Compilation filter

This CL introduces a static compilation filter mechanism intended
to allow us to reduce compilation time and space requirements until
we have a profiling mechanism in place.

It supports 5 modes of filtering:

   o interpret-only (compile nothing)
   o deferred-compilation (compile only those methods believe to be
     compute-intensive)
   o space (optimized for space)
   o balanced (best return on space investment)
   o speed (compile everything)

A future CL will allow the default filtering mode to be set
via system property.  For now, you can pass it in via command
line as follows:

   dalvikvm -compiler-filter:[interpret-only|defer-compilation|
                              space|balanced|speed]

or dex2oat --runtime-arg -compiler-filter:[one of the above modes]

Creating a file named art/SMALL_ART will force the filter
default to interpret-only.  Later on we'll move this capability
to a persistent system property.

or modify kDefaultCompilerFilter in runtime.h

It also changes the compiler driver to allow the compilers to
decline to compile a method by return NULL.

Change-Id: Ic73411818f8bb845a4a19a05b0395c50902c534f
(cherry picked from commit a024a0686c3b0fea13f362bff70d65981e5febc5)
diff --git a/compiler/dex/mir_analysis.cc b/compiler/dex/mir_analysis.cc
new file mode 100644
index 0000000..8321ff6
--- /dev/null
+++ b/compiler/dex/mir_analysis.cc
@@ -0,0 +1,1056 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "compiler_internals.h"
+#include "dataflow_iterator-inl.h"
+
+namespace art {
+
+  // Instruction characteristics used to statically identify computation-intensive methods.
+const uint32_t MIRGraph::analysis_attributes_[kMirOpLast] = {
+  // 00 NOP
+  AN_NONE,
+
+  // 01 MOVE vA, vB
+  AN_MOVE,
+
+  // 02 MOVE_FROM16 vAA, vBBBB
+  AN_MOVE,
+
+  // 03 MOVE_16 vAAAA, vBBBB
+  AN_MOVE,
+
+  // 04 MOVE_WIDE vA, vB
+  AN_MOVE,
+
+  // 05 MOVE_WIDE_FROM16 vAA, vBBBB
+  AN_MOVE,
+
+  // 06 MOVE_WIDE_16 vAAAA, vBBBB
+  AN_MOVE,
+
+  // 07 MOVE_OBJECT vA, vB
+  AN_MOVE,
+
+  // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
+  AN_MOVE,
+
+  // 09 MOVE_OBJECT_16 vAAAA, vBBBB
+  AN_MOVE,
+
+  // 0A MOVE_RESULT vAA
+  AN_MOVE,
+
+  // 0B MOVE_RESULT_WIDE vAA
+  AN_MOVE,
+
+  // 0C MOVE_RESULT_OBJECT vAA
+  AN_MOVE,
+
+  // 0D MOVE_EXCEPTION vAA
+  AN_MOVE,
+
+  // 0E RETURN_VOID
+  AN_BRANCH,
+
+  // 0F RETURN vAA
+  AN_BRANCH,
+
+  // 10 RETURN_WIDE vAA
+  AN_BRANCH,
+
+  // 11 RETURN_OBJECT vAA
+  AN_BRANCH,
+
+  // 12 CONST_4 vA, #+B
+  AN_SIMPLECONST,
+
+  // 13 CONST_16 vAA, #+BBBB
+  AN_SIMPLECONST,
+
+  // 14 CONST vAA, #+BBBBBBBB
+  AN_SIMPLECONST,
+
+  // 15 CONST_HIGH16 VAA, #+BBBB0000
+  AN_SIMPLECONST,
+
+  // 16 CONST_WIDE_16 vAA, #+BBBB
+  AN_SIMPLECONST,
+
+  // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
+  AN_SIMPLECONST,
+
+  // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
+  AN_SIMPLECONST,
+
+  // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
+  AN_SIMPLECONST,
+
+  // 1A CONST_STRING vAA, string@BBBB
+  AN_NONE,
+
+  // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
+  AN_NONE,
+
+  // 1C CONST_CLASS vAA, type@BBBB
+  AN_NONE,
+
+  // 1D MONITOR_ENTER vAA
+  AN_NONE,
+
+  // 1E MONITOR_EXIT vAA
+  AN_NONE,
+
+  // 1F CHK_CAST vAA, type@BBBB
+  AN_NONE,
+
+  // 20 INSTANCE_OF vA, vB, type@CCCC
+  AN_NONE,
+
+  // 21 ARRAY_LENGTH vA, vB
+  AN_ARRAYOP,
+
+  // 22 NEW_INSTANCE vAA, type@BBBB
+  AN_HEAVYWEIGHT,
+
+  // 23 NEW_ARRAY vA, vB, type@CCCC
+  AN_HEAVYWEIGHT,
+
+  // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
+  AN_HEAVYWEIGHT,
+
+  // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
+  AN_HEAVYWEIGHT,
+
+  // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
+  AN_NONE,
+
+  // 27 THROW vAA
+  AN_HEAVYWEIGHT | AN_BRANCH,
+
+  // 28 GOTO
+  AN_BRANCH,
+
+  // 29 GOTO_16
+  AN_BRANCH,
+
+  // 2A GOTO_32
+  AN_BRANCH,
+
+  // 2B PACKED_SWITCH vAA, +BBBBBBBB
+  AN_NONE,
+
+  // 2C SPARSE_SWITCH vAA, +BBBBBBBB
+  AN_NONE,
+
+  // 2D CMPL_FLOAT vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // 2E CMPG_FLOAT vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // 2F CMPL_DOUBLE vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // 30 CMPG_DOUBLE vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // 31 CMP_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // 32 IF_EQ vA, vB, +CCCC
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 33 IF_NE vA, vB, +CCCC
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 34 IF_LT vA, vB, +CCCC
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 35 IF_GE vA, vB, +CCCC
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 36 IF_GT vA, vB, +CCCC
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 37 IF_LE vA, vB, +CCCC
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 38 IF_EQZ vAA, +BBBB
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 39 IF_NEZ vAA, +BBBB
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 3A IF_LTZ vAA, +BBBB
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 3B IF_GEZ vAA, +BBBB
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 3C IF_GTZ vAA, +BBBB
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 3D IF_LEZ vAA, +BBBB
+  AN_MATH | AN_BRANCH | AN_INT,
+
+  // 3E UNUSED_3E
+  AN_NONE,
+
+  // 3F UNUSED_3F
+  AN_NONE,
+
+  // 40 UNUSED_40
+  AN_NONE,
+
+  // 41 UNUSED_41
+  AN_NONE,
+
+  // 42 UNUSED_42
+  AN_NONE,
+
+  // 43 UNUSED_43
+  AN_NONE,
+
+  // 44 AGET vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 45 AGET_WIDE vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 46 AGET_OBJECT vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 47 AGET_BOOLEAN vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 48 AGET_BYTE vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 49 AGET_CHAR vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 4A AGET_SHORT vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 4B APUT vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 4C APUT_WIDE vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 4D APUT_OBJECT vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 4E APUT_BOOLEAN vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 4F APUT_BYTE vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 50 APUT_CHAR vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 51 APUT_SHORT vAA, vBB, vCC
+  AN_ARRAYOP,
+
+  // 52 IGET vA, vB, field@CCCC
+  AN_NONE,
+
+  // 53 IGET_WIDE vA, vB, field@CCCC
+  AN_NONE,
+
+  // 54 IGET_OBJECT vA, vB, field@CCCC
+  AN_NONE,
+
+  // 55 IGET_BOOLEAN vA, vB, field@CCCC
+  AN_NONE,
+
+  // 56 IGET_BYTE vA, vB, field@CCCC
+  AN_NONE,
+
+  // 57 IGET_CHAR vA, vB, field@CCCC
+  AN_NONE,
+
+  // 58 IGET_SHORT vA, vB, field@CCCC
+  AN_NONE,
+
+  // 59 IPUT vA, vB, field@CCCC
+  AN_NONE,
+
+  // 5A IPUT_WIDE vA, vB, field@CCCC
+  AN_NONE,
+
+  // 5B IPUT_OBJECT vA, vB, field@CCCC
+  AN_NONE,
+
+  // 5C IPUT_BOOLEAN vA, vB, field@CCCC
+  AN_NONE,
+
+  // 5D IPUT_BYTE vA, vB, field@CCCC
+  AN_NONE,
+
+  // 5E IPUT_CHAR vA, vB, field@CCCC
+  AN_NONE,
+
+  // 5F IPUT_SHORT vA, vB, field@CCCC
+  AN_NONE,
+
+  // 60 SGET vAA, field@BBBB
+  AN_NONE,
+
+  // 61 SGET_WIDE vAA, field@BBBB
+  AN_NONE,
+
+  // 62 SGET_OBJECT vAA, field@BBBB
+  AN_NONE,
+
+  // 63 SGET_BOOLEAN vAA, field@BBBB
+  AN_NONE,
+
+  // 64 SGET_BYTE vAA, field@BBBB
+  AN_NONE,
+
+  // 65 SGET_CHAR vAA, field@BBBB
+  AN_NONE,
+
+  // 66 SGET_SHORT vAA, field@BBBB
+  AN_NONE,
+
+  // 67 SPUT vAA, field@BBBB
+  AN_NONE,
+
+  // 68 SPUT_WIDE vAA, field@BBBB
+  AN_NONE,
+
+  // 69 SPUT_OBJECT vAA, field@BBBB
+  AN_NONE,
+
+  // 6A SPUT_BOOLEAN vAA, field@BBBB
+  AN_NONE,
+
+  // 6B SPUT_BYTE vAA, field@BBBB
+  AN_NONE,
+
+  // 6C SPUT_CHAR vAA, field@BBBB
+  AN_NONE,
+
+  // 6D SPUT_SHORT vAA, field@BBBB
+  AN_NONE,
+
+  // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 73 UNUSED_73
+  AN_NONE,
+
+  // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // 79 UNUSED_79
+  AN_NONE,
+
+  // 7A UNUSED_7A
+  AN_NONE,
+
+  // 7B NEG_INT vA, vB
+  AN_MATH | AN_INT,
+
+  // 7C NOT_INT vA, vB
+  AN_MATH | AN_INT,
+
+  // 7D NEG_LONG vA, vB
+  AN_MATH | AN_LONG,
+
+  // 7E NOT_LONG vA, vB
+  AN_MATH | AN_LONG,
+
+  // 7F NEG_FLOAT vA, vB
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // 80 NEG_DOUBLE vA, vB
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // 81 INT_TO_LONG vA, vB
+  AN_MATH | AN_INT | AN_LONG,
+
+  // 82 INT_TO_FLOAT vA, vB
+  AN_MATH | AN_FP | AN_INT | AN_SINGLE,
+
+  // 83 INT_TO_DOUBLE vA, vB
+  AN_MATH | AN_FP | AN_INT | AN_DOUBLE,
+
+  // 84 LONG_TO_INT vA, vB
+  AN_MATH | AN_INT | AN_LONG,
+
+  // 85 LONG_TO_FLOAT vA, vB
+  AN_MATH | AN_FP | AN_LONG | AN_SINGLE,
+
+  // 86 LONG_TO_DOUBLE vA, vB
+  AN_MATH | AN_FP | AN_LONG | AN_DOUBLE,
+
+  // 87 FLOAT_TO_INT vA, vB
+  AN_MATH | AN_FP | AN_INT | AN_SINGLE,
+
+  // 88 FLOAT_TO_LONG vA, vB
+  AN_MATH | AN_FP | AN_LONG | AN_SINGLE,
+
+  // 89 FLOAT_TO_DOUBLE vA, vB
+  AN_MATH | AN_FP | AN_SINGLE | AN_DOUBLE,
+
+  // 8A DOUBLE_TO_INT vA, vB
+  AN_MATH | AN_FP | AN_INT | AN_DOUBLE,
+
+  // 8B DOUBLE_TO_LONG vA, vB
+  AN_MATH | AN_FP | AN_LONG | AN_DOUBLE,
+
+  // 8C DOUBLE_TO_FLOAT vA, vB
+  AN_MATH | AN_FP | AN_SINGLE | AN_DOUBLE,
+
+  // 8D INT_TO_BYTE vA, vB
+  AN_MATH | AN_INT,
+
+  // 8E INT_TO_CHAR vA, vB
+  AN_MATH | AN_INT,
+
+  // 8F INT_TO_SHORT vA, vB
+  AN_MATH | AN_INT,
+
+  // 90 ADD_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 91 SUB_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 92 MUL_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 93 DIV_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 94 REM_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 95 AND_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 96 OR_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 97 XOR_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 98 SHL_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 99 SHR_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 9A USHR_INT vAA, vBB, vCC
+  AN_MATH | AN_INT,
+
+  // 9B ADD_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // 9C SUB_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // 9D MUL_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // 9E DIV_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // 9F REM_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // A0 AND_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // A1 OR_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // A2 XOR_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // A3 SHL_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // A4 SHR_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // A5 USHR_LONG vAA, vBB, vCC
+  AN_MATH | AN_LONG,
+
+  // A6 ADD_FLOAT vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // A7 SUB_FLOAT vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // A8 MUL_FLOAT vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // A9 DIV_FLOAT vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // AA REM_FLOAT vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // AB ADD_DOUBLE vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // AC SUB_DOUBLE vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // AD MUL_DOUBLE vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // AE DIV_DOUBLE vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // AF REM_DOUBLE vAA, vBB, vCC
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // B0 ADD_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B1 SUB_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B2 MUL_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B3 DIV_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B4 REM_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B5 AND_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B6 OR_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B7 XOR_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B8 SHL_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // B9 SHR_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // BA USHR_INT_2ADDR vA, vB
+  AN_MATH | AN_INT,
+
+  // BB ADD_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // BC SUB_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // BD MUL_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // BE DIV_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // BF REM_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // C0 AND_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // C1 OR_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // C2 XOR_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // C3 SHL_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // C4 SHR_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // C5 USHR_LONG_2ADDR vA, vB
+  AN_MATH | AN_LONG,
+
+  // C6 ADD_FLOAT_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // C7 SUB_FLOAT_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // C8 MUL_FLOAT_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // C9 DIV_FLOAT_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // CA REM_FLOAT_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_SINGLE,
+
+  // CB ADD_DOUBLE_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // CC SUB_DOUBLE_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // CD MUL_DOUBLE_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // CE DIV_DOUBLE_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // CF REM_DOUBLE_2ADDR vA, vB
+  AN_MATH | AN_FP | AN_DOUBLE,
+
+  // D0 ADD_INT_LIT16 vA, vB, #+CCCC
+  AN_MATH | AN_INT,
+
+  // D1 RSUB_INT vA, vB, #+CCCC
+  AN_MATH | AN_INT,
+
+  // D2 MUL_INT_LIT16 vA, vB, #+CCCC
+  AN_MATH | AN_INT,
+
+  // D3 DIV_INT_LIT16 vA, vB, #+CCCC
+  AN_MATH | AN_INT,
+
+  // D4 REM_INT_LIT16 vA, vB, #+CCCC
+  AN_MATH | AN_INT,
+
+  // D5 AND_INT_LIT16 vA, vB, #+CCCC
+  AN_MATH | AN_INT,
+
+  // D6 OR_INT_LIT16 vA, vB, #+CCCC
+  AN_MATH | AN_INT,
+
+  // D7 XOR_INT_LIT16 vA, vB, #+CCCC
+  AN_MATH | AN_INT,
+
+  // D8 ADD_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // DA MUL_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // DB DIV_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // DC REM_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // DD AND_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // DE OR_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // DF XOR_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // E0 SHL_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // E1 SHR_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // E2 USHR_INT_LIT8 vAA, vBB, #+CC
+  AN_MATH | AN_INT,
+
+  // E3 IGET_VOLATILE
+  AN_NONE,
+
+  // E4 IPUT_VOLATILE
+  AN_NONE,
+
+  // E5 SGET_VOLATILE
+  AN_NONE,
+
+  // E6 SPUT_VOLATILE
+  AN_NONE,
+
+  // E7 IGET_OBJECT_VOLATILE
+  AN_NONE,
+
+  // E8 IGET_WIDE_VOLATILE
+  AN_NONE,
+
+  // E9 IPUT_WIDE_VOLATILE
+  AN_NONE,
+
+  // EA SGET_WIDE_VOLATILE
+  AN_NONE,
+
+  // EB SPUT_WIDE_VOLATILE
+  AN_NONE,
+
+  // EC BREAKPOINT
+  AN_NONE,
+
+  // ED THROW_VERIFICATION_ERROR
+  AN_HEAVYWEIGHT | AN_BRANCH,
+
+  // EE EXECUTE_INLINE
+  AN_NONE,
+
+  // EF EXECUTE_INLINE_RANGE
+  AN_NONE,
+
+  // F0 INVOKE_OBJECT_INIT_RANGE
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // F1 RETURN_VOID_BARRIER
+  AN_BRANCH,
+
+  // F2 IGET_QUICK
+  AN_NONE,
+
+  // F3 IGET_WIDE_QUICK
+  AN_NONE,
+
+  // F4 IGET_OBJECT_QUICK
+  AN_NONE,
+
+  // F5 IPUT_QUICK
+  AN_NONE,
+
+  // F6 IPUT_WIDE_QUICK
+  AN_NONE,
+
+  // F7 IPUT_OBJECT_QUICK
+  AN_NONE,
+
+  // F8 INVOKE_VIRTUAL_QUICK
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // F9 INVOKE_VIRTUAL_QUICK_RANGE
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // FA INVOKE_SUPER_QUICK
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // FB INVOKE_SUPER_QUICK_RANGE
+  AN_INVOKE | AN_HEAVYWEIGHT,
+
+  // FC IPUT_OBJECT_VOLATILE
+  AN_NONE,
+
+  // FD SGET_OBJECT_VOLATILE
+  AN_NONE,
+
+  // FE SPUT_OBJECT_VOLATILE
+  AN_NONE,
+
+  // FF UNUSED_FF
+  AN_NONE,
+
+  // Beginning of extended MIR opcodes
+  // 100 MIR_PHI
+  AN_NONE,
+
+  // 101 MIR_COPY
+  AN_NONE,
+
+  // 102 MIR_FUSED_CMPL_FLOAT
+  AN_NONE,
+
+  // 103 MIR_FUSED_CMPG_FLOAT
+  AN_NONE,
+
+  // 104 MIR_FUSED_CMPL_DOUBLE
+  AN_NONE,
+
+  // 105 MIR_FUSED_CMPG_DOUBLE
+  AN_NONE,
+
+  // 106 MIR_FUSED_CMP_LONG
+  AN_NONE,
+
+  // 107 MIR_NOP
+  AN_NONE,
+
+  // 108 MIR_NULL_CHECK
+  AN_NONE,
+
+  // 109 MIR_RANGE_CHECK
+  AN_NONE,
+
+  // 110 MIR_DIV_ZERO_CHECK
+  AN_NONE,
+
+  // 111 MIR_CHECK
+  AN_NONE,
+
+  // 112 MIR_CHECKPART2
+  AN_NONE,
+
+  // 113 MIR_SELECT
+  AN_NONE,
+};
+
+struct MethodStats {
+  int dex_instructions;
+  int math_ops;
+  int fp_ops;
+  int array_ops;
+  int branch_ops;
+  int heavyweight_ops;
+  bool has_computational_loop;
+  float math_ratio;
+  float fp_ratio;
+  float array_ratio;
+  float branch_ratio;
+  float heavyweight_ratio;
+};
+
+void MIRGraph::AnalyzeBlock(BasicBlock* bb, MethodStats* stats) {
+  if (bb->visited || (bb->block_type != kDalvikByteCode)) {
+    return;
+  }
+  bool computational_block = true;
+  bool has_math = false;
+  /*
+   * For the purposes of this scan, we want to treat the set of basic blocks broken
+   * by an exception edge as a single basic block.  We'll scan forward along the fallthrough
+   * edges until we reach an explicit branch or return.
+   */
+  BasicBlock* ending_bb = bb;
+  if (ending_bb->last_mir_insn != NULL) {
+    uint32_t ending_flags = analysis_attributes_[ending_bb->last_mir_insn->dalvikInsn.opcode];
+    while ((ending_flags & AN_BRANCH) == 0) {
+      ending_bb = ending_bb->fall_through;
+      ending_flags = analysis_attributes_[ending_bb->last_mir_insn->dalvikInsn.opcode];
+    }
+  }
+  /*
+   * Ideally, we'd weight the operations by loop nesting level, but to do so we'd
+   * first need to do some expensive loop detection - and the point of this is to make
+   * an informed guess before investing in computation.  However, we can cheaply detect
+   * many simple loop forms without having to do full dataflow analysis.
+   */
+  int loop_scale_factor = 1;
+  // Simple for and while loops
+  if ((ending_bb->taken != NULL) && (ending_bb->fall_through == NULL)) {
+    if ((ending_bb->taken->taken == bb) || (ending_bb->taken->fall_through == bb)) {
+      loop_scale_factor = 25;
+    }
+  }
+  // Simple do-while loop
+  if ((ending_bb->taken != NULL) && (ending_bb->taken == bb)) {
+    loop_scale_factor = 25;
+  }
+
+  BasicBlock* tbb = bb;
+  bool done = false;
+  while (!done) {
+    tbb->visited = true;
+    for (MIR* mir = tbb->first_mir_insn; mir != NULL; mir = mir->next) {
+      if (static_cast<uint32_t>(mir->dalvikInsn.opcode) >= kMirOpFirst) {
+        // Skip any MIR pseudo-op.
+        continue;
+      }
+      uint32_t flags = analysis_attributes_[mir->dalvikInsn.opcode];
+      stats->dex_instructions += loop_scale_factor;
+      if ((flags & AN_BRANCH) == 0) {
+        computational_block &= ((flags & AN_COMPUTATIONAL) != 0);
+      } else {
+        stats->branch_ops += loop_scale_factor;
+      }
+      if ((flags & AN_MATH) != 0) {
+        stats->math_ops += loop_scale_factor;
+        has_math = true;
+      }
+      if ((flags & AN_FP) != 0) {
+        stats->fp_ops += loop_scale_factor;
+      }
+      if ((flags & AN_ARRAYOP) != 0) {
+        stats->array_ops += loop_scale_factor;
+      }
+      if ((flags & AN_HEAVYWEIGHT) != 0) {
+        stats->heavyweight_ops += loop_scale_factor;
+      }
+    }
+    if (tbb == ending_bb) {
+      done = true;
+    } else {
+      tbb = tbb->fall_through;
+    }
+  }
+  if (has_math && computational_block && (loop_scale_factor > 1)) {
+    stats->has_computational_loop = true;
+  }
+}
+
+bool MIRGraph::ComputeSkipCompilation(MethodStats* stats, bool skip_default) {
+  float count = stats->dex_instructions;
+  stats->math_ratio = stats->math_ops / count;
+  stats->fp_ratio = stats->fp_ops / count;
+  stats->branch_ratio = stats->branch_ops / count;
+  stats->array_ratio = stats->array_ops / count;
+  stats->heavyweight_ratio = stats->heavyweight_ops / count;
+
+  if (cu_->enable_debug & (1 << kDebugShowFilterStats)) {
+    LOG(INFO) << "STATS " << stats->dex_instructions << ", math:"
+              << stats->math_ratio << ", fp:"
+              << stats->fp_ratio << ", br:"
+              << stats->branch_ratio << ", hw:"
+              << stats-> heavyweight_ratio << ", arr:"
+              << stats->array_ratio << ", hot:"
+              << stats->has_computational_loop << ", "
+              << PrettyMethod(cu_->method_idx, *cu_->dex_file);
+  }
+
+  // Computation intensive?
+  if (stats->has_computational_loop && (stats->heavyweight_ratio < 0.04)) {
+    return false;
+  }
+
+  // Complex, logic-intensive?
+  if ((GetNumDalvikInsns() > Runtime::Current()->GetSmallMethodThreshold()) &&
+      stats->branch_ratio > 0.3) {
+    return false;
+  }
+
+  // Significant floating point?
+  if (stats->fp_ratio > 0.05) {
+    return false;
+  }
+
+  // Significant generic math?
+  if (stats->math_ratio > 0.3) {
+    return false;
+  }
+
+  // If array-intensive, compiling is probably worthwhile.
+  if (stats->array_ratio > 0.1) {
+    return false;
+  }
+
+  // If high proportion of expensive operations, skip.
+  if (stats->heavyweight_ratio > 0.3) {
+    return true;
+  }
+
+  return skip_default;
+}
+
+ /*
+  * Will eventually want this to be a bit more sophisticated and happen at verification time.
+  * Ultimate goal is to drive with profile data.
+  */
+bool MIRGraph::SkipCompilation(Runtime::CompilerFilter compiler_filter) {
+  if (compiler_filter == Runtime::kSpeed) {
+    // If going for speed, compile everything.
+    return false;
+  }
+
+  if (compiler_filter == Runtime::kInterpretOnly) {
+    LOG(WARNING) << "InterpretOnly should ideally be filtered out prior to parsing.";
+    return true;
+  }
+
+  // Filter 1: Skip huge methods (generally machine-generated initialization methods).
+  if (GetNumDalvikInsns() > Runtime::Current()->GetHugeMethodThreshold()) {
+    // Ain't nobody got time for that.
+    return true;
+  }
+
+  // Filter 2: Skip class initializers.
+  if (((cu_->access_flags & kAccConstructor) != 0) && ((cu_->access_flags & kAccStatic) != 0)) {
+    return true;
+  }
+
+  // Filter 3: if this method is a special pattern, go ahead and emit the canned pattern.
+  if (IsSpecialCase()) {
+    return false;
+  }
+
+  /* In balanced mode, we generally assume that we'll be compiling, and then detect
+   * methods that won't benefit and remove them.  In space or deferred mode, we do the
+   * opposite: assume no compilation and then add back presumed hot methods.
+   */
+  bool skip_compilation = (compiler_filter == Runtime::kBalanced) ? false : true;
+
+
+  // Filter 4: go ahead and compile the small ones.
+  size_t small_cutoff = 0;
+  switch (compiler_filter) {
+    case Runtime::kBalanced:
+      small_cutoff = Runtime::Current()->GetSmallMethodThreshold();
+      break;
+    case Runtime::kSpace:
+      small_cutoff = Runtime::Current()->GetTinyMethodThreshold();
+      break;
+    case Runtime::kDeferCompilation:
+      small_cutoff = 0;
+      break;
+    default:
+      LOG(FATAL) << "Unexpected compiler_filter_: " << compiler_filter;
+  }
+  if (GetNumDalvikInsns() < small_cutoff) {
+    return false;
+  }
+
+  // Analyze graph for:
+  //  o floating point computation
+  //  o basic blocks contained in loop with heavy arithmetic.
+  //  o proportion of conditional branches.
+
+  MethodStats stats;
+  memset(&stats, 0, sizeof(stats));
+
+  ClearAllVisitedFlags();
+  AllNodesIterator iter(this, false /* not iterative */);
+  for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
+    AnalyzeBlock(bb, &stats);
+  }
+
+  return ComputeSkipCompilation(&stats, skip_compilation);
+}
+
+}  // namespace art