptimizationException() { |
| // Note that the mirror::Throwable must be aligned to kObjectAlignment or else it cannot be |
| // represented by ObjPtr. |
| return reinterpret_cast<mirror::Throwable*>(0x100); |
| } |
| |
| // Currently deoptimization invokes verifier which can trigger class loading |
| // and execute Java code, so there might be nested deoptimizations happening. |
| // We need to save the ongoing deoptimization shadow frames and return |
| // values on stacks. |
| // 'from_code' denotes whether the deoptimization was explicitly made from |
| // compiled code. |
| // 'method_type' contains info on whether deoptimization should advance |
| // dex_pc. |
| void PushDeoptimizationContext(const JValue& return_value, |
| bool is_reference, |
| ObjPtr<mirror::Throwable> exception, |
| bool from_code, |
| DeoptimizationMethodType method_type) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| void PopDeoptimizationContext(JValue* result, |
| ObjPtr<mirror::Throwable>* exception, |
| bool* from_code, |
| DeoptimizationMethodType* method_type) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| void AssertHasDeoptimizationContext() |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| void PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type); |
| ShadowFrame* PopStackedShadowFrame(); |
| ShadowFrame* MaybePopDeoptimizedStackedShadowFrame(); |
| |
| // For debugger, find the shadow frame that corresponds to a frame id. |
| // Or return null if there is none. |
| ShadowFrame* FindDebuggerShadowFrame(size_t frame_id) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| // For debugger, find the bool array that keeps track of the updated vreg set |
| // for a frame id. |
| bool* GetUpdatedVRegFlags(size_t frame_id) REQUIRES_SHARED(Locks::mutator_lock_); |
| // For debugger, find the shadow frame that corresponds to a frame id. If |
| // one doesn't exist yet, create one and track it in frame_id_to_shadow_frame. |
| ShadowFrame* FindOrCreateDebuggerShadowFrame(size_t frame_id, |
| uint32_t num_vregs, |
| ArtMethod* method, |
| uint32_t dex_pc) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Delete the entry that maps from frame_id to shadow_frame. |
| void RemoveDebuggerShadowFrameMapping(size_t frame_id) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| std::vector<ArtMethod*>* GetStackTraceSample() const { |
| DCHECK(!IsAotCompiler()); |
| return tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample; |
| } |
| |
| void SetStackTraceSample(std::vector<ArtMethod*>* sample) { |
| DCHECK(!IsAotCompiler()); |
| tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample = sample; |
| } |
| |
| verifier::VerifierDeps* GetVerifierDeps() const { |
| DCHECK(IsAotCompiler()); |
| return tlsPtr_.deps_or_stack_trace_sample.verifier_deps; |
| } |
| |
| // It is the responsability of the caller to make sure the verifier_deps |
| // entry in the thread is cleared before destruction of the actual VerifierDeps |
| // object, or the thread. |
| void SetVerifierDeps(verifier::VerifierDeps* verifier_deps) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(verifier_deps == nullptr || tlsPtr_.deps_or_stack_trace_sample.verifier_deps == nullptr); |
| tlsPtr_.deps_or_stack_trace_sample.verifier_deps = verifier_deps; |
| } |
| |
| uintptr_t* GetMethodTraceBuffer() { return tlsPtr_.method_trace_buffer; } |
| |
| size_t* GetMethodTraceIndexPtr() { return &tlsPtr_.method_trace_buffer_index; } |
| |
| uintptr_t* SetMethodTraceBuffer(uintptr_t* buffer) { |
| return tlsPtr_.method_trace_buffer = buffer; |
| } |
| |
| uint64_t GetTraceClockBase() const { |
| return tls64_.trace_clock_base; |
| } |
| |
| void SetTraceClockBase(uint64_t clock_base) { |
| tls64_.trace_clock_base = clock_base; |
| } |
| |
| BaseMutex* GetHeldMutex(LockLevel level) const { |
| return tlsPtr_.held_mutexes[level]; |
| } |
| |
| void SetHeldMutex(LockLevel level, BaseMutex* mutex) { |
| tlsPtr_.held_mutexes[level] = mutex; |
| } |
| |
| // Possibly check that no mutexes at level kMonitorLock or above are subsequently acquired. |
| // Only invoked by the thread itself. |
| void DisallowPreMonitorMutexes(); |
| |
| // Undo the effect of the previous call. Again only invoked by the thread itself. |
| void AllowPreMonitorMutexes(); |
| |
| bool ReadFlag(ThreadFlag flag) const { |
| return GetStateAndFlags(std::memory_order_relaxed).IsFlagSet(flag); |
| } |
| |
| void AtomicSetFlag(ThreadFlag flag, std::memory_order order = std::memory_order_seq_cst) { |
| // Since we discard the returned value, memory_order_release will often suffice. |
| tls32_.state_and_flags.fetch_or(enum_cast<uint32_t>(flag), order); |
| } |
| |
| void AtomicClearFlag(ThreadFlag flag, std::memory_order order = std::memory_order_seq_cst) { |
| // Since we discard the returned value, memory_order_release will often suffice. |
| tls32_.state_and_flags.fetch_and(~enum_cast<uint32_t>(flag), order); |
| } |
| |
| void ResetQuickAllocEntryPointsForThread(); |
| |
| // Returns the remaining space in the TLAB. |
| size_t TlabSize() const { |
| return tlsPtr_.thread_local_end - tlsPtr_.thread_local_pos; |
| } |
| |
| // Returns pos offset from start. |
| size_t GetTlabPosOffset() const { |
| return tlsPtr_.thread_local_pos - tlsPtr_.thread_local_start; |
| } |
| |
| // Returns the remaining space in the TLAB if we were to expand it to maximum capacity. |
| size_t TlabRemainingCapacity() const { |
| return tlsPtr_.thread_local_limit - tlsPtr_.thread_local_pos; |
| } |
| |
| // Expand the TLAB by a fixed number of bytes. There must be enough capacity to do so. |
| void ExpandTlab(size_t bytes) { |
| tlsPtr_.thread_local_end += bytes; |
| DCHECK_LE(tlsPtr_.thread_local_end, tlsPtr_.thread_local_limit); |
| } |
| |
| // Called from Concurrent mark-compact GC to slide the TLAB pointers backwards |
| // to adjust to post-compact addresses. |
| void AdjustTlab(size_t slide_bytes); |
| |
| // Doesn't check that there is room. |
| mirror::Object* AllocTlab(size_t bytes); |
| void SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit); |
| bool HasTlab() const; |
| void ResetTlab(); |
| uint8_t* GetTlabStart() { |
| return tlsPtr_.thread_local_start; |
| } |
| uint8_t* GetTlabPos() { |
| return tlsPtr_.thread_local_pos; |
| } |
| uint8_t* GetTlabEnd() { |
| return tlsPtr_.thread_local_end; |
| } |
| // Remove the suspend trigger for this thread by making the suspend_trigger_ TLS value |
| // equal to a valid pointer. |
| // TODO: does this need to atomic? I don't think so. |
| void RemoveSuspendTrigger() { |
| tlsPtr_.suspend_trigger = reinterpret_cast<uintptr_t*>(&tlsPtr_.suspend_trigger); |
| } |
| |
| // Trigger a suspend check by making the suspend_trigger_ TLS value an invalid pointer. |
| // The next time a suspend check is done, it will load from the value at this address |
| // and trigger a SIGSEGV. |
| // Only needed if Runtime::implicit_suspend_checks_ is true and fully implemented. It currently |
| // is always false. Client code currently just looks at the thread flags directly to determine |
| // whether we should suspend, so this call is currently unnecessary. |
| void TriggerSuspend() { |
| tlsPtr_.suspend_trigger = nullptr; |
| } |
| |
| |
| // Push an object onto the allocation stack. |
| bool PushOnThreadLocalAllocationStack(mirror::Object* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Set the thread local allocation pointers to the given pointers. |
| void SetThreadLocalAllocationStack(StackReference<mirror::Object>* start, |
| StackReference<mirror::Object>* end); |
| |
| // Resets the thread local allocation pointers. |
| void RevokeThreadLocalAllocationStack(); |
| |
| size_t GetThreadLocalBytesAllocated() const { |
| return tlsPtr_.thread_local_end - tlsPtr_.thread_local_start; |
| } |
| |
| size_t GetThreadLocalObjectsAllocated() const { |
| return tlsPtr_.thread_local_objects; |
| } |
| |
| void* GetRosAllocRun(size_t index) const { |
| return tlsPtr_.rosalloc_runs[index]; |
| } |
| |
| void SetRosAllocRun(size_t index, void* run) { |
| tlsPtr_.rosalloc_runs[index] = run; |
| } |
| |
| bool ProtectStack(bool fatal_on_error = true); |
| bool UnprotectStack(); |
| |
| uint32_t DecrementForceInterpreterCount() REQUIRES(Locks::thread_list_lock_) { |
| return --tls32_.force_interpreter_count; |
| } |
| |
| uint32_t IncrementForceInterpreterCount() REQUIRES(Locks::thread_list_lock_) { |
| return ++tls32_.force_interpreter_count; |
| } |
| |
| void SetForceInterpreterCount(uint32_t value) REQUIRES(Locks::thread_list_lock_) { |
| tls32_.force_interpreter_count = value; |
| } |
| |
| uint32_t ForceInterpreterCount() const { |
| return tls32_.force_interpreter_count; |
| } |
| |
| bool IsForceInterpreter() const { |
| return tls32_.force_interpreter_count != 0; |
| } |
| |
| bool IncrementMakeVisiblyInitializedCounter() { |
| tls32_.make_visibly_initialized_counter += 1u; |
| DCHECK_LE(tls32_.make_visibly_initialized_counter, kMakeVisiblyInitializedCounterTriggerCount); |
| if (tls32_.make_visibly_initialized_counter == kMakeVisiblyInitializedCounterTriggerCount) { |
| tls32_.make_visibly_initialized_counter = 0u; |
| return true; |
| } |
| return false; |
| } |
| |
| void InitStringEntryPoints(); |
| |
| void ModifyDebugDisallowReadBarrier(int8_t delta) { |
| if (kCheckDebugDisallowReadBarrierCount) { |
| debug_disallow_read_barrier_ += delta; |
| } |
| } |
| |
| uint8_t GetDebugDisallowReadBarrierCount() const { |
| return kCheckDebugDisallowReadBarrierCount ? debug_disallow_read_barrier_ : 0u; |
| } |
| |
| // Gets the current TLSData associated with the key or nullptr if there isn't any. Note that users |
| // do not gain ownership of TLSData and must synchronize with SetCustomTls themselves to prevent |
| // it from being deleted. |
| TLSData* GetCustomTLS(const char* key) REQUIRES(!Locks::custom_tls_lock_); |
| |
| // Sets the tls entry at 'key' to data. The thread takes ownership of the TLSData. The destructor |
| // will be run when the thread exits or when SetCustomTLS is called again with the same key. |
| void SetCustomTLS(const char* key, TLSData* data) REQUIRES(!Locks::custom_tls_lock_); |
| |
| // Returns true if the current thread is the jit sensitive thread. |
| bool IsJitSensitiveThread() const { |
| return this == jit_sensitive_thread_; |
| } |
| |
| bool IsSystemDaemon() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Cause the 'this' thread to abort the process by sending SIGABRT. Thus we should get an |
| // asynchronous stack trace for 'this' thread, rather than waiting for it to process a |
| // checkpoint. Useful mostly to discover why a thread isn't responding to a suspend request or |
| // checkpoint. The caller should "suspend" (in the Java sense) 'thread' before invoking this, so |
| // 'thread' can't get deallocated before we access it. |
| NO_RETURN void AbortInThis(std::string message); |
| |
| // Returns true if StrictMode events are traced for the current thread. |
| static bool IsSensitiveThread() { |
| if (is_sensitive_thread_hook_ != nullptr) { |
| return (*is_sensitive_thread_hook_)(); |
| } |
| return false; |
| } |
| |
| // Set to the read barrier marking entrypoints to be non-null. |
| void SetReadBarrierEntrypoints(); |
| |
| ObjPtr<mirror::Object> CreateCompileTimePeer(const char* name, |
| bool as_daemon, |
| jobject thread_group) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| ALWAYS_INLINE InterpreterCache* GetInterpreterCache() { |
| return &interpreter_cache_; |
| } |
| |
| // Clear all thread-local interpreter caches. |
| // |
| // Since the caches are keyed by memory pointer to dex instructions, this must be |
| // called when any dex code is unloaded (before different code gets loaded at the |
| // same memory location). |
| // |
| // If presence of cache entry implies some pre-conditions, this must also be |
| // called if the pre-conditions might no longer hold true. |
| static void ClearAllInterpreterCaches(); |
| |
| template<PointerSize pointer_size> |
| static constexpr ThreadOffset<pointer_size> InterpreterCacheOffset() { |
| return ThreadOffset<pointer_size>(OFFSETOF_MEMBER(Thread, interpreter_cache_)); |
| } |
| |
| static constexpr int InterpreterCacheSizeLog2() { |
| return WhichPowerOf2(InterpreterCache::kSize); |
| } |
| |
| static constexpr uint32_t AllThreadFlags() { |
| return enum_cast<uint32_t>(ThreadFlag::kLastFlag) | |
| (enum_cast<uint32_t>(ThreadFlag::kLastFlag) - 1u); |
| } |
| |
| static constexpr uint32_t SuspendOrCheckpointRequestFlags() { |
| return enum_cast<uint32_t>(ThreadFlag::kSuspendRequest) | |
| enum_cast<uint32_t>(ThreadFlag::kCheckpointRequest) | |
| enum_cast<uint32_t>(ThreadFlag::kEmptyCheckpointRequest); |
| } |
| |
| static constexpr uint32_t FlipFunctionFlags() { |
| return enum_cast<uint32_t>(ThreadFlag::kPendingFlipFunction) | |
| enum_cast<uint32_t>(ThreadFlag::kRunningFlipFunction); |
| } |
| |
| static constexpr uint32_t StoredThreadStateValue(ThreadState state) { |
| return StateAndFlags::EncodeState(state); |
| } |
| |
| void ResetSharedMethodHotness() { |
| tls32_.shared_method_hotness = kSharedMethodHotnessThreshold; |
| } |
| |
| uint32_t GetSharedMethodHotness() const { |
| return tls32_.shared_method_hotness; |
| } |
| |
| uint32_t DecrementSharedMethodHotness() { |
| tls32_.shared_method_hotness = (tls32_.shared_method_hotness - 1) & 0xffff; |
| return tls32_.shared_method_hotness; |
| } |
| |
| private: |
| // We pretend to acquire this while running a checkpoint to detect lock ordering issues. |
| // Initialized lazily. |
| static std::atomic<Mutex*> cp_placeholder_mutex_; |
| |
| explicit Thread(bool daemon); |
| |
| // A successfully started thread is only deleted by the thread itself. |
| // Threads are deleted after they have been removed from the thread list while holding |
| // suspend_count_lock_ and thread_list_lock_. We refuse to do this while either kSuspendRequest |
| // or kRunningFlipFunction are set. We can prevent Thread destruction by holding either of those |
| // locks, ensuring that either of those flags are set, or possibly by registering and checking a |
| // ThreadExitFlag. |
| ~Thread() REQUIRES(!Locks::mutator_lock_, !Locks::thread_suspend_count_lock_); |
| |
| // Thread destruction actions that do not invalidate the thread. Checkpoints and flip_functions |
| // may still be called on this Thread object, though not by this thread, during and after the |
| // Destroy() call. |
| void Destroy(bool should_run_callbacks); |
| |
| // Deletes and clears the tlsPtr_.jpeer field. Done in a way so that both it and opeer cannot be |
| // observed to be set at the same time by instrumentation. |
| void DeleteJPeer(JNIEnv* env); |
| |
| // Attaches the calling native thread to the runtime, returning the new native peer. |
| // Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls. |
| template <typename PeerAction> |
| static Thread* Attach(const char* thread_name, |
| bool as_daemon, |
| PeerAction p, |
| bool should_run_callbacks); |
| |
| void CreatePeer(const char* name, bool as_daemon, jobject thread_group); |
| |
| template<bool kTransactionActive> |
| static void InitPeer(ObjPtr<mirror::Object> peer, |
| bool as_daemon, |
| ObjPtr<mirror::Object> thread_group, |
| ObjPtr<mirror::String> thread_name, |
| jint thread_priority) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Avoid use, callers should use SetState. |
| // Used only by `Thread` destructor and stack trace collection in semi-space GC (currently |
| // disabled by `kStoreStackTraces = false`). May not be called on a runnable thread other |
| // than Thread::Current(). |
| // NO_THREAD_SAFETY_ANALYSIS: This function is "Unsafe" and can be called in |
| // different states, so clang cannot perform the thread safety analysis. |
| ThreadState SetStateUnsafe(ThreadState new_state) NO_THREAD_SAFETY_ANALYSIS { |
| StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| ThreadState old_state = old_state_and_flags.GetState(); |
| if (old_state == new_state) { |
| // Nothing to do. |
| } else if (old_state == ThreadState::kRunnable) { |
| DCHECK_EQ(this, Thread::Current()); |
| // Need to run pending checkpoint and suspend barriers. Run checkpoints in runnable state in |
| // case they need to use a ScopedObjectAccess. If we are holding the mutator lock and a SOA |
| // attempts to TransitionFromSuspendedToRunnable, it results in a deadlock. |
| TransitionToSuspendedAndRunCheckpoints(new_state); |
| // Since we transitioned to a suspended state, check the pass barrier requests. |
| CheckActiveSuspendBarriers(); |
| } else { |
| while (true) { |
| StateAndFlags new_state_and_flags = old_state_and_flags; |
| new_state_and_flags.SetState(new_state); |
| if (LIKELY(tls32_.state_and_flags.CompareAndSetWeakAcquire( |
| old_state_and_flags.GetValue(), new_state_and_flags.GetValue()))) { |
| break; |
| } |
| // Reload state and flags. |
| old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| DCHECK_EQ(old_state, old_state_and_flags.GetState()); |
| } |
| } |
| return old_state; |
| } |
| |
| MutatorMutex* GetMutatorLock() RETURN_CAPABILITY(Locks::mutator_lock_) { |
| DCHECK_EQ(tlsPtr_.mutator_lock, Locks::mutator_lock_); |
| return tlsPtr_.mutator_lock; |
| } |
| |
| void VerifyStackImpl() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void DumpState(std::ostream& os) const REQUIRES_SHARED(Locks::mutator_lock_); |
| DumpOrder DumpStack(std::ostream& os, |
| bool dump_native_stack = true, |
| bool force_dump_stack = false) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| DumpOrder DumpStack(std::ostream& os, |
| unwindstack::AndroidLocalUnwinder& unwinder, |
| bool dump_native_stack = true, |
| bool force_dump_stack = false) const |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Out-of-line conveniences for debugging in gdb. |
| static Thread* CurrentFromGdb(); // Like Thread::Current. |
| // Like Thread::Dump(std::cerr). |
| void DumpFromGdb() const REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // A wrapper around CreateCallback used when userfaultfd GC is used to |
| // identify the GC by stacktrace. |
| static NO_INLINE void* CreateCallbackWithUffdGc(void* arg); |
| static void* CreateCallback(void* arg); |
| |
| void HandleUncaughtExceptions() REQUIRES_SHARED(Locks::mutator_lock_); |
| void RemoveFromThreadGroup() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Initialize a thread. |
| // |
| // The third parameter is not mandatory. If given, the thread will use this JNIEnvExt. In case |
| // Init succeeds, this means the thread takes ownership of it. If Init fails, it is the caller's |
| // responsibility to destroy the given JNIEnvExt. If the parameter is null, Init will try to |
| // create a JNIEnvExt on its own (and potentially fail at that stage, indicated by a return value |
| // of false). |
| bool Init(ThreadList*, JavaVMExt*, JNIEnvExt* jni_env_ext = nullptr) |
| REQUIRES(Locks::runtime_shutdown_lock_); |
| void InitCardTable(); |
| void InitCpu(); |
| void CleanupCpu(); |
| void InitTlsEntryPoints(); |
| void InitTid(); |
| void InitPthreadKeySelf(); |
| bool InitStackHwm(); |
| |
| void SetUpAlternateSignalStack(); |
| void TearDownAlternateSignalStack(); |
| void MadviseAwayAlternateSignalStack(); |
| |
| ALWAYS_INLINE void TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) |
| REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Call PassActiveSuspendBarriers() if there are active barriers. Only called on current thread. |
| ALWAYS_INLINE void CheckActiveSuspendBarriers() |
| REQUIRES(!Locks::thread_suspend_count_lock_, !Locks::mutator_lock_, !Roles::uninterruptible_); |
| |
| // Decrement all "suspend barriers" for the current thread, notifying threads that requested our |
| // suspension. Only called on current thread, when suspended. If suspend_count_ > 0 then we |
| // promise that we are and will remain "suspended" until the suspend count is decremented. |
| bool PassActiveSuspendBarriers() |
| REQUIRES(!Locks::thread_suspend_count_lock_, !Locks::mutator_lock_); |
| |
| // Add an entry to active_suspend1_barriers. |
| ALWAYS_INLINE void AddSuspend1Barrier(WrappedSuspend1Barrier* suspend1_barrier) |
| REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| // Remove last-added entry from active_suspend1_barriers. |
| // Only makes sense if we're still holding thread_suspend_count_lock_ since insertion. |
| ALWAYS_INLINE void RemoveFirstSuspend1Barrier() REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| ALWAYS_INLINE bool HasActiveSuspendBarrier() REQUIRES(Locks::thread_suspend_count_lock_); |
| |
| // Registers the current thread as the jit sensitive thread. Should be called just once. |
| static void SetJitSensitiveThread() { |
| if (jit_sensitive_thread_ == nullptr) { |
| jit_sensitive_thread_ = Thread::Current(); |
| } else { |
| LOG(WARNING) << "Attempt to set the sensitive thread twice. Tid:" |
| << Thread::Current()->GetTid(); |
| } |
| } |
| |
| static void SetSensitiveThreadHook(bool (*is_sensitive_thread_hook)()) { |
| is_sensitive_thread_hook_ = is_sensitive_thread_hook; |
| } |
| |
| // Runs a single checkpoint function. If there are no more pending checkpoint functions it will |
| // clear the kCheckpointRequest flag. The caller is responsible for calling this in a loop until |
| // the kCheckpointRequest flag is cleared. |
| void RunCheckpointFunction() |
| REQUIRES(!Locks::thread_suspend_count_lock_) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| void RunEmptyCheckpoint(); |
| |
| // Install the protected region for implicit stack checks. |
| void InstallImplicitProtection(); |
| |
| template <bool kPrecise> |
| void VisitRoots(RootVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| static bool IsAotCompiler(); |
| |
| void ReleaseLongJumpContextInternal(); |
| |
| void SetCachedThreadName(const char* name); |
| |
| // Helper class for manipulating the 32 bits of atomically changed state and flags. |
| class StateAndFlags { |
| public: |
| explicit StateAndFlags(uint32_t value) :value_(value) {} |
| |
| uint32_t GetValue() const { |
| return value_; |
| } |
| |
| void SetValue(uint32_t value) { |
| value_ = value; |
| } |
| |
| bool IsAnyOfFlagsSet(uint32_t flags) const { |
| DCHECK_EQ(flags & ~AllThreadFlags(), 0u); |
| return (value_ & flags) != 0u; |
| } |
| |
| bool IsFlagSet(ThreadFlag flag) const { |
| return (value_ & enum_cast<uint32_t>(flag)) != 0u; |
| } |
| |
| void SetFlag(ThreadFlag flag) { |
| value_ |= enum_cast<uint32_t>(flag); |
| } |
| |
| StateAndFlags WithFlag(ThreadFlag flag) const { |
| StateAndFlags result = *this; |
| result.SetFlag(flag); |
| return result; |
| } |
| |
| StateAndFlags WithoutFlag(ThreadFlag flag) const { |
| StateAndFlags result = *this; |
| result.ClearFlag(flag); |
| return result; |
| } |
| |
| void ClearFlag(ThreadFlag flag) { |
| value_ &= ~enum_cast<uint32_t>(flag); |
| } |
| |
| ThreadState GetState() const { |
| ThreadState state = ThreadStateField::Decode(value_); |
| ValidateThreadState(state); |
| return state; |
| } |
| |
| void SetState(ThreadState state) { |
| ValidateThreadState(state); |
| value_ = ThreadStateField::Update(state, value_); |
| } |
| |
| StateAndFlags WithState(ThreadState state) const { |
| StateAndFlags result = *this; |
| result.SetState(state); |
| return result; |
| } |
| |
| static constexpr uint32_t EncodeState(ThreadState state) { |
| ValidateThreadState(state); |
| return ThreadStateField::Encode(state); |
| } |
| |
| static constexpr void ValidateThreadState(ThreadState state) { |
| if (kIsDebugBuild && state != ThreadState::kRunnable) { |
| CHECK_GE(state, ThreadState::kTerminated); |
| CHECK_LE(state, ThreadState::kSuspended); |
| CHECK_NE(state, ThreadState::kObsoleteRunnable); |
| } |
| } |
| |
| // The value holds thread flags and thread state. |
| uint32_t value_; |
| |
| static constexpr size_t kThreadStateBitSize = BitSizeOf<std::underlying_type_t<ThreadState>>(); |
| static constexpr size_t kThreadStatePosition = BitSizeOf<uint32_t>() - kThreadStateBitSize; |
| using ThreadStateField = BitField<ThreadState, kThreadStatePosition, kThreadStateBitSize>; |
| static_assert( |
| WhichPowerOf2(enum_cast<uint32_t>(ThreadFlag::kLastFlag)) < kThreadStatePosition); |
| }; |
| static_assert(sizeof(StateAndFlags) == sizeof(uint32_t), "Unexpected StateAndFlags size"); |
| |
| StateAndFlags GetStateAndFlags(std::memory_order order) const { |
| return StateAndFlags(tls32_.state_and_flags.load(order)); |
| } |
| |
| // Format state and flags as a hex string. For diagnostic output. |
| std::string StateAndFlagsAsHexString() const; |
| |
| // Run the flip function and notify other threads that may have tried |
| // to do that concurrently. |
| void RunFlipFunction(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Ensure that thread flip function for thread target started running. If no other thread is |
| // executing it, the calling thread shall run the flip function and then notify other threads |
| // that have tried to do that concurrently. After this function returns, the |
| // `ThreadFlag::kPendingFlipFunction` is cleared but another thread may still be running the |
| // flip function as indicated by the `ThreadFlag::kRunningFlipFunction`. Optional arguments: |
| // - old_state_and_flags indicates the current and state and flags value for the thread, with |
| // at least kPendingFlipFunction set. The thread should logically acquire the |
| // mutator lock before running the flip function. A special zero value indicates that the |
| // thread already holds the mutator lock, and the actual state_and_flags must be read. |
| // A non-zero value implies this == Current(). |
| // - If tef is non-null, we check that the target thread has not yet exited, as indicated by |
| // tef. In that case, we acquire thread_list_lock_ as needed. |
| // - If finished is non-null, we assign to *finished to indicate whether the flip was known to |
| // be completed when we returned. |
| // Returns true if and only if we acquired the mutator lock (which implies that we ran the flip |
| // function after finding old_state_and_flags unchanged). |
| static bool EnsureFlipFunctionStarted(Thread* self, |
| Thread* target, |
| StateAndFlags old_state_and_flags = StateAndFlags(0), |
| ThreadExitFlag* tef = nullptr, |
| /*out*/ bool* finished = nullptr) |
| TRY_ACQUIRE_SHARED(true, Locks::mutator_lock_); |
| |
| static void ThreadExitCallback(void* arg); |
| |
| // Maximum number of suspend barriers. |
| static constexpr uint32_t kMaxSuspendBarriers = 3; |
| |
| // Has Thread::Startup been called? |
| static bool is_started_; |
| |
| // TLS key used to retrieve the Thread*. |
| static pthread_key_t pthread_key_self_; |
| |
| // Used to notify threads that they should attempt to resume, they will suspend again if |
| // their suspend count is > 0. |
| static ConditionVariable* resume_cond_ GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| // Hook passed by framework which returns true |
| // when StrictMode events are traced for the current thread. |
| static bool (*is_sensitive_thread_hook_)(); |
| // Stores the jit sensitive thread (which for now is the UI thread). |
| static Thread* jit_sensitive_thread_; |
| |
| static constexpr uint32_t kMakeVisiblyInitializedCounterTriggerCount = 128; |
| |
| /***********************************************************************************************/ |
| // Thread local storage. Fields are grouped by size to enable 32 <-> 64 searching to account for |
| // pointer size differences. To encourage shorter encoding, more frequently used values appear |
| // first if possible. |
| /***********************************************************************************************/ |
| |
| struct PACKED(4) tls_32bit_sized_values { |
| // We have no control over the size of 'bool', but want our boolean fields |
| // to be 4-byte quantities. |
| using bool32_t = uint32_t; |
| |
| explicit tls_32bit_sized_values(bool is_daemon) |
| : state_and_flags(0u), |
| suspend_count(0), |
| thin_lock_thread_id(0), |
| tid(0), |
| daemon(is_daemon), |
| throwing_OutOfMemoryError(false), |
| no_thread_suspension(0), |
| thread_exit_check_count(0), |
| is_gc_marking(false), |
| is_deopt_check_required(false), |
| weak_ref_access_enabled(WeakRefAccessState::kVisiblyEnabled), |
| disable_thread_flip_count(0), |
| user_code_suspend_count(0), |
| force_interpreter_count(0), |
| make_visibly_initialized_counter(0), |
| define_class_counter(0), |
| num_name_readers(0), |
| shared_method_hotness(kSharedMethodHotnessThreshold) {} |
| |
| // The state and flags field must be changed atomically so that flag values aren't lost. |
| // See `StateAndFlags` for bit assignments of `ThreadFlag` and `ThreadState` values. |
| // Keeping the state and flags together allows an atomic CAS to change from being |
| // Suspended to Runnable without a suspend request occurring. |
| Atomic<uint32_t> state_and_flags; |
| static_assert(sizeof(state_and_flags) == sizeof(uint32_t), |
| "Size of state_and_flags and uint32 are different"); |
| |
| // A non-zero value is used to tell the current thread to enter a safe point |
| // at the next poll. |
| int suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| // Thin lock thread id. This is a small integer used by the thin lock implementation. |
| // This is not to be confused with the native thread's tid, nor is it the value returned |
| // by java.lang.Thread.getId --- this is a distinct value, used only for locking. One |
| // important difference between this id and the ids visible to managed code is that these |
| // ones get reused (to ensure that they fit in the number of bits available). |
| uint32_t thin_lock_thread_id; |
| |
| // System thread id. |
| uint32_t tid; |
| |
| // Is the thread a daemon? |
| const bool32_t daemon; |
| |
| // A boolean telling us whether we're recursively throwing OOME. |
| bool32_t throwing_OutOfMemoryError; |
| |
| // A positive value implies we're in a region where thread suspension isn't expected. |
| uint32_t no_thread_suspension; |
| |
| // How many times has our pthread key's destructor been called? |
| uint32_t thread_exit_check_count; |
| |
| // True if the GC is in the marking phase. This is used for the CC collector only. This is |
| // thread local so that we can simplify the logic to check for the fast path of read barriers of |
| // GC roots. |
| bool32_t is_gc_marking; |
| |
| // True if we need to check for deoptimization when returning from the runtime functions. This |
| // is required only when a class is redefined to prevent executing code that has field offsets |
| // embedded. For non-debuggable apps redefinition is not allowed and this flag should always be |
| // set to false. |
| bool32_t is_deopt_check_required; |
| |
| // Thread "interrupted" status; stays raised until queried or thrown. |
| Atomic<bool32_t> interrupted; |
| |
| AtomicInteger park_state_; |
| |
| // Determines whether the thread is allowed to directly access a weak ref |
| // (Reference::GetReferent() and system weaks) and to potentially mark an object alive/gray. |
| // This is used for concurrent reference processing of the CC collector only. This is thread |
| // local so that we can enable/disable weak ref access by using a checkpoint and avoid a race |
| // around the time weak ref access gets disabled and concurrent reference processing begins |
| // (if weak ref access is disabled during a pause, this is not an issue.) Other collectors use |
| // Runtime::DisallowNewSystemWeaks() and ReferenceProcessor::EnableSlowPath(). Can be |
| // concurrently accessed by GetReferent() and set (by iterating over threads). |
| // Can be changed from kEnabled to kVisiblyEnabled by readers. No other concurrent access is |
| // possible when that happens. |
| mutable std::atomic<WeakRefAccessState> weak_ref_access_enabled; |
| |
| // A thread local version of Heap::disable_thread_flip_count_. This keeps track of how many |
| // levels of (nested) JNI critical sections the thread is in and is used to detect a nested JNI |
| // critical section enter. |
| uint32_t disable_thread_flip_count; |
| |
| // How much of 'suspend_count_' is by request of user code, used to distinguish threads |
| // suspended by the runtime from those suspended by user code. |
| // This should have GUARDED_BY(Locks::user_code_suspension_lock_) but auto analysis cannot be |
| // told that AssertHeld should be good enough. |
| int user_code_suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| // Count of how many times this thread has been forced to interpreter. If this is not 0 the |
| // thread must remain in interpreted code as much as possible. |
| uint32_t force_interpreter_count; |
| |
| // Counter for calls to initialize a class that's initialized but not visibly initialized. |
| // When this reaches kMakeVisiblyInitializedCounterTriggerCount, we call the runtime to |
| // make initialized classes visibly initialized. This is needed because we usually make |
| // classes visibly initialized in batches but we do not want to be stuck with a class |
| // initialized but not visibly initialized for a long time even if no more classes are |
| // being initialized anymore. |
| uint32_t make_visibly_initialized_counter; |
| |
| // Counter for how many nested define-classes are ongoing in this thread. Used to allow waiting |
| // for threads to be done with class-definition work. |
| uint32_t define_class_counter; |
| |
| // A count of the number of readers of tlsPtr_.name that may still be looking at a string they |
| // retrieved. |
| mutable std::atomic<uint32_t> num_name_readers; |
| static_assert(std::atomic<uint32_t>::is_always_lock_free); |
| |
| // Thread-local hotness counter for shared memory methods. Initialized with |
| // `kSharedMethodHotnessThreshold`. The interpreter decrements it and goes |
| // into the runtime when hitting zero. Note that all previous decrements |
| // could have been executed by another method than the one seeing zero. |
| // There is a second level counter in `Jit::shared_method_counters_` to make |
| // sure we at least have a few samples before compiling a method. |
| uint32_t shared_method_hotness; |
| } tls32_; |
| |
| struct PACKED(8) tls_64bit_sized_values { |
| tls_64bit_sized_values() : trace_clock_base(0) { |
| } |
| |
| // The clock base used for tracing. |
| uint64_t trace_clock_base; |
| |
| RuntimeStats stats; |
| } tls64_; |
| |
| struct PACKED(sizeof(void*)) tls_ptr_sized_values { |
| tls_ptr_sized_values() : card_table(nullptr), |
| exception(nullptr), |
| stack_end(nullptr), |
| managed_stack(), |
| suspend_trigger(nullptr), |
| jni_env(nullptr), |
| tmp_jni_env(nullptr), |
| self(nullptr), |
| opeer(nullptr), |
| jpeer(nullptr), |
| stack_begin(nullptr), |
| stack_size(0), |
| deps_or_stack_trace_sample(), |
| wait_next(nullptr), |
| monitor_enter_object(nullptr), |
| top_handle_scope(nullptr), |
| class_loader_override(nullptr), |
| long_jump_context(nullptr), |
| stacked_shadow_frame_record(nullptr), |
| deoptimization_context_stack(nullptr), |
| frame_id_to_shadow_frame(nullptr), |
| name(nullptr), |
| pthread_self(0), |
| last_no_thread_suspension_cause(nullptr), |
| active_suspendall_barrier(nullptr), |
| active_suspend1_barriers(nullptr), |
| thread_local_pos(nullptr), |
| thread_local_end(nullptr), |
| thread_local_start(nullptr), |
| thread_local_limit(nullptr), |
| thread_local_objects(0), |
| checkpoint_function(nullptr), |
| thread_local_alloc_stack_top(nullptr), |
| thread_local_alloc_stack_end(nullptr), |
| mutator_lock(nullptr), |
| flip_function(nullptr), |
| thread_local_mark_stack(nullptr), |
| async_exception(nullptr), |
| top_reflective_handle_scope(nullptr), |
| method_trace_buffer(nullptr), |
| method_trace_buffer_index(0), |
| thread_exit_flags(nullptr) { |
| std::fill(held_mutexes, held_mutexes + kLockLevelCount, nullptr); |
| } |
| |
| // The biased card table, see CardTable for details. |
| uint8_t* card_table; |
| |
| // The pending exception or null. |
| mirror::Throwable* exception; |
| |
| // The end of this thread's stack. This is the lowest safely-addressable address on the stack. |
| // We leave extra space so there's room for the code that throws StackOverflowError. |
| uint8_t* stack_end; |
| |
| // The top of the managed stack often manipulated directly by compiler generated code. |
| ManagedStack managed_stack; |
| |
| // In certain modes, setting this to 0 will trigger a SEGV and thus a suspend check. It is |
| // normally set to the address of itself. |
| uintptr_t* suspend_trigger; |
| |
| // Every thread may have an associated JNI environment |
| JNIEnvExt* jni_env; |
| |
| // Temporary storage to transfer a pre-allocated JNIEnvExt from the creating thread to the |
| // created thread. |
| JNIEnvExt* tmp_jni_env; |
| |
| // Initialized to "this". On certain architectures (such as x86) reading off of Thread::Current |
| // is easy but getting the address of Thread::Current is hard. This field can be read off of |
| // Thread::Current to give the address. |
| Thread* self; |
| |
| // Our managed peer (an instance of java.lang.Thread). The jobject version is used during thread |
| // start up, until the thread is registered and the local opeer_ is used. |
| mirror::Object* opeer; |
| jobject jpeer; |
| |
| // The "lowest addressable byte" of the stack. |
| uint8_t* stack_begin; |
| |
| // Size of the stack. |
| size_t stack_size; |
| |
| // Sampling profiler and AOT verification cannot happen on the same run, so we share |
| // the same entry for the stack trace and the verifier deps. |
| union DepsOrStackTraceSample { |
| DepsOrStackTraceSample() { |
| verifier_deps = nullptr; |
| stack_trace_sample = nullptr; |
| } |
| // Pointer to previous stack trace captured by sampling profiler. |
| std::vector<ArtMethod*>* stack_trace_sample; |
| // When doing AOT verification, per-thread VerifierDeps. |
| verifier::VerifierDeps* verifier_deps; |
| } deps_or_stack_trace_sample; |
| |
| // The next thread in the wait set this thread is part of or null if not waiting. |
| Thread* wait_next; |
| |
| // If we're blocked in MonitorEnter, this is the object we're trying to lock. |
| mirror::Object* monitor_enter_object; |
| |
| // Top of linked list of handle scopes or null for none. |
| BaseHandleScope* top_handle_scope; |
| |
| // Needed to get the right ClassLoader in JNI_OnLoad, but also |
| // useful for testing. |
| jobject class_loader_override; |
| |
| // Thread local, lazily allocated, long jump context. Used to deliver exceptions. |
| Context* long_jump_context; |
| |
| // For gc purpose, a shadow frame record stack that keeps track of: |
| // 1) shadow frames under construction. |
| // 2) deoptimization shadow frames. |
| StackedShadowFrameRecord* stacked_shadow_frame_record; |
| |
| // Deoptimization return value record stack. |
| DeoptimizationContextRecord* deoptimization_context_stack; |
| |
| // For debugger, a linked list that keeps the mapping from frame_id to shadow frame. |
| // Shadow frames may be created before deoptimization happens so that the debugger can |
| // set local values there first. |
| FrameIdToShadowFrame* frame_id_to_shadow_frame; |
| |
| // A cached copy of the java.lang.Thread's (modified UTF-8) name. |
| // If this is not null or kThreadNameDuringStartup, then it owns the malloc memory holding |
| // the string. Updated in an RCU-like manner. |
| std::atomic<const char*> name; |
| static_assert(std::atomic<const char*>::is_always_lock_free); |
| |
| // A cached pthread_t for the pthread underlying this Thread*. |
| pthread_t pthread_self; |
| |
| // If no_thread_suspension_ is > 0, what is causing that assertion. |
| const char* last_no_thread_suspension_cause; |
| |
| // After a thread observes a suspend request and enters a suspended state, |
| // it notifies the requestor by arriving at a "suspend barrier". This consists of decrementing |
| // the atomic integer representing the barrier. (This implementation was introduced in 2015 to |
| // minimize cost. There may be other options.) These atomic integer barriers are always |
| // stored on the requesting thread's stack. They are referenced from the target thread's |
| // data structure in one of two ways; in either case the data structure referring to these |
| // barriers is guarded by suspend_count_lock: |
| // 1. A SuspendAll barrier is directly referenced from the target thread. Only one of these |
| // can be active at a time: |
| AtomicInteger* active_suspendall_barrier GUARDED_BY(Locks::thread_suspend_count_lock_); |
| // 2. For individual thread suspensions, active barriers are embedded in a struct that is used |
| // to link together all suspend requests for this thread. Unlike the SuspendAll case, each |
| // barrier is referenced by a single target thread, and thus can appear only on a single list. |
| // The struct as a whole is still stored on the requesting thread's stack. |
| WrappedSuspend1Barrier* active_suspend1_barriers GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| // thread_local_pos and thread_local_end must be consecutive for ldrd and are 8 byte aligned for |
| // potentially better performance. |
| uint8_t* thread_local_pos; |
| uint8_t* thread_local_end; |
| |
| // Thread-local allocation pointer. Can be moved above the preceding two to correct alignment. |
| uint8_t* thread_local_start; |
| |
| // Thread local limit is how much we can expand the thread local buffer to, it is greater or |
| // equal to thread_local_end. |
| uint8_t* thread_local_limit; |
| |
| size_t thread_local_objects; |
| |
| // Pending checkpoint function or null if non-pending. If this checkpoint is set and someone |
| // requests another checkpoint, it goes to the checkpoint overflow list. |
| Closure* checkpoint_function GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| // Entrypoint function pointers. |
| // TODO: move this to more of a global offset table model to avoid per-thread duplication. |
| JniEntryPoints jni_entrypoints; |
| QuickEntryPoints quick_entrypoints; |
| |
| // There are RosAlloc::kNumThreadLocalSizeBrackets thread-local size brackets per thread. |
| void* rosalloc_runs[kNumRosAllocThreadLocalSizeBracketsInThread]; |
| |
| // Thread-local allocation stack data/routines. |
| StackReference<mirror::Object>* thread_local_alloc_stack_top; |
| StackReference<mirror::Object>* thread_local_alloc_stack_end; |
| |
| // Pointer to the mutator lock. |
| // This is the same as `Locks::mutator_lock_` but cached for faster state transitions. |
| MutatorMutex* mutator_lock; |
| |
| // Support for Mutex lock hierarchy bug detection. |
| BaseMutex* held_mutexes[kLockLevelCount]; |
| |
| // The function used for thread flip. Set while holding Locks::thread_suspend_count_lock_ and |
| // with all other threads suspended. May be cleared while being read. |
| std::atomic<Closure*> flip_function; |
| |
| union { |
| // Thread-local mark stack for the concurrent copying collector. |
| gc::accounting::AtomicStack<mirror::Object>* thread_local_mark_stack; |
| // Thread-local page-sized buffer for userfaultfd GC. |
| uint8_t* thread_local_gc_buffer; |
| }; |
| |
| // The pending async-exception or null. |
| mirror::Throwable* async_exception; |
| |
| // Top of the linked-list for reflective-handle scopes or null if none. |
| BaseReflectiveHandleScope* top_reflective_handle_scope; |
| |
| // Pointer to a thread-local buffer for method tracing. |
| uintptr_t* method_trace_buffer; |
| |
| // The index of the next free entry in method_trace_buffer. |
| size_t method_trace_buffer_index; |
| |
| // Pointer to the first node of an intrusively doubly-linked list of ThreadExitFlags. |
| ThreadExitFlag* thread_exit_flags GUARDED_BY(Locks::thread_list_lock_); |
| } tlsPtr_; |
| |
| // Small thread-local cache to be used from the interpreter. |
| // It is keyed by dex instruction pointer. |
| // The value is opcode-depended (e.g. field offset). |
| InterpreterCache interpreter_cache_; |
| |
| // All fields below this line should not be accessed by native code. This means these fields can |
| // be modified, rearranged, added or removed without having to modify asm_support.h |
| |
| // Guards the 'wait_monitor_' members. |
| Mutex* wait_mutex_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| |
| // Condition variable waited upon during a wait. |
| ConditionVariable* wait_cond_ GUARDED_BY(wait_mutex_); |
| // Pointer to the monitor lock we're currently waiting on or null if not waiting. |
| Monitor* wait_monitor_ GUARDED_BY(wait_mutex_); |
| |
| // Debug disable read barrier count, only is checked for debug builds and only in the runtime. |
| uint8_t debug_disallow_read_barrier_ = 0; |
| |
| // Counters used only for debugging and error reporting. Likely to wrap. Small to avoid |
| // increasing Thread size. |
| // We currently maintain these unconditionally, since it doesn't cost much, and we seem to have |
| // persistent issues with suspension timeouts, which these should help to diagnose. |
| // TODO: Reconsider this. |
| std::atomic<uint8_t> suspended_count_ = 0; // Number of times we entered a suspended state after |
| // running checkpoints. |
| std::atomic<uint8_t> checkpoint_count_ = 0; // Number of checkpoints we started running. |
| |
| // Note that it is not in the packed struct, may not be accessed for cross compilation. |
| uintptr_t poison_object_cookie_ = 0; |
| |
| // Pending extra checkpoints if checkpoint_function_ is already used. |
| std::list<Closure*> checkpoint_overflow_ GUARDED_BY(Locks::thread_suspend_count_lock_); |
| |
| // Custom TLS field that can be used by plugins or the runtime. Should not be accessed directly by |
| // compiled code or entrypoints. |
| SafeMap<std::string, std::unique_ptr<TLSData>, std::less<>> custom_tls_ |
| GUARDED_BY(Locks::custom_tls_lock_); |
| |
| #if !defined(__BIONIC__) |
| #if !defined(ANDROID_HOST_MUSL) |
| __attribute__((tls_model("initial-exec"))) |
| #endif |
| static thread_local Thread* self_tls_; |
| #endif |
| |
| // True if the thread is some form of runtime thread (ex, GC or JIT). |
| bool is_runtime_thread_; |
| |
| // Set during execution of JNI methods that get field and method id's as part of determining if |
| // the caller is allowed to access all fields and methods in the Core Platform API. |
| uint32_t core_platform_api_cookie_ = 0; |
| |
| friend class gc::collector::SemiSpace; // For getting stack traces. |
| friend class Runtime; // For CreatePeer. |
| friend class QuickExceptionHandler; // For dumping the stack. |
| friend class ScopedThreadStateChange; |
| friend class StubTest; // For accessing entrypoints. |
| friend class ThreadList; // For ~Thread, Destroy and EnsureFlipFunctionStarted. |
| friend class EntrypointsOrderTest; // To test the order of tls entries. |
| friend class JniCompilerTest; // For intercepting JNI entrypoint calls. |
| |
| DISALLOW_COPY_AND_ASSIGN(Thread); |
| }; |
| |
| class SCOPED_CAPABILITY ScopedAssertNoThreadSuspension { |
| public: |
| ALWAYS_INLINE ScopedAssertNoThreadSuspension(const char* cause, |
| bool enabled = true) |
| ACQUIRE(Roles::uninterruptible_) |
| : enabled_(enabled) { |
| if (!enabled_) { |
| return; |
| } |
| if (kIsDebugBuild) { |
| self_ = Thread::Current(); |
| old_cause_ = self_->StartAssertNoThreadSuspension(cause); |
| } else { |
| Roles::uninterruptible_.Acquire(); // No-op. |
| } |
| } |
| ALWAYS_INLINE ~ScopedAssertNoThreadSuspension() RELEASE(Roles::uninterruptible_) { |
| if (!enabled_) { |
| return; |
| } |
| if (kIsDebugBuild) { |
| self_->EndAssertNoThreadSuspension(old_cause_); |
| } else { |
| Roles::uninterruptible_.Release(); // No-op. |
| } |
| } |
| |
| private: |
| Thread* self_; |
| const bool enabled_; |
| const char* old_cause_; |
| }; |
| |
| class ScopedAllowThreadSuspension { |
| public: |
| ALWAYS_INLINE ScopedAllowThreadSuspension() RELEASE(Roles::uninterruptible_) { |
| if (kIsDebugBuild) { |
| self_ = Thread::Current(); |
| old_cause_ = self_->EndAssertNoThreadSuspension(); |
| } else { |
| Roles::uninterruptible_.Release(); // No-op. |
| } |
| } |
| ALWAYS_INLINE ~ScopedAllowThreadSuspension() ACQUIRE(Roles::uninterruptible_) { |
| if (kIsDebugBuild) { |
| CHECK(self_->StartAssertNoThreadSuspension(old_cause_) == nullptr); |
| } else { |
| Roles::uninterruptible_.Acquire(); // No-op. |
| } |
| } |
| |
| private: |
| Thread* self_; |
| const char* old_cause_; |
| }; |
| |
| |
| class ScopedStackedShadowFramePusher { |
| public: |
| ScopedStackedShadowFramePusher(Thread* self, ShadowFrame* sf) : self_(self), sf_(sf) { |
| DCHECK_EQ(sf->GetLink(), nullptr); |
| self_->PushStackedShadowFrame(sf, StackedShadowFrameType::kShadowFrameUnderConstruction); |
| } |
| ~ScopedStackedShadowFramePusher() { |
| ShadowFrame* sf = self_->PopStackedShadowFrame(); |
| DCHECK_EQ(sf, sf_); |
| } |
| |
| private: |
| Thread* const self_; |
| ShadowFrame* const sf_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ScopedStackedShadowFramePusher); |
| }; |
| |
| // Only works for debug builds. |
| class ScopedDebugDisallowReadBarriers { |
| public: |
| explicit ScopedDebugDisallowReadBarriers(Thread* self) : self_(self) { |
| self_->ModifyDebugDisallowReadBarrier(1); |
| } |
| ~ScopedDebugDisallowReadBarriers() { |
| self_->ModifyDebugDisallowReadBarrier(-1); |
| } |
| |
| private: |
| Thread* const self_; |
| }; |
| |
| class ThreadLifecycleCallback { |
| public: |
| virtual ~ThreadLifecycleCallback() {} |
| |
| virtual void ThreadStart(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) = 0; |
| virtual void ThreadDeath(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) = 0; |
| }; |
| |
| // Store an exception from the thread and suppress it for the duration of this object. |
| class ScopedExceptionStorage { |
| public: |
| EXPORT explicit ScopedExceptionStorage(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); |
| void SuppressOldException(const char* message = "") REQUIRES_SHARED(Locks::mutator_lock_); |
| EXPORT ~ScopedExceptionStorage() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| Thread* self_; |
| StackHandleScope<1> hs_; |
| MutableHandle<mirror::Throwable> excp_; |
| }; |
| |
| EXPORT std::ostream& operator<<(std::ostream& os, const Thread& thread); |
| std::ostream& operator<<(std::ostream& os, StackedShadowFrameType thread); |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_THREAD_H_ |