Fix histogram memory issues.

Before we had buckets of 5 micro second size. For a 100 MS GC
this used at least 16 * (100 / .005) bytes of storage inside of the
histogram data structure. If you consider the 3 different GC types,
and each timing logger having its own histogram its easy to see
how memory used was significant.

We now have an upper bound on the number of buckets (default 100).
When we hit the upper bound we simply combine adjacent buckets
together. This reduces the total number of buckets by a factor of
2, while increasing the bucket size by a factor of 2. This means
that we may lose a slight amount of precision, but the confidence
intervals remain nearly as useful.

Total unknown memory (occam-svelte):
Before: 45648 kB:
After: 33304 kB

There are probably still some additional optimizations which can be
done as disabling histograms altogether reduces the memory used by
another ~2mB.

A bit of other cleanup in image_space.cc and dlmalloc_space.cc.

Bug: 9967927

Change-Id: I87bb6fe4a3e0e790f104abf3cf07f67677cd7ab3
diff --git a/runtime/base/histogram-inl.h b/runtime/base/histogram-inl.h
index 1a63cf4..0345266 100644
--- a/runtime/base/histogram-inl.h
+++ b/runtime/base/histogram-inl.h
@@ -29,7 +29,7 @@
 namespace art {
 
 template <class Value> inline void Histogram<Value>::AddValue(Value value) {
-  CHECK_GE(value, 0.0);
+  CHECK_GE(value, static_cast<Value>(0));
   if (value >= max_) {
     Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_;
     DCHECK_GT(new_max, max_);
@@ -37,91 +37,90 @@
   }
 
   BucketiseValue(value);
-  new_values_added_ = true;
 }
 
 template <class Value>
-inline Histogram<Value>::Histogram(const std::string name)
+inline Histogram<Value>::Histogram(const char* name, Value initial_bucket_width,
+                                   size_t max_buckets)
     : kAdjust(1000),
-      kBucketWidth(5),
-      kInitialBucketCount(10),
-      bucket_width_(kBucketWidth),
-      bucket_count_(kInitialBucketCount) {
-  name_ = name;
+      kInitialBucketCount(8),
+      name_(name),
+      max_buckets_(max_buckets),
+      bucket_width_(initial_bucket_width) {
   Reset();
 }
 
 template <class Value>
 inline void Histogram<Value>::GrowBuckets(Value new_max) {
   while (max_ < new_max) {
+    // If we have reached the maximum number of buckets, merge buckets together.
+    if (frequency_.size() >= max_buckets_) {
+      CHECK(IsAligned<2>(frequency_.size()));
+      // We double the width of each bucket to reduce the number of buckets by a factor of 2.
+      bucket_width_ *= 2;
+      const size_t limit = frequency_.size() / 2;
+      // Merge the frequencies by adding each adjacent two together.
+      for (size_t i = 0; i < limit; ++i) {
+        frequency_[i] = frequency_[i * 2] + frequency_[i * 2 + 1];
+      }
+      // Remove frequencies in the second half of the array which were added to the first half.
+      while (frequency_.size() > limit) {
+        frequency_.pop_back();
+      }
+    }
     max_ += bucket_width_;
-    ranges_.push_back(max_);
     frequency_.push_back(0);
-    bucket_count_++;
   }
 }
 
-template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) {
+template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) const {
   // Since this is only a linear histogram, bucket index can be found simply with
   // dividing the value by the bucket width.
   DCHECK_GE(val, min_);
   DCHECK_LE(val, max_);
-  size_t bucket_idx = static_cast<size_t>(static_cast<double>(val - min_) / bucket_width_);
+  const size_t bucket_idx = static_cast<size_t>((val - min_) / bucket_width_);
   DCHECK_GE(bucket_idx, 0ul);
-  DCHECK_LE(bucket_idx, bucket_count_);
+  DCHECK_LE(bucket_idx, GetBucketCount());
   return bucket_idx;
 }
 
 template <class Value>
-inline void Histogram<Value>::BucketiseValue(Value value) {
-  CHECK_LT(value, max_);
-  sum_ += value;
-  sum_of_squares_ += value * value;
-  size_t bucket_idx = FindBucket(value);
-  sample_size_++;
-  if (value > max_value_added_) {
-    max_value_added_ = value;
-  }
-  if (value < min_value_added_) {
-    min_value_added_ = value;
-  }
-  frequency_[bucket_idx]++;
+inline void Histogram<Value>::BucketiseValue(Value val) {
+  CHECK_LT(val, max_);
+  sum_ += val;
+  sum_of_squares_ += val * val;
+  ++sample_size_;
+  ++frequency_[FindBucket(val)];
+  max_value_added_ = std::max(val, max_value_added_);
+  min_value_added_ = std::min(val, min_value_added_);
 }
 
 template <class Value> inline void Histogram<Value>::Initialize() {
-  DCHECK_GT(bucket_count_, 0ul);
-  size_t idx = 0;
-  for (; idx < bucket_count_; idx++) {
-    ranges_.push_back(min_ + static_cast<Value>(idx) * (bucket_width_));
+  for (size_t idx = 0; idx < kInitialBucketCount; idx++) {
     frequency_.push_back(0);
   }
   // Cumulative frequency and ranges has a length of 1 over frequency.
-  ranges_.push_back(min_ + idx * bucket_width_);
-  max_ = bucket_width_ * bucket_count_;
+  max_ = bucket_width_ * GetBucketCount();
+}
+
+template <class Value> inline size_t Histogram<Value>::GetBucketCount() const {
+  return frequency_.size();
 }
 
 template <class Value> inline void Histogram<Value>::Reset() {
-  bucket_width_ = kBucketWidth;
-  bucket_count_ = kInitialBucketCount;
-  max_ = bucket_width_ * bucket_count_;
   sum_of_squares_ = 0;
   sample_size_ = 0;
   min_ = 0;
   sum_ = 0;
   min_value_added_ = std::numeric_limits<Value>::max();
   max_value_added_ = std::numeric_limits<Value>::min();
-  new_values_added_ = false;
-  ranges_.clear();
   frequency_.clear();
-  cumulative_freq_.clear();
-  cumulative_perc_.clear();
   Initialize();
 }
 
-template <class Value> inline void Histogram<Value>::BuildRanges() {
-  for (size_t idx = 0; idx < bucket_count_; ++idx) {
-    ranges_.push_back(min_ + idx * bucket_width_);
-  }
+template <class Value> inline Value Histogram<Value>::GetRange(size_t bucket_idx) const {
+  DCHECK_LE(bucket_idx, GetBucketCount());
+  return min_ + bucket_idx * bucket_width_;
 }
 
 template <class Value> inline double Histogram<Value>::Mean() const {
@@ -143,25 +142,21 @@
 }
 
 template <class Value>
-inline void Histogram<Value>::PrintBins(std::ostream &os) {
+inline void Histogram<Value>::PrintBins(std::ostream& os, const CumulativeData& data) const {
   DCHECK_GT(sample_size_, 0ull);
-  DCHECK(!new_values_added_);
-  size_t bin_idx = 0;
-  while (bin_idx < cumulative_freq_.size()) {
-    if (bin_idx > 0 &&
-        cumulative_perc_[bin_idx] == cumulative_perc_[bin_idx - 1]) {
+  for (size_t bin_idx = 0; bin_idx < data.freq_.size(); ++bin_idx) {
+    if (bin_idx > 0 && data.perc_[bin_idx] == data.perc_[bin_idx - 1]) {
       bin_idx++;
       continue;
     }
-    os << ranges_[bin_idx] << ": " << cumulative_freq_[bin_idx] << "\t"
-       << cumulative_perc_[bin_idx] * 100.0 << "%\n";
-    bin_idx++;
+    os << GetRange(bin_idx) << ": " << data.freq_[bin_idx] << "\t"
+       << data.perc_[bin_idx] * 100.0 << "%\n";
   }
 }
 
 template <class Value>
-inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os,
-                                                       double interval) const {
+inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os, double interval,
+                                                       const CumulativeData& data) const {
   DCHECK_GT(interval, 0);
   DCHECK_LT(interval, 1.0);
 
@@ -169,69 +164,51 @@
   double per_1 = per_0 + interval;
   os << Name() << ":\t";
   TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust);
-  os << (interval * 100) << "% C.I. "
-     << FormatDuration(Percentile(per_0) * kAdjust, unit);
-  os << "-" << FormatDuration(Percentile(per_1) * kAdjust, unit) << " ";
+  os << (interval * 100) << "% C.I. " << FormatDuration(Percentile(per_0, data) * kAdjust, unit);
+  os << "-" << FormatDuration(Percentile(per_1, data) * kAdjust, unit) << " ";
   os << "Avg: " << FormatDuration(Mean() * kAdjust, unit) << " Max: ";
   os << FormatDuration(Max() * kAdjust, unit) << "\n";
 }
 
-template <class Value> inline void Histogram<Value>::BuildCDF() {
-  DCHECK_EQ(cumulative_freq_.size(), 0ull);
-  DCHECK_EQ(cumulative_perc_.size(), 0ull);
+template <class Value> inline void Histogram<Value>::CreateHistogram(CumulativeData& out_data) {
+  DCHECK_GT(sample_size_, 0ull);
+  out_data.freq_.clear();
+  out_data.perc_.clear();
   uint64_t accumulated = 0;
-
-  cumulative_freq_.push_back(accumulated);
-  cumulative_perc_.push_back(0.0);
+  out_data.freq_.push_back(accumulated);
+  out_data.perc_.push_back(0.0);
   for (size_t idx = 0; idx < frequency_.size(); idx++) {
     accumulated += frequency_[idx];
-    cumulative_freq_.push_back(accumulated);
-    cumulative_perc_.push_back(static_cast<double>(accumulated) /
-                               static_cast<double>(sample_size_));
+    out_data.freq_.push_back(accumulated);
+    out_data.perc_.push_back(static_cast<double>(accumulated) / static_cast<double>(sample_size_));
   }
-  DCHECK_EQ(*(cumulative_freq_.end() - 1), sample_size_);
-  DCHECK_EQ(*(cumulative_perc_.end() - 1), 1.0);
-}
-
-template <class Value> inline void Histogram<Value>::CreateHistogram() {
-  DCHECK_GT(sample_size_, 0ull);
-
-  // Create a histogram only if new values are added.
-  if (!new_values_added_)
-    return;
-
-  // Reset cumulative values in case this is not the first time creating histogram.
-  cumulative_freq_.clear();
-  cumulative_perc_.clear();
-  BuildCDF();
-  new_values_added_ = false;
+  DCHECK_EQ(out_data.freq_.back(), sample_size_);
+  DCHECK_LE(std::abs(out_data.perc_.back() - 1.0), 0.001);
 }
 
 template <class Value>
-inline double Histogram<Value>::Percentile(double per) const {
-  DCHECK_GT(cumulative_perc_.size(), 0ull);
-  size_t idx, upper_idx = 0, lower_idx = 0;
-  for (idx = 0; idx < cumulative_perc_.size(); idx++) {
-    if (per <= cumulative_perc_[idx]) {
+inline double Histogram<Value>::Percentile(double per, const CumulativeData& data) const {
+  DCHECK_GT(data.perc_.size(), 0ull);
+  size_t upper_idx = 0, lower_idx = 0;
+  for (size_t idx = 0; idx < data.perc_.size(); idx++) {
+    if (per <= data.perc_[idx]) {
       upper_idx = idx;
       break;
     }
 
-    if (per >= cumulative_perc_[idx] && idx != 0 &&
-        cumulative_perc_[idx] != cumulative_perc_[idx - 1]) {
+    if (per >= data.perc_[idx] && idx != 0 && data.perc_[idx] != data.perc_[idx - 1]) {
       lower_idx = idx;
     }
   }
 
-  double upper_value = static_cast<double>(ranges_[upper_idx]);
-  double lower_value = static_cast<double>(ranges_[lower_idx]);
-
-  double lower_perc = cumulative_perc_[lower_idx];
-  double upper_perc = cumulative_perc_[upper_idx];
-
+  const double lower_perc = data.perc_[lower_idx];
+  const double lower_value = static_cast<double>(GetRange(lower_idx));
   if (per == lower_perc) {
     return lower_value;
   }
+
+  const double upper_perc = data.perc_[upper_idx];
+  const double upper_value = static_cast<double>(GetRange(upper_idx));
   if (per == upper_perc) {
     return upper_value;
   }