blob: 8974429955dff31c0cfd0479c9ebebd38df4fa36 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_arm64.h"
#include "aarch64/assembler-aarch64.h"
#include "aarch64/registers-aarch64.h"
#include "arch/arm64/asm_support_arm64.h"
#include "arch/arm64/instruction_set_features_arm64.h"
#include "arch/arm64/jni_frame_arm64.h"
#include "art_method-inl.h"
#include "base/bit_utils.h"
#include "base/bit_utils_iterator.h"
#include "class_root-inl.h"
#include "class_table.h"
#include "code_generator_utils.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "gc/accounting/card_table.h"
#include "gc/space/image_space.h"
#include "heap_poisoning.h"
#include "interpreter/mterp/nterp.h"
#include "intrinsics.h"
#include "intrinsics_arm64.h"
#include "intrinsics_list.h"
#include "intrinsics_utils.h"
#include "jit/profiling_info.h"
#include "linker/linker_patch.h"
#include "lock_word.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/var_handle.h"
#include "offsets.h"
#include "optimizing/common_arm64.h"
#include "optimizing/nodes.h"
#include "profiling_info_builder.h"
#include "thread.h"
#include "trace.h"
#include "utils/arm64/assembler_arm64.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"
using namespace vixl::aarch64; // NOLINT(build/namespaces)
using vixl::ExactAssemblyScope;
using vixl::CodeBufferCheckScope;
using vixl::EmissionCheckScope;
#ifdef __
#error "ARM64 Codegen VIXL macro-assembler macro already defined."
#endif
namespace art HIDDEN {
template<class MirrorType>
class GcRoot;
namespace arm64 {
using helpers::ARM64EncodableConstantOrRegister;
using helpers::ArtVixlRegCodeCoherentForRegSet;
using helpers::CPURegisterFrom;
using helpers::DRegisterFrom;
using helpers::FPRegisterFrom;
using helpers::HeapOperand;
using helpers::HeapOperandFrom;
using helpers::InputCPURegisterOrZeroRegAt;
using helpers::InputFPRegisterAt;
using helpers::InputOperandAt;
using helpers::InputRegisterAt;
using helpers::Int64FromLocation;
using helpers::LocationFrom;
using helpers::OperandFromMemOperand;
using helpers::OutputCPURegister;
using helpers::OutputFPRegister;
using helpers::OutputRegister;
using helpers::RegisterFrom;
using helpers::StackOperandFrom;
using helpers::VIXLRegCodeFromART;
using helpers::WRegisterFrom;
using helpers::XRegisterFrom;
// TODO(mythria): Expand SystemRegister in vixl to include this value.
uint16_t SYS_CNTVCT_EL0 = SystemRegisterEncoder<1, 3, 14, 0, 2>::value;
// The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
// table version generates 7 instructions and num_entries literals. Compare/jump sequence will
// generates less code/data with a small num_entries.
static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
// Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle
// offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions.
// For the Baker read barrier implementation using link-time generated thunks we need to split
// the offset explicitly.
constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB;
inline Condition ARM64Condition(IfCondition cond) {
switch (cond) {
case kCondEQ: return eq;
case kCondNE: return ne;
case kCondLT: return lt;
case kCondLE: return le;
case kCondGT: return gt;
case kCondGE: return ge;
case kCondB: return lo;
case kCondBE: return ls;
case kCondA: return hi;
case kCondAE: return hs;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
// The ARM64 condition codes can express all the necessary branches, see the
// "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
// There is no dex instruction or HIR that would need the missing conditions
// "equal or unordered" or "not equal".
switch (cond) {
case kCondEQ: return eq;
case kCondNE: return ne /* unordered */;
case kCondLT: return gt_bias ? cc : lt /* unordered */;
case kCondLE: return gt_bias ? ls : le /* unordered */;
case kCondGT: return gt_bias ? hi /* unordered */ : gt;
case kCondGE: return gt_bias ? cs /* unordered */ : ge;
default:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
}
Location ARM64ReturnLocation(DataType::Type return_type) {
// Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
// same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
// but we use the exact registers for clarity.
if (return_type == DataType::Type::kFloat32) {
return LocationFrom(s0);
} else if (return_type == DataType::Type::kFloat64) {
return LocationFrom(d0);
} else if (return_type == DataType::Type::kInt64) {
return LocationFrom(x0);
} else if (return_type == DataType::Type::kVoid) {
return Location::NoLocation();
} else {
return LocationFrom(w0);
}
}
Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
return ARM64ReturnLocation(return_type);
}
static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
InvokeRuntimeCallingConvention calling_convention;
RegisterSet caller_saves = RegisterSet::Empty();
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
DataType::Type::kReference).GetCode());
return caller_saves;
}
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value()
void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
for (uint32_t i : LowToHighBits(core_spills)) {
// If the register holds an object, update the stack mask.
if (locations->RegisterContainsObject(i)) {
locations->SetStackBit(stack_offset / kVRegSize);
}
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
saved_core_stack_offsets_[i] = stack_offset;
stack_offset += kXRegSizeInBytes;
}
const size_t fp_reg_size = codegen->GetSlowPathFPWidth();
const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
for (uint32_t i : LowToHighBits(fp_spills)) {
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
saved_fpu_stack_offsets_[i] = stack_offset;
stack_offset += fp_reg_size;
}
InstructionCodeGeneratorARM64* visitor =
down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
visitor->SaveLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
}
void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
InstructionCodeGeneratorARM64* visitor =
down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
visitor->RestoreLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
}
class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(0),
LocationFrom(calling_convention.GetRegisterAt(0)),
DataType::Type::kInt32,
locations->InAt(1),
LocationFrom(calling_convention.GetRegisterAt(1)),
DataType::Type::kInt32);
QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
? kQuickThrowStringBounds
: kQuickThrowArrayBounds;
arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
}
bool IsFatal() const override { return true; }
const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; }
private:
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
};
class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
}
bool IsFatal() const override { return true; }
const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; }
private:
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
};
class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
public:
LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at)
: SlowPathCodeARM64(at), cls_(cls) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
Location out = locations->Out();
const uint32_t dex_pc = instruction_->GetDexPc();
bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
if (must_resolve_type) {
DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()) ||
arm64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
&cls_->GetDexFile()));
dex::TypeIndex type_index = cls_->GetTypeIndex();
__ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_);
if (cls_->NeedsAccessCheck()) {
CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
arm64_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
} else {
CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
}
// If we also must_do_clinit, the resolved type is now in the correct register.
} else {
DCHECK(must_do_clinit);
Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)),
source,
cls_->GetType());
}
if (must_do_clinit) {
arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
}
// Move the class to the desired location.
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
DataType::Type type = instruction_->GetType();
arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
}
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "LoadClassSlowPathARM64"; }
private:
// The class this slow path will load.
HLoadClass* const cls_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
};
class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit LoadStringSlowPathARM64(HLoadString* instruction)
: SlowPathCodeARM64(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
__ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_);
arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
DataType::Type type = instruction_->GetType();
arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "LoadStringSlowPathARM64"; }
private:
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
};
class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
arm64_codegen->InvokeRuntime(kQuickThrowNullPointer,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
}
bool IsFatal() const override { return true; }
const char* GetDescription() const override { return "NullCheckSlowPathARM64"; }
private:
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
};
class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
: SlowPathCodeARM64(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations); // Only saves live vector regs for SIMD.
arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
RestoreLiveRegisters(codegen, locations); // Only restores live vector regs for SIMD.
if (successor_ == nullptr) {
__ B(GetReturnLabel());
} else {
__ B(arm64_codegen->GetLabelOf(successor_));
}
}
vixl::aarch64::Label* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
HBasicBlock* GetSuccessor() const {
return successor_;
}
const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; }
private:
// If not null, the block to branch to after the suspend check.
HBasicBlock* const successor_;
// If `successor_` is null, the label to branch to after the suspend check.
vixl::aarch64::Label return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
};
class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
: SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
uint32_t dex_pc = instruction_->GetDexPc();
__ Bind(GetEntryLabel());
if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
SaveLiveRegisters(codegen, locations);
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(0),
LocationFrom(calling_convention.GetRegisterAt(0)),
DataType::Type::kReference,
locations->InAt(1),
LocationFrom(calling_convention.GetRegisterAt(1)),
DataType::Type::kReference);
if (instruction_->IsInstanceOf()) {
arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
DataType::Type ret_type = instruction_->GetType();
Location ret_loc = calling_convention.GetReturnLocation(ret_type);
arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
} else {
DCHECK(instruction_->IsCheckCast());
arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
}
if (!is_fatal_) {
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
}
const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; }
bool IsFatal() const override { return is_fatal_; }
private:
const bool is_fatal_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
};
class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
: SlowPathCodeARM64(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
LocationSummary* locations = instruction_->GetLocations();
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
__ Mov(calling_convention.GetRegisterAt(0),
static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
}
const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; }
private:
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
};
class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
parallel_move.AddMove(
locations->InAt(0),
LocationFrom(calling_convention.GetRegisterAt(0)),
DataType::Type::kReference,
nullptr);
parallel_move.AddMove(
locations->InAt(1),
LocationFrom(calling_convention.GetRegisterAt(1)),
DataType::Type::kInt32,
nullptr);
parallel_move.AddMove(
locations->InAt(2),
LocationFrom(calling_convention.GetRegisterAt(2)),
DataType::Type::kReference,
nullptr);
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "ArraySetSlowPathARM64"; }
private:
DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
};
void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
uint32_t num_entries = switch_instr_->GetNumEntries();
DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
// We are about to use the assembler to place literals directly. Make sure we have enough
// underlying code buffer and we have generated the jump table with right size.
EmissionCheckScope scope(codegen->GetVIXLAssembler(),
num_entries * sizeof(int32_t),
CodeBufferCheckScope::kExactSize);
__ Bind(&table_start_);
const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
for (uint32_t i = 0; i < num_entries; i++) {
vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]);
DCHECK(target_label->IsBound());
ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
Literal<int32_t> literal(jump_offset);
__ place(&literal);
}
}
// Slow path generating a read barrier for a heap reference.
class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
public:
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index)
: SlowPathCodeARM64(instruction),
out_(out),
ref_(ref),
obj_(obj),
offset_(offset),
index_(index) {
// If `obj` is equal to `out` or `ref`, it means the initial object
// has been overwritten by (or after) the heap object reference load
// to be instrumented, e.g.:
//
// __ Ldr(out, HeapOperand(out, class_offset);
// codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
//
// In that case, we have lost the information about the original
// object, and the emitted read barrier cannot work properly.
DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
}
void EmitNativeCode(CodeGenerator* codegen) override {
DCHECK(codegen->EmitReadBarrier());
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
DataType::Type type = DataType::Type::kReference;
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
DCHECK(instruction_->IsInstanceFieldGet() ||
instruction_->IsStaticFieldGet() ||
instruction_->IsArrayGet() ||
instruction_->IsInstanceOf() ||
instruction_->IsCheckCast() ||
(instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier for heap reference slow path: "
<< instruction_->DebugName();
// The read barrier instrumentation of object ArrayGet
// instructions does not support the HIntermediateAddress
// instruction.
DCHECK(!(instruction_->IsArrayGet() &&
instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
// We may have to change the index's value, but as `index_` is a
// constant member (like other "inputs" of this slow path),
// introduce a copy of it, `index`.
Location index = index_;
if (index_.IsValid()) {
// Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
if (instruction_->IsArrayGet()) {
// Compute the actual memory offset and store it in `index`.
Register index_reg = RegisterFrom(index_, DataType::Type::kInt32);
DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
// We are about to change the value of `index_reg` (see the
// calls to vixl::MacroAssembler::Lsl and
// vixl::MacroAssembler::Mov below), but it has
// not been saved by the previous call to
// art::SlowPathCode::SaveLiveRegisters, as it is a
// callee-save register --
// art::SlowPathCode::SaveLiveRegisters does not consider
// callee-save registers, as it has been designed with the
// assumption that callee-save registers are supposed to be
// handled by the called function. So, as a callee-save
// register, `index_reg` _would_ eventually be saved onto
// the stack, but it would be too late: we would have
// changed its value earlier. Therefore, we manually save
// it here into another freely available register,
// `free_reg`, chosen of course among the caller-save
// registers (as a callee-save `free_reg` register would
// exhibit the same problem).
//
// Note we could have requested a temporary register from
// the register allocator instead; but we prefer not to, as
// this is a slow path, and we know we can find a
// caller-save register that is available.
Register free_reg = FindAvailableCallerSaveRegister(codegen);
__ Mov(free_reg.W(), index_reg);
index_reg = free_reg;
index = LocationFrom(index_reg);
} else {
// The initial register stored in `index_` has already been
// saved in the call to art::SlowPathCode::SaveLiveRegisters
// (as it is not a callee-save register), so we can freely
// use it.
}
// Shifting the index value contained in `index_reg` by the scale
// factor (2) cannot overflow in practice, as the runtime is
// unable to allocate object arrays with a size larger than
// 2^26 - 1 (that is, 2^28 - 4 bytes).
__ Lsl(index_reg, index_reg, DataType::SizeShift(type));
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
__ Add(index_reg, index_reg, Operand(offset_));
} else {
// In the case of the following intrinsics `index_` is not shifted by a scale factor of 2
// (as in the case of ArrayGet), as it is actually an offset to an object field within an
// object.
DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
HInvoke* invoke = instruction_->AsInvoke();
DCHECK(IsUnsafeGetReference(invoke) ||
IsVarHandleGet(invoke) ||
IsUnsafeCASReference(invoke) ||
IsVarHandleCASFamily(invoke)) << invoke->GetIntrinsic();
DCHECK_EQ(offset_, 0u);
DCHECK(index_.IsRegister());
}
}
// We're moving two or three locations to locations that could
// overlap, so we need a parallel move resolver.
InvokeRuntimeCallingConvention calling_convention;
HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
parallel_move.AddMove(ref_,
LocationFrom(calling_convention.GetRegisterAt(0)),
type,
nullptr);
parallel_move.AddMove(obj_,
LocationFrom(calling_convention.GetRegisterAt(1)),
type,
nullptr);
if (index.IsValid()) {
parallel_move.AddMove(index,
LocationFrom(calling_convention.GetRegisterAt(2)),
DataType::Type::kInt32,
nullptr);
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
} else {
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
}
arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<
kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
private:
Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode());
size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode());
for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
return Register(VIXLRegCodeFromART(i), kXRegSize);
}
}
// We shall never fail to find a free caller-save register, as
// there are more than two core caller-save registers on ARM64
// (meaning it is possible to find one which is different from
// `ref` and `obj`).
DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
LOG(FATAL) << "Could not find a free register";
UNREACHABLE();
}
const Location out_;
const Location ref_;
const Location obj_;
const uint32_t offset_;
// An additional location containing an index to an array.
// Only used for HArrayGet and the UnsafeGetObject &
// UnsafeGetObjectVolatile intrinsics.
const Location index_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
};
// Slow path generating a read barrier for a GC root.
class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
public:
ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
: SlowPathCodeARM64(instruction), out_(out), root_(root) {
}
void EmitNativeCode(CodeGenerator* codegen) override {
DCHECK(codegen->EmitReadBarrier());
LocationSummary* locations = instruction_->GetLocations();
DataType::Type type = DataType::Type::kReference;
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
DCHECK(instruction_->IsLoadClass() ||
instruction_->IsLoadString() ||
(instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier for GC root slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
// The argument of the ReadBarrierForRootSlow is not a managed
// reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
// thus we need a 64-bit move here, and we cannot use
//
// arm64_codegen->MoveLocation(
// LocationFrom(calling_convention.GetRegisterAt(0)),
// root_,
// type);
//
// which would emit a 32-bit move, as `type` is a (32-bit wide)
// reference type (`DataType::Type::kReference`).
__ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; }
private:
const Location out_;
const Location root_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
};
class MethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit MethodEntryExitHooksSlowPathARM64(HInstruction* instruction)
: SlowPathCodeARM64(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
QuickEntrypointEnum entry_point =
(instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
if (instruction_->IsMethodExitHook()) {
__ Mov(vixl::aarch64::x4, arm64_codegen->GetFrameSize());
}
arm64_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override {
return "MethodEntryExitHooksSlowPath";
}
private:
DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARM64);
};
class CompileOptimizedSlowPathARM64 : public SlowPathCodeARM64 {
public:
CompileOptimizedSlowPathARM64(HSuspendCheck* check, Register profiling_info)
: SlowPathCodeARM64(check),
profiling_info_(profiling_info) {}
void EmitNativeCode(CodeGenerator* codegen) override {
uint32_t entrypoint_offset =
GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value();
__ Bind(GetEntryLabel());
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
UseScratchRegisterScope temps(arm64_codegen->GetVIXLAssembler());
Register counter = temps.AcquireW();
__ Mov(counter, ProfilingInfo::GetOptimizeThreshold());
__ Strh(counter,
MemOperand(profiling_info_, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
if (instruction_ != nullptr) {
// Only saves live vector regs for SIMD.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
__ Ldr(lr, MemOperand(tr, entrypoint_offset));
// Note: we don't record the call here (and therefore don't generate a stack
// map), as the entrypoint should never be suspended.
__ Blr(lr);
if (instruction_ != nullptr) {
// Only restores live vector regs for SIMD.
RestoreLiveRegisters(codegen, instruction_->GetLocations());
}
__ B(GetExitLabel());
}
const char* GetDescription() const override {
return "CompileOptimizedSlowPath";
}
private:
// The register where the profiling info is stored when entering the slow
// path.
Register profiling_info_;
DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARM64);
};
#undef __
Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
Location next_location;
if (type == DataType::Type::kVoid) {
LOG(FATAL) << "Unreachable type " << type;
}
if (DataType::IsFloatingPointType(type) &&
(float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
} else if (!DataType::IsFloatingPointType(type) &&
(gp_index_ < calling_convention.GetNumberOfRegisters())) {
next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
: Location::StackSlot(stack_offset);
}
// Space on the stack is reserved for all arguments.
stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
return next_location;
}
Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
return LocationFrom(kArtMethodRegister);
}
Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
DCHECK_NE(type, DataType::Type::kReference);
Location location = Location::NoLocation();
if (DataType::IsFloatingPointType(type)) {
if (fpr_index_ < kParameterFPRegistersLength) {
location = LocationFrom(kParameterFPRegisters[fpr_index_]);
++fpr_index_;
}
} else {
// Native ABI uses the same registers as managed, except that the method register x0
// is a normal argument.
if (gpr_index_ < 1u + kParameterCoreRegistersLength) {
location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]);
++gpr_index_;
}
}
if (location.IsInvalid()) {
if (DataType::Is64BitType(type)) {
location = Location::DoubleStackSlot(stack_offset_);
} else {
location = Location::StackSlot(stack_offset_);
}
stack_offset_ += kFramePointerSize;
if (for_register_allocation_) {
location = Location::Any();
}
}
return location;
}
Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const {
// We perform conversion to the managed ABI return register after the call if needed.
InvokeDexCallingConventionVisitorARM64 dex_calling_convention;
return dex_calling_convention.GetReturnLocation(type);
}
Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const {
// Pass the method in the hidden argument x15.
return Location::RegisterLocation(x15.GetCode());
}
namespace detail {
// Mark which intrinsics we don't have handcrafted code for.
template <Intrinsics T>
struct IsUnimplemented {
bool is_unimplemented = false;
};
#define TRUE_OVERRIDE(Name) \
template <> \
struct IsUnimplemented<Intrinsics::k##Name> { \
bool is_unimplemented = true; \
};
UNIMPLEMENTED_INTRINSIC_LIST_ARM64(TRUE_OVERRIDE)
#undef TRUE_OVERRIDE
static constexpr bool kIsIntrinsicUnimplemented[] = {
false, // kNone
#define IS_UNIMPLEMENTED(Intrinsic, ...) \
IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented,
ART_INTRINSICS_LIST(IS_UNIMPLEMENTED)
#undef IS_UNIMPLEMENTED
};
} // namespace detail
CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats)
: CodeGenerator(graph,
kNumberOfAllocatableRegisters,
kNumberOfAllocatableFPRegisters,
kNumberOfAllocatableRegisterPairs,
callee_saved_core_registers.GetList(),
callee_saved_fp_registers.GetList(),
compiler_options,
stats,
ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)),
block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
location_builder_neon_(graph, this),
instruction_visitor_neon_(graph, this),
location_builder_sve_(graph, this),
instruction_visitor_sve_(graph, this),
move_resolver_(graph->GetAllocator(), this),
assembler_(graph->GetAllocator(),
compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()),
boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
jit_patches_(&assembler_, graph->GetAllocator()),
jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
// Save the link register (containing the return address) to mimic Quick.
AddAllocatedRegister(LocationFrom(lr));
bool use_sve = ShouldUseSVE();
if (use_sve) {
location_builder_ = &location_builder_sve_;
instruction_visitor_ = &instruction_visitor_sve_;
} else {
location_builder_ = &location_builder_neon_;
instruction_visitor_ = &instruction_visitor_neon_;
}
}
bool CodeGeneratorARM64::ShouldUseSVE() const {
return GetInstructionSetFeatures().HasSVE();
}
size_t CodeGeneratorARM64::GetSIMDRegisterWidth() const {
return SupportsPredicatedSIMD()
? GetInstructionSetFeatures().GetSVEVectorLength() / kBitsPerByte
: vixl::aarch64::kQRegSizeInBytes;
}
#define __ GetVIXLAssembler()->
void CodeGeneratorARM64::EmitJumpTables() {
for (auto&& jump_table : jump_tables_) {
jump_table->EmitTable(this);
}
}
void CodeGeneratorARM64::Finalize() {
EmitJumpTables();
// Emit JIT baker read barrier slow paths.
DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
for (auto& entry : jit_baker_read_barrier_slow_paths_) {
uint32_t encoded_data = entry.first;
vixl::aarch64::Label* slow_path_entry = &entry.second.label;
__ Bind(slow_path_entry);
CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
}
// Ensure we emit the literal pool.
__ FinalizeCode();
CodeGenerator::Finalize();
// Verify Baker read barrier linker patches.
if (kIsDebugBuild) {
ArrayRef<const uint8_t> code(GetCode());
for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
DCHECK(info.label.IsBound());
uint32_t literal_offset = info.label.GetLocation();
DCHECK_ALIGNED(literal_offset, 4u);
auto GetInsn = [&code](uint32_t offset) {
DCHECK_ALIGNED(offset, 4u);
return
(static_cast<uint32_t>(code[offset + 0]) << 0) +
(static_cast<uint32_t>(code[offset + 1]) << 8) +
(static_cast<uint32_t>(code[offset + 2]) << 16)+
(static_cast<uint32_t>(code[offset + 3]) << 24);
};
const uint32_t encoded_data = info.custom_data;
BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
// Check that the next instruction matches the expected LDR.
switch (kind) {
case BakerReadBarrierKind::kField:
case BakerReadBarrierKind::kAcquire: {
DCHECK_GE(code.size() - literal_offset, 8u);
uint32_t next_insn = GetInsn(literal_offset + 4u);
CheckValidReg(next_insn & 0x1fu); // Check destination register.
const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
if (kind == BakerReadBarrierKind::kField) {
// LDR (immediate) with correct base_reg.
CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
} else {
DCHECK(kind == BakerReadBarrierKind::kAcquire);
// LDAR with correct base_reg.
CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5));
}
break;
}
case BakerReadBarrierKind::kArray: {
DCHECK_GE(code.size() - literal_offset, 8u);
uint32_t next_insn = GetInsn(literal_offset + 4u);
// LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
// and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
CheckValidReg(next_insn & 0x1fu); // Check destination register.
const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
CheckValidReg((next_insn >> 16) & 0x1f); // Check index register
break;
}
case BakerReadBarrierKind::kGcRoot: {
DCHECK_GE(literal_offset, 4u);
uint32_t prev_insn = GetInsn(literal_offset - 4u);
const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
// Usually LDR (immediate) with correct root_reg but
// we may have a "MOV marked, old_value" for intrinsic CAS.
if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV?
CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR?
}
break;
}
default:
LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
UNREACHABLE();
}
}
}
}
void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
// Note: There are 6 kinds of moves:
// 1. constant -> GPR/FPR (non-cycle)
// 2. constant -> stack (non-cycle)
// 3. GPR/FPR -> GPR/FPR
// 4. GPR/FPR -> stack
// 5. stack -> GPR/FPR
// 6. stack -> stack (non-cycle)
// Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
// VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
// cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
// dependency.
vixl_temps_.Open(GetVIXLAssembler());
}
void ParallelMoveResolverARM64::FinishEmitNativeCode() {
vixl_temps_.Close();
}
Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister
|| kind == Location::kStackSlot || kind == Location::kDoubleStackSlot
|| kind == Location::kSIMDStackSlot);
kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot)
? Location::kFpuRegister
: Location::kRegister;
Location scratch = GetScratchLocation(kind);
if (!scratch.Equals(Location::NoLocation())) {
return scratch;
}
// Allocate from VIXL temp registers.
if (kind == Location::kRegister) {
scratch = LocationFrom(vixl_temps_.AcquireX());
} else {
DCHECK_EQ(kind, Location::kFpuRegister);
scratch = codegen_->GetGraph()->HasSIMD()
? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_)
: LocationFrom(vixl_temps_.AcquireD());
}
AddScratchLocation(scratch);
return scratch;
}
void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
if (loc.IsRegister()) {
vixl_temps_.Release(XRegisterFrom(loc));
} else {
DCHECK(loc.IsFpuRegister());
if (codegen_->GetGraph()->HasSIMD()) {
codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_);
} else {
vixl_temps_.Release(DRegisterFrom(loc));
}
}
RemoveScratchLocation(loc);
}
void ParallelMoveResolverARM64::EmitMove(size_t index) {
MoveOperands* move = moves_[index];
codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid);
}
void LocationsBuilderARM64::VisitMethodExitHook(HMethodExitHook* method_hook) {
LocationSummary* locations = new (GetGraph()->GetAllocator())
LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
DataType::Type return_type = method_hook->InputAt(0)->GetType();
locations->SetInAt(0, ARM64ReturnLocation(return_type));
}
void InstructionCodeGeneratorARM64::GenerateMethodEntryExitHook(HInstruction* instruction) {
MacroAssembler* masm = GetVIXLAssembler();
UseScratchRegisterScope temps(masm);
Register addr = temps.AcquireX();
Register index = temps.AcquireX();
Register value = index.W();
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARM64(instruction);
codegen_->AddSlowPath(slow_path);
if (instruction->IsMethodExitHook()) {
// Check if we are required to check if the caller needs a deoptimization. Strictly speaking it
// would be sufficient to check if CheckCallerForDeopt bit is set. Though it is faster to check
// if it is just non-zero. kCHA bit isn't used in debuggable runtimes as cha optimization is
// disabled in debuggable runtime. The other bit is used when this method itself requires a
// deoptimization due to redefinition. So it is safe to just check for non-zero value here.
__ Ldr(value, MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
__ Cbnz(value, slow_path->GetEntryLabel());
}
uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation());
MemberOffset offset = instruction->IsMethodExitHook() ?
instrumentation::Instrumentation::HaveMethodExitListenersOffset() :
instrumentation::Instrumentation::HaveMethodEntryListenersOffset();
__ Mov(addr, address + offset.Int32Value());
__ Ldrb(value, MemOperand(addr, 0));
__ Cmp(value, Operand(instrumentation::Instrumentation::kFastTraceListeners));
// Check if there are any method entry / exit listeners. If no, continue.
__ B(lt, slow_path->GetExitLabel());
// Check if there are any slow (jvmti / trace with thread cpu time) method entry / exit listeners.
// If yes, just take the slow path.
__ B(gt, slow_path->GetEntryLabel());
// Check if there is place in the buffer to store a new entry, if no, take slow path.
uint32_t trace_buffer_index_offset =
Thread::TraceBufferIndexOffset<kArm64PointerSize>().Int32Value();
__ Ldr(index, MemOperand(tr, trace_buffer_index_offset));
__ Subs(index, index, kNumEntriesForWallClock);
__ B(lt, slow_path->GetEntryLabel());
// Update the index in the `Thread`.
__ Str(index, MemOperand(tr, trace_buffer_index_offset));
// Calculate the entry address in the buffer.
// addr = base_addr + sizeof(void*) * index;
__ Ldr(addr, MemOperand(tr, Thread::TraceBufferPtrOffset<kArm64PointerSize>().SizeValue()));
__ ComputeAddress(addr, MemOperand(addr, index, LSL, TIMES_8));
Register tmp = index;
// Record method pointer and trace action.
__ Ldr(tmp, MemOperand(sp, 0));
// Use last two bits to encode trace method action. For MethodEntry it is 0
// so no need to set the bits since they are 0 already.
if (instruction->IsMethodExitHook()) {
DCHECK_GE(ArtMethod::Alignment(kRuntimePointerSize), static_cast<size_t>(4));
static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodEnter) == 0);
static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodExit) == 1);
__ Orr(tmp, tmp, Operand(enum_cast<int32_t>(TraceAction::kTraceMethodExit)));
}
__ Str(tmp, MemOperand(addr, kMethodOffsetInBytes));
// Record the timestamp.
__ Mrs(tmp, (SystemRegister)SYS_CNTVCT_EL0);
__ Str(tmp, MemOperand(addr, kTimestampOffsetInBytes));
__ Bind(slow_path->GetExitLabel());
}
void InstructionCodeGeneratorARM64::VisitMethodExitHook(HMethodExitHook* instruction) {
DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
DCHECK(codegen_->RequiresCurrentMethod());
GenerateMethodEntryExitHook(instruction);
}
void LocationsBuilderARM64::VisitMethodEntryHook(HMethodEntryHook* method_hook) {
new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
}
void InstructionCodeGeneratorARM64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
DCHECK(codegen_->RequiresCurrentMethod());
GenerateMethodEntryExitHook(instruction);
}
void CodeGeneratorARM64::MaybeIncrementHotness(HSuspendCheck* suspend_check, bool is_frame_entry) {
MacroAssembler* masm = GetVIXLAssembler();
if (GetCompilerOptions().CountHotnessInCompiledCode()) {
UseScratchRegisterScope temps(masm);
Register counter = temps.AcquireX();
Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX();
if (!is_frame_entry) {
__ Ldr(method, MemOperand(sp, 0));
}
__ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
vixl::aarch64::Label done;
DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
__ Cbz(counter, &done);
__ Add(counter, counter, -1);
__ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
__ Bind(&done);
}
if (GetGraph()->IsCompilingBaseline() &&
GetGraph()->IsUsefulOptimizing() &&
!Runtime::Current()->IsAotCompiler()) {
ProfilingInfo* info = GetGraph()->GetProfilingInfo();
DCHECK(info != nullptr);
DCHECK(!HasEmptyFrame());
uint64_t address = reinterpret_cast64<uint64_t>(info);
UseScratchRegisterScope temps(masm);
Register counter = temps.AcquireW();
SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARM64(
suspend_check, /* profiling_info= */ lr);
AddSlowPath(slow_path);
__ Ldr(lr, jit_patches_.DeduplicateUint64Literal(address));
__ Ldrh(counter, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
__ Cbz(counter, slow_path->GetEntryLabel());
__ Add(counter, counter, -1);
__ Strh(counter, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
__ Bind(slow_path->GetExitLabel());
}
}
void CodeGeneratorARM64::GenerateFrameEntry() {
MacroAssembler* masm = GetVIXLAssembler();
// Check if we need to generate the clinit check. We will jump to the
// resolution stub if the class is not initialized and the executing thread is
// not the thread initializing it.
// We do this before constructing the frame to get the correct stack trace if
// an exception is thrown.
if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) {
UseScratchRegisterScope temps(masm);
vixl::aarch64::Label resolution;
vixl::aarch64::Label memory_barrier;
Register temp1 = temps.AcquireW();
Register temp2 = temps.AcquireW();
// Check if we're visibly initialized.
// We don't emit a read barrier here to save on code size. We rely on the
// resolution trampoline to do a suspend check before re-entering this code.
__ Ldr(temp1, MemOperand(kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value()));
__ Ldrb(temp2, HeapOperand(temp1, status_byte_offset));
__ Cmp(temp2, shifted_visibly_initialized_value);
__ B(hs, &frame_entry_label_);
// Check if we're initialized and jump to code that does a memory barrier if
// so.
__ Cmp(temp2, shifted_initialized_value);
__ B(hs, &memory_barrier);
// Check if we're initializing and the thread initializing is the one
// executing the code.
__ Cmp(temp2, shifted_initializing_value);
__ B(lo, &resolution);
__ Ldr(temp1, HeapOperand(temp1, mirror::Class::ClinitThreadIdOffset().Int32Value()));
__ Ldr(temp2, MemOperand(tr, Thread::TidOffset<kArm64PointerSize>().Int32Value()));
__ Cmp(temp1, temp2);
__ B(eq, &frame_entry_label_);
__ Bind(&resolution);
// Jump to the resolution stub.
ThreadOffset64 entrypoint_offset =
GetThreadOffset<kArm64PointerSize>(kQuickQuickResolutionTrampoline);
__ Ldr(temp1.X(), MemOperand(tr, entrypoint_offset.Int32Value()));
__ Br(temp1.X());
__ Bind(&memory_barrier);
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
__ Bind(&frame_entry_label_);
bool do_overflow_check =
FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod();
if (do_overflow_check) {
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireX();
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
__ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64)));
{
// Ensure that between load and RecordPcInfo there are no pools emitted.
ExactAssemblyScope eas(GetVIXLAssembler(),
kInstructionSize,
CodeBufferCheckScope::kExactSize);
__ ldr(wzr, MemOperand(temp, 0));
RecordPcInfo(nullptr, 0);
}
}
if (!HasEmptyFrame()) {
// Make sure the frame size isn't unreasonably large.
DCHECK_LE(GetFrameSize(), GetMaximumFrameSize());
// Stack layout:
// sp[frame_size - 8] : lr.
// ... : other preserved core registers.
// ... : other preserved fp registers.
// ... : reserved frame space.
// sp[0] : current method.
int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
DCHECK(!preserved_core_registers.IsEmpty());
uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
// Save the current method if we need it, or if using STP reduces code
// size. Note that we do not do this in HCurrentMethod, as the
// instruction might have been removed in the SSA graph.
CPURegister lowest_spill;
if (core_spills_offset == kXRegSizeInBytes) {
// If there is no gap between the method and the lowest core spill, use
// aligned STP pre-index to store both. Max difference is 512. We do
// that to reduce code size even if we do not have to save the method.
DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes.
lowest_spill = preserved_core_registers.PopLowestIndex();
__ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex));
} else if (RequiresCurrentMethod()) {
__ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
} else {
__ Claim(frame_size);
}
GetAssembler()->cfi().AdjustCFAOffset(frame_size);
if (lowest_spill.IsValid()) {
GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset);
core_spills_offset += kXRegSizeInBytes;
}
GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset);
GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset);
if (GetGraph()->HasShouldDeoptimizeFlag()) {
// Initialize should_deoptimize flag to 0.
Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize);
__ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag()));
}
}
MaybeIncrementHotness(/* suspend_check= */ nullptr, /* is_frame_entry= */ true);
MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void CodeGeneratorARM64::GenerateFrameExit() {
GetAssembler()->cfi().RememberState();
if (!HasEmptyFrame()) {
int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
DCHECK(!preserved_core_registers.IsEmpty());
uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
CPURegister lowest_spill;
if (core_spills_offset == kXRegSizeInBytes) {
// If there is no gap between the method and the lowest core spill, use
// aligned LDP pre-index to pop both. Max difference is 504. We do
// that to reduce code size even though the loaded method is unused.
DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes.
lowest_spill = preserved_core_registers.PopLowestIndex();
core_spills_offset += kXRegSizeInBytes;
}
GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset);
GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset);
if (lowest_spill.IsValid()) {
__ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex));
GetAssembler()->cfi().Restore(DWARFReg(lowest_spill));
} else {
__ Drop(frame_size);
}
GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
}
__ Ret();
GetAssembler()->cfi().RestoreState();
GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
}
CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
return CPURegList(CPURegister::kRegister, kXRegSize,
core_spill_mask_);
}
CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
GetNumberOfFloatingPointRegisters()));
return CPURegList(CPURegister::kVRegister, kDRegSize,
fpu_spill_mask_);
}
void CodeGeneratorARM64::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
DCHECK(location.IsRegister());
__ Mov(RegisterFrom(location, DataType::Type::kInt32), value);
}
void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
if (location.IsRegister()) {
locations->AddTemp(location);
} else {
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
}
}
void CodeGeneratorARM64::MaybeMarkGCCard(Register object, Register value, bool emit_null_check) {
vixl::aarch64::Label done;
if (emit_null_check) {
__ Cbz(value, &done);
}
MarkGCCard(object);
if (emit_null_check) {
__ Bind(&done);
}
}
void CodeGeneratorARM64::MarkGCCard(Register object) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register card = temps.AcquireX();
Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
// Load the address of the card table into `card`.
__ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
// Calculate the offset (in the card table) of the card corresponding to `object`.
__ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
// Write the `art::gc::accounting::CardTable::kCardDirty` value into the
// `object`'s card.
//
// Register `card` contains the address of the card table. Note that the card
// table's base is biased during its creation so that it always starts at an
// address whose least-significant byte is equal to `kCardDirty` (see
// art::gc::accounting::CardTable::Create). Therefore the STRB instruction
// below writes the `kCardDirty` (byte) value into the `object`'s card
// (located at `card + object >> kCardShift`).
//
// This dual use of the value in register `card` (1. to calculate the location
// of the card to mark; and 2. to load the `kCardDirty` value) saves a load
// (no need to explicitly load `kCardDirty` as an immediate value).
__ Strb(card, MemOperand(card, temp.X()));
}
void CodeGeneratorARM64::CheckGCCardIsValid(Register object) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register card = temps.AcquireX();
Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
vixl::aarch64::Label done;
// Load the address of the card table into `card`.
__ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
// Calculate the offset (in the card table) of the card corresponding to `object`.
__ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
// assert (!clean || !self->is_gc_marking)
__ Ldrb(temp, MemOperand(card, temp.X()));
static_assert(gc::accounting::CardTable::kCardClean == 0);
__ Cbnz(temp, &done);
__ Cbz(mr, &done);
__ Unreachable();
__ Bind(&done);
}
void CodeGeneratorARM64::SetupBlockedRegisters() const {
// Blocked core registers:
// lr : Runtime reserved.
// tr : Runtime reserved.
// mr : Runtime reserved.
// ip1 : VIXL core temp.
// ip0 : VIXL core temp.
// x18 : Platform register.
//
// Blocked fp registers:
// d31 : VIXL fp temp.
CPURegList reserved_core_registers = vixl_reserved_core_registers;
reserved_core_registers.Combine(runtime_reserved_core_registers);
while (!reserved_core_registers.IsEmpty()) {
blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true;
}
blocked_core_registers_[X18] = true;
CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
while (!reserved_fp_registers.IsEmpty()) {
blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true;
}
if (GetGraph()->IsDebuggable()) {
// Stubs do not save callee-save floating point registers. If the graph
// is debuggable, we need to deal with these registers differently. For
// now, just block them.
CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
while (!reserved_fp_registers_debuggable.IsEmpty()) {
blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true;
}
}
}
size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
__ Str(reg, MemOperand(sp, stack_index));
return kArm64WordSize;
}
size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
__ Ldr(reg, MemOperand(sp, stack_index));
return kArm64WordSize;
}
size_t CodeGeneratorARM64::SaveFloatingPointRegister([[maybe_unused]] size_t stack_index,
[[maybe_unused]] uint32_t reg_id) {
LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
<< "use SaveRestoreLiveRegistersHelper";
UNREACHABLE();
}
size_t CodeGeneratorARM64::RestoreFloatingPointRegister([[maybe_unused]] size_t stack_index,
[[maybe_unused]] uint32_t reg_id) {
LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
<< "use SaveRestoreLiveRegistersHelper";
UNREACHABLE();
}
void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << XRegister(reg);
}
void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << DRegister(reg);
}
const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const {
return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures();
}
void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
if (constant->IsIntConstant()) {
__ Mov(Register(destination), constant->AsIntConstant()->GetValue());
} else if (constant->IsLongConstant()) {
__ Mov(Register(destination), constant->AsLongConstant()->GetValue());
} else if (constant->IsNullConstant()) {
__ Mov(Register(destination), 0);
} else if (constant->IsFloatConstant()) {
__ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue());
} else {
DCHECK(constant->IsDoubleConstant());
__ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue());
}
}
static bool CoherentConstantAndType(Location constant, DataType::Type type) {
DCHECK(constant.IsConstant());
HConstant* cst = constant.GetConstant();
return (cst->IsIntConstant() && type == DataType::Type::kInt32) ||
// Null is mapped to a core W register, which we associate with kPrimInt.
(cst->IsNullConstant() && type == DataType::Type::kInt32) ||
(cst->IsLongConstant() && type == DataType::Type::kInt64) ||
(cst->IsFloatConstant() && type == DataType::Type::kFloat32) ||
(cst->IsDoubleConstant() && type == DataType::Type::kFloat64);
}
// Allocate a scratch register from the VIXL pool, querying first
// the floating-point register pool, and then the core register
// pool. This is essentially a reimplementation of
// vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize
// using a different allocation strategy.
static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm,
vixl::aarch64::UseScratchRegisterScope* temps,
int size_in_bits) {
return masm->GetScratchVRegisterList()->IsEmpty()
? CPURegister(temps->AcquireRegisterOfSize(size_in_bits))
: CPURegister(temps->AcquireVRegisterOfSize(size_in_bits));
}
void CodeGeneratorARM64::MoveLocation(Location destination,
Location source,
DataType::Type dst_type) {
if (source.Equals(destination)) {
return;
}
// A valid move can always be inferred from the destination and source
// locations. When moving from and to a register, the argument type can be
// used to generate 32bit instead of 64bit moves. In debug mode we also
// checks the coherency of the locations and the type.
bool unspecified_type = (dst_type == DataType::Type::kVoid);
if (destination.IsRegister() || destination.IsFpuRegister()) {
if (unspecified_type) {
HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
if (source.IsStackSlot() ||
(src_cst != nullptr && (src_cst->IsIntConstant()
|| src_cst->IsFloatConstant()
|| src_cst->IsNullConstant()))) {
// For stack slots and 32bit constants, a 64bit type is appropriate.
dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
} else {
// If the source is a double stack slot or a 64bit constant, a 64bit
// type is appropriate. Else the source is a register, and since the
// type has not been specified, we chose a 64bit type to force a 64bit
// move.
dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
}
}
DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
(destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
CPURegister dst = CPURegisterFrom(destination, dst_type);
if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
__ Ldr(dst, StackOperandFrom(source));
} else if (source.IsSIMDStackSlot()) {
GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source);
} else if (source.IsConstant()) {
DCHECK(CoherentConstantAndType(source, dst_type));
MoveConstant(dst, source.GetConstant());
} else if (source.IsRegister()) {
if (destination.IsRegister()) {
__ Mov(Register(dst), RegisterFrom(source, dst_type));
} else {
DCHECK(destination.IsFpuRegister());
DataType::Type source_type = DataType::Is64BitType(dst_type)
? DataType::Type::kInt64
: DataType::Type::kInt32;
__ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
}
} else {
DCHECK(source.IsFpuRegister());
if (destination.IsRegister()) {
DataType::Type source_type = DataType::Is64BitType(dst_type)
? DataType::Type::kFloat64
: DataType::Type::kFloat32;
__ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
} else {
DCHECK(destination.IsFpuRegister());
if (GetGraph()->HasSIMD()) {
GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source);
} else {
__ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type));
}
}
}
} else if (destination.IsSIMDStackSlot()) {
GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source);
} else { // The destination is not a register. It must be a stack slot.
DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
if (source.IsRegister() || source.IsFpuRegister()) {
if (unspecified_type) {
if (source.IsRegister()) {
dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
} else {
dst_type =
destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
}
}
DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
(source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
__ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
} else if (source.IsConstant()) {
DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
<< source << " " << dst_type;
UseScratchRegisterScope temps(GetVIXLAssembler());
HConstant* src_cst = source.GetConstant();
CPURegister temp;
if (src_cst->IsZeroBitPattern()) {
temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant())
? Register(xzr)
: Register(wzr);
} else {
if (src_cst->IsIntConstant()) {
temp = temps.AcquireW();
} else if (src_cst->IsLongConstant()) {
temp = temps.AcquireX();
} else if (src_cst->IsFloatConstant()) {
temp = temps.AcquireS();
} else {
DCHECK(src_cst->IsDoubleConstant());
temp = temps.AcquireD();
}
MoveConstant(temp, src_cst);
}
__ Str(temp, StackOperandFrom(destination));
} else {
DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
UseScratchRegisterScope temps(GetVIXLAssembler());
// Use any scratch register (a core or a floating-point one)
// from VIXL scratch register pools as a temporary.
//
// We used to only use the FP scratch register pool, but in some
// rare cases the only register from this pool (D31) would
// already be used (e.g. within a ParallelMove instruction, when
// a move is blocked by a another move requiring a scratch FP
// register, which would reserve D31). To prevent this issue, we
// ask for a scratch register of any type (core or FP).
//
// Also, we start by asking for a FP scratch register first, as the
// demand of scratch core registers is higher. This is why we
// use AcquireFPOrCoreCPURegisterOfSize instead of
// UseScratchRegisterScope::AcquireCPURegisterOfSize, which
// allocates core scratch registers first.
CPURegister temp = AcquireFPOrCoreCPURegisterOfSize(
GetVIXLAssembler(),
&temps,
(destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize));
__ Ldr(temp, StackOperandFrom(source));
__ Str(temp, StackOperandFrom(destination));
}
}
}
void CodeGeneratorARM64::Load(DataType::Type type,
CPURegister dst,
const MemOperand& src) {
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
__ Ldrb(Register(dst), src);
break;
case DataType::Type::kInt8:
__ Ldrsb(Register(dst), src);
break;
case DataType::Type::kUint16:
__ Ldrh(Register(dst), src);
break;
case DataType::Type::kInt16:
__ Ldrsh(Register(dst), src);
break;
case DataType::Type::kInt32:
case DataType::Type::kReference:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
__ Ldr(dst, src);
break;
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << type;
}
}
void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
DataType::Type type,
CPURegister dst,
const MemOperand& src,
bool needs_null_check) {
MacroAssembler* masm = GetVIXLAssembler();
UseScratchRegisterScope temps(masm);
Register temp_base = temps.AcquireX();
DCHECK(!src.IsPreIndex());
DCHECK(!src.IsPostIndex());
// TODO(vixl): Let the MacroAssembler handle MemOperand.
__ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src));
{
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
MemOperand base = MemOperand(temp_base);
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
{
ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ ldarb(Register(dst), base);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
}
if (type == DataType::Type::kInt8) {
__ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
}
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
{
ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ ldarh(Register(dst), base);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
}
if (type == DataType::Type::kInt16) {
__ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
}
break;
case DataType::Type::kInt32:
case DataType::Type::kReference:
case DataType::Type::kInt64:
DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
{
ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ ldar(Register(dst), base);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
}
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
DCHECK(dst.IsFPRegister());
DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
{
ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ ldar(temp, base);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
}
__ Fmov(VRegister(dst), temp);
break;
}
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << type;
}
}
}
void CodeGeneratorARM64::Store(DataType::Type type,
CPURegister src,
const MemOperand& dst) {
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
__ Strb(Register(src), dst);
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
__ Strh(Register(src), dst);
break;
case DataType::Type::kInt32:
case DataType::Type::kReference:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
__ Str(src, dst);
break;
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << type;
}
}
void CodeGeneratorARM64::StoreRelease(HInstruction* instruction,
DataType::Type type,
CPURegister src,
const MemOperand& dst,
bool needs_null_check) {
MacroAssembler* masm = GetVIXLAssembler();
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp_base = temps.AcquireX();
DCHECK(!dst.IsPreIndex());
DCHECK(!dst.IsPostIndex());
// TODO(vixl): Let the MacroAssembler handle this.
Operand op = OperandFromMemOperand(dst);
__ Add(temp_base, dst.GetBaseRegister(), op);
MemOperand base = MemOperand(temp_base);
// Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
{
ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ stlrb(Register(src), base);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
}
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
{
ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ stlrh(Register(src), base);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
}
break;
case DataType::Type::kInt32:
case DataType::Type::kReference:
case DataType::Type::kInt64:
DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
{
ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ stlr(Register(src), base);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
}
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
Register temp_src;
if (src.IsZero()) {
// The zero register is used to avoid synthesizing zero constants.
temp_src = Register(src);
} else {
DCHECK(src.IsFPRegister());
temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
__ Fmov(temp_src, VRegister(src));
}
{
ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ stlr(temp_src, base);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
}
break;
}
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << type;
}
}
void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
ValidateInvokeRuntime(entrypoint, instruction, slow_path);
ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint);
// Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
// entire oat file. This adds an extra branch and we do not want to slow down the main path.
// For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
__ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
// Ensure the pc position is recorded immediately after the `blr` instruction.
ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
__ blr(lr);
if (EntrypointRequiresStackMap(entrypoint)) {
RecordPcInfo(instruction, dex_pc, slow_path);
}
} else {
// Ensure the pc position is recorded immediately after the `bl` instruction.
ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
EmitEntrypointThunkCall(entrypoint_offset);
if (EntrypointRequiresStackMap(entrypoint)) {
RecordPcInfo(instruction, dex_pc, slow_path);
}
}
}
void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path) {
ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
__ Ldr(lr, MemOperand(tr, entry_point_offset));
__ Blr(lr);
}
void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
Register class_reg) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireW();
// CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize
// the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code
// size, load only the high byte of the field and compare with 0xf0.
// Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks
// show that this pattern is slower (tested on little cores).
__ Ldrb(temp, HeapOperand(class_reg, status_byte_offset));
__ Cmp(temp, shifted_visibly_initialized_value);
__ B(lo, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare(
HTypeCheckInstruction* check, vixl::aarch64::Register temp) {
uint32_t path_to_root = check->GetBitstringPathToRoot();
uint32_t mask = check->GetBitstringMask();
DCHECK(IsPowerOfTwo(mask + 1));
size_t mask_bits = WhichPowerOf2(mask + 1);
if (mask_bits == 16u) {
// Load only the bitstring part of the status word.
__ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
} else {
// /* uint32_t */ temp = temp->status_
__ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
// Extract the bitstring bits.
__ Ubfx(temp, temp, 0, mask_bits);
}
// Compare the bitstring bits to `path_to_root`.
__ Cmp(temp, path_to_root);
}
void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
BarrierType type = BarrierAll;
switch (kind) {
case MemBarrierKind::kAnyAny:
case MemBarrierKind::kAnyStore: {
type = BarrierAll;
break;
}
case MemBarrierKind::kLoadAny: {
type = BarrierReads;
break;
}
case MemBarrierKind::kStoreStore: {
type = BarrierWrites;
break;
}
default:
LOG(FATAL) << "Unexpected memory barrier " << kind;
}
__ Dmb(InnerShareable, type);
}
bool CodeGeneratorARM64::CanUseImplicitSuspendCheck() const {
// Use implicit suspend checks if requested in compiler options unless there are SIMD
// instructions in the graph. The implicit suspend check saves all FP registers as
// 64-bit (in line with the calling convention) but SIMD instructions can use 128-bit
// registers, so they need to be saved in an explicit slow path.
return GetCompilerOptions().GetImplicitSuspendChecks() && !GetGraph()->HasSIMD();
}
void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
if (instruction->IsNoOp()) {
if (successor != nullptr) {
__ B(codegen_->GetLabelOf(successor));
}
return;
}
if (codegen_->CanUseImplicitSuspendCheck()) {
__ Ldr(kImplicitSuspendCheckRegister, MemOperand(kImplicitSuspendCheckRegister));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
if (successor != nullptr) {
__ B(codegen_->GetLabelOf(successor));
}
return;
}
SuspendCheckSlowPathARM64* slow_path =
down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
if (slow_path == nullptr) {
slow_path =
new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor);
instruction->SetSlowPath(slow_path);
codegen_->AddSlowPath(slow_path);
if (successor != nullptr) {
DCHECK(successor->IsLoopHeader());
}
} else {
DCHECK_EQ(slow_path->GetSuccessor(), successor);
}
UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
Register temp = temps.AcquireW();
__ Ldr(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue()));
__ Tst(temp, Thread::SuspendOrCheckpointRequestFlags());
if (successor == nullptr) {
__ B(ne, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ B(eq, codegen_->GetLabelOf(successor));
__ B(slow_path->GetEntryLabel());
// slow_path will return to GetLabelOf(successor).
}
}
InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
CodeGeneratorARM64* codegen)
: InstructionCodeGenerator(graph, codegen),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
DCHECK_EQ(instr->InputCount(), 2U);
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
DataType::Type type = instr->GetResultType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
}
}
void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
bool object_field_get_with_read_barrier =
(instruction->GetType() == DataType::Type::kReference) && codegen_->EmitReadBarrier();
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction,
object_field_get_with_read_barrier
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
// We need a temporary register for the read barrier load in
// CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
// only if the field is volatile or the offset is too big.
if (field_info.IsVolatile() ||
field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
locations->AddTemp(FixedTempLocation());
}
}
// Input for object receiver.
locations->SetInAt(0, Location::RequiresRegister());
if (DataType::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
// The output overlaps for an object field get when read barriers
// are enabled: we do not want the load to overwrite the object's
// location, as we need it to emit the read barrier.
locations->SetOut(
Location::RequiresRegister(),
object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations = instruction->GetLocations();
uint32_t receiver_input = 0;
Location base_loc = locations->InAt(receiver_input);
Location out = locations->Out();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
DataType::Type load_type = instruction->GetType();
MemOperand field =
HeapOperand(InputRegisterAt(instruction, receiver_input), field_info.GetFieldOffset());
if (load_type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) {
// Object FieldGet with Baker's read barrier case.
// /* HeapReference<Object> */ out = *(base + offset)
Register base = RegisterFrom(base_loc, DataType::Type::kReference);
Location maybe_temp =
(locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
// Note that potential implicit null checks are handled in this
// CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
codegen_->GenerateFieldLoadWithBakerReadBarrier(
instruction,
out,
base,
offset,
maybe_temp,
/* needs_null_check= */ true,
field_info.IsVolatile());
} else {
// General case.
if (field_info.IsVolatile()) {
// Note that a potential implicit null check is handled in this
// CodeGeneratorARM64::LoadAcquire call.
// NB: LoadAcquire will record the pc info if needed.
codegen_->LoadAcquire(instruction,
load_type,
OutputCPURegister(instruction),
field,
/* needs_null_check= */ true);
} else {
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
codegen_->Load(load_type, OutputCPURegister(instruction), field);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (load_type == DataType::Type::kReference) {
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
}
}
}
void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
HInstruction* value = instruction->InputAt(1);
if (IsZeroBitPattern(value)) {
locations->SetInAt(1, Location::ConstantLocation(value));
} else if (DataType::IsFloatingPointType(value->GetType())) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null,
WriteBarrierKind write_barrier_kind) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
Register obj = InputRegisterAt(instruction, 0);
CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1);
CPURegister source = value;
Offset offset = field_info.GetFieldOffset();
DataType::Type field_type = field_info.GetFieldType();
{
// We use a block to end the scratch scope before the write barrier, thus
// freeing the temporary registers so they can be used in `MarkGCCard`.
UseScratchRegisterScope temps(GetVIXLAssembler());
if (kPoisonHeapReferences && field_type == DataType::Type::kReference) {
DCHECK(value.IsW());
Register temp = temps.AcquireW();
__ Mov(temp, value.W());
GetAssembler()->PoisonHeapReference(temp.W());
source = temp;
}
if (field_info.IsVolatile()) {
codegen_->StoreRelease(
instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true);
} else {
// Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
codegen_->Store(field_type, source, HeapOperand(obj, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
const bool needs_write_barrier =
codegen_->StoreNeedsWriteBarrier(field_type, instruction->InputAt(1), write_barrier_kind);
if (needs_write_barrier) {
// TODO(solanes): If we do a `HuntForOriginalReference` call to the value in WBE, we will be
// able to DCHECK that the write_barrier_kind is kBeingReliedOn when Register(value).IsZero(),
// and we could remove the `!Register(value).IsZero()` from below.
codegen_->MaybeMarkGCCard(obj,
Register(value),
value_can_be_null &&
write_barrier_kind == WriteBarrierKind::kEmitNotBeingReliedOn &&
!Register(value).IsZero());
} else if (codegen_->ShouldCheckGCCard(field_type, instruction->InputAt(1), write_barrier_kind)) {
codegen_->CheckGCCardIsValid(obj);
}
}
void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
DataType::Type type = instr->GetType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
Register dst = OutputRegister(instr);
Register lhs = InputRegisterAt(instr, 0);
Operand rhs = InputOperandAt(instr, 1);
if (instr->IsAdd()) {
__ Add(dst, lhs, rhs);
} else if (instr->IsAnd()) {
__ And(dst, lhs, rhs);
} else if (instr->IsOr()) {
__ Orr(dst, lhs, rhs);
} else if (instr->IsSub()) {
__ Sub(dst, lhs, rhs);
} else if (instr->IsRor()) {
if (rhs.IsImmediate()) {
uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1);
__ Ror(dst, lhs, shift);
} else {
// Ensure shift distance is in the same size register as the result. If
// we are rotating a long and the shift comes in a w register originally,
// we don't need to sxtw for use as an x since the shift distances are
// all & reg_bits - 1.
__ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
}
} else if (instr->IsMin() || instr->IsMax()) {
__ Cmp(lhs, rhs);
__ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt);
} else {
DCHECK(instr->IsXor());
__ Eor(dst, lhs, rhs);
}
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
VRegister dst = OutputFPRegister(instr);
VRegister lhs = InputFPRegisterAt(instr, 0);
VRegister rhs = InputFPRegisterAt(instr, 1);
if (instr->IsAdd()) {
__ Fadd(dst, lhs, rhs);
} else if (instr->IsSub()) {
__ Fsub(dst, lhs, rhs);
} else if (instr->IsMin()) {
__ Fmin(dst, lhs, rhs);
} else if (instr->IsMax()) {
__ Fmax(dst, lhs, rhs);
} else {
LOG(FATAL) << "Unexpected floating-point binary operation";
}
break;
}
default:
LOG(FATAL) << "Unexpected binary operation type " << type;
}
}
void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
DataType::Type type = instr->GetResultType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected shift type " << type;
}
}
void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
DataType::Type type = instr->GetType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
Register dst = OutputRegister(instr);
Register lhs = InputRegisterAt(instr, 0);
Operand rhs = InputOperandAt(instr, 1);
if (rhs.IsImmediate()) {
uint32_t shift_value = rhs.GetImmediate() &
(type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
if (instr->IsShl()) {
__ Lsl(dst, lhs, shift_value);
} else if (instr->IsShr()) {
__ Asr(dst, lhs, shift_value);
} else {
__ Lsr(dst, lhs, shift_value);
}
} else {
Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W();
if (instr->IsShl()) {
__ Lsl(dst, lhs, rhs_reg);
} else if (instr->IsShr()) {
__ Asr(dst, lhs, rhs_reg);
} else {
__ Lsr(dst, lhs, rhs_reg);
}
}
break;
}
default:
LOG(FATAL) << "Unexpected shift operation type " << type;
}
}
void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType();
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
locations->SetInAt(0, Location::RequiresRegister());
// There is no immediate variant of negated bitwise instructions in AArch64.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
Register dst = OutputRegister(instr);
Register lhs = InputRegisterAt(instr, 0);
Register rhs = InputRegisterAt(instr, 1);
switch (instr->GetOpKind()) {
case HInstruction::kAnd:
__ Bic(dst, lhs, rhs);
break;
case HInstruction::kOr:
__ Orn(dst, lhs, rhs);
break;
case HInstruction::kXor:
__ Eon(dst, lhs, rhs);
break;
default:
LOG(FATAL) << "Unreachable";
}
}
void LocationsBuilderARM64::VisitDataProcWithShifterOp(
HDataProcWithShifterOp* instruction) {
DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
instruction->GetType() == DataType::Type::kInt64);
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
if (instruction->GetInstrKind() == HInstruction::kNeg) {
locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)));
} else {
locations->SetInAt(0, Location::RequiresRegister());
}
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp(
HDataProcWithShifterOp* instruction) {
DataType::Type type = instruction->GetType();
HInstruction::InstructionKind kind = instruction->GetInstrKind();
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
Register out = OutputRegister(instruction);
Register left;
if (kind != HInstruction::kNeg) {
left = InputRegisterAt(instruction, 0);
}
// If this `HDataProcWithShifterOp` was created by merging a type conversion as the
// shifter operand operation, the IR generating `right_reg` (input to the type
// conversion) can have a different type from the current instruction's type,
// so we manually indicate the type.
Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
Operand right_operand(0);
HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
} else {
right_operand = Operand(right_reg,
helpers::ShiftFromOpKind(op_kind),
instruction->GetShiftAmount());
}
// Logical binary operations do not support extension operations in the
// operand. Note that VIXL would still manage if it was passed by generating
// the extension as a separate instruction.
// `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
DCHECK_IMPLIES(right_operand.IsExtendedRegister(),
kind != HInstruction::kAnd && kind != HInstruction::kOr &&
kind != HInstruction::kXor && kind != HInstruction::kNeg);
switch (kind) {
case HInstruction::kAdd:
__ Add(out, left, right_operand);
break;
case HInstruction::kAnd:
__ And(out, left, right_operand);
break;
case HInstruction::kNeg:
DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
__ Neg(out, right_operand);
break;
case HInstruction::kOr:
__ Orr(out, left, right_operand);
break;
case HInstruction::kSub:
__ Sub(out, left, right_operand);
break;
case HInstruction::kXor:
__ Eor(out, left, right_operand);
break;
default:
LOG(FATAL) << "Unexpected operation kind: " << kind;
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
__ Add(OutputRegister(instruction),
InputRegisterAt(instruction, 0),
Operand(InputOperandAt(instruction, 1)));
}
void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
HIntConstant* shift = instruction->GetShift()->AsIntConstant();
locations->SetInAt(0, Location::RequiresRegister());
// For byte case we don't need to shift the index variable so we can encode the data offset into
// ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist
// data offset constant generation out of the loop and reduce the critical path length in the
// loop.
locations->SetInAt(1, shift->GetValue() == 0
? Location::ConstantLocation(instruction->GetOffset())
: Location::RequiresRegister());
locations->SetInAt(2, Location::ConstantLocation(shift));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex(
HIntermediateAddressIndex* instruction) {
Register index_reg = InputRegisterAt(instruction, 0);
uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2));
uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue();
if (shift == 0) {
__ Add(OutputRegister(instruction), index_reg, offset);
} else {
Register offset_reg = InputRegisterAt(instruction, 1);
__ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift));
}
}
void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
if (instr->GetOpKind() == HInstruction::kSub &&
accumulator->IsConstant() &&
accumulator->AsConstant()->IsArithmeticZero()) {
// Don't allocate register for Mneg instruction.
} else {
locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
Location::RequiresRegister());
}
locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
Register res = OutputRegister(instr);
Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
// Avoid emitting code that could trigger Cortex A53's erratum 835769.
// This fixup should be carried out for all multiply-accumulate instructions:
// madd, msub, smaddl, smsubl, umaddl and umsubl.
if (instr->GetType() == DataType::Type::kInt64 &&
codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
ptrdiff_t off = masm->GetCursorOffset();
if (off >= static_cast<ptrdiff_t>(kInstructionSize) &&
masm->GetInstructionAt(off - static_cast<ptrdiff_t>(kInstructionSize))->IsLoadOrStore()) {
// Make sure we emit only exactly one nop.
ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
__ nop();
}
}
if (instr->GetOpKind() == HInstruction::kAdd) {
Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
__ Madd(res, mul_left, mul_right, accumulator);
} else {
DCHECK(instr->GetOpKind() == HInstruction::kSub);
HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
__ Mneg(res, mul_left, mul_right);
} else {
Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
__ Msub(res, mul_left, mul_right, accumulator);
}
}
}
void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
bool object_array_get_with_read_barrier =
(instruction->GetType() == DataType::Type::kReference) && codegen_->EmitReadBarrier();
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction,
object_array_get_with_read_barrier
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
if (instruction->GetIndex()->IsConstant()) {
// Array loads with constant index are treated as field loads.
// We need a temporary register for the read barrier load in
// CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
// only if the offset is too big.
uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
offset += index << DataType::SizeShift(DataType::Type::kReference);
if (offset >= kReferenceLoadMinFarOffset) {
locations->AddTemp(FixedTempLocation());
}
} else if (!instruction->GetArray()->IsIntermediateAddress()) {
// We need a non-scratch temporary for the array data pointer in
// CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no
// intermediate address.
locations->AddTemp(Location::RequiresRegister());
}
}
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (DataType::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
// The output overlaps in the case of an object array get with
// read barriers enabled: we do not want the move to overwrite the
// array's location, as we need it to emit the read barrier.
locations->SetOut(
Location::RequiresRegister(),
object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
DataType::Type type = instruction->GetType();
Register obj = InputRegisterAt(instruction, 0);
LocationSummary* locations = instruction->GetLocations();
Location index = locations->InAt(1);
Location out = locations->Out();
uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
instruction->IsStringCharAt();
MacroAssembler* masm = GetVIXLAssembler();
UseScratchRegisterScope temps(masm);
// The non-Baker read barrier instrumentation of object ArrayGet instructions
// does not support the HIntermediateAddress instruction.
DCHECK(!((type == DataType::Type::kReference) &&
instruction->GetArray()->IsIntermediateAddress() &&
codegen_->EmitNonBakerReadBarrier()));
if (type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) {
// Object ArrayGet with Baker's read barrier case.
// Note that a potential implicit null check is handled in the
// CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
if (index.IsConstant()) {
DCHECK(!instruction->GetArray()->IsIntermediateAddress());
// Array load with a constant index can be treated as a field load.
offset += Int64FromLocation(index) << DataType::SizeShift(type);
Location maybe_temp =
(locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
out,
obj.W(),
offset,
maybe_temp,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
} else {
codegen_->GenerateArrayLoadWithBakerReadBarrier(
instruction, out, obj.W(), offset, index, /* needs_null_check= */ false);
}
} else {
// General case.
MemOperand source = HeapOperand(obj);
Register length;
if (maybe_compressed_char_at) {
uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
length = temps.AcquireW();
{
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
if (instruction->GetArray()->IsIntermediateAddress()) {
DCHECK_LT(count_offset, offset);
int64_t adjusted_offset =
static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset);
// Note that `adjusted_offset` is negative, so this will be a LDUR.
__ Ldr(length, MemOperand(obj.X(), adjusted_offset));
} else {
__ Ldr(length, HeapOperand(obj, count_offset));
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
if (index.IsConstant()) {
if (maybe_compressed_char_at) {
vixl::aarch64::Label uncompressed_load, done;
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ Tbnz(length.W(), 0, &uncompressed_load);
__ Ldrb(Register(OutputCPURegister(instruction)),
HeapOperand(obj, offset + Int64FromLocation(index)));
__ B(&done);
__ Bind(&uncompressed_load);
__ Ldrh(Register(OutputCPURegister(instruction)),
HeapOperand(obj, offset + (Int64FromLocation(index) << 1)));
__ Bind(&done);
} else {
offset += Int64FromLocation(index) << DataType::SizeShift(type);
source = HeapOperand(obj, offset);
}
} else {
Register temp = temps.AcquireSameSizeAs(obj);
if (instruction->GetArray()->IsIntermediateAddress()) {
// We do not need to compute the intermediate address from the array: the
// input instruction has done it already. See the comment in
// `TryExtractArrayAccessAddress()`.
if (kIsDebugBuild) {
HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
}
temp = obj;
} else {
__ Add(temp, obj, offset);
}
if (maybe_compressed_char_at) {
vixl::aarch64::Label uncompressed_load, done;
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ Tbnz(length.W(), 0, &uncompressed_load);
__ Ldrb(Register(OutputCPURegister(instruction)),
HeapOperand(temp, XRegisterFrom(index), LSL, 0));
__ B(&done);
__ Bind(&uncompressed_load);
__ Ldrh(Register(OutputCPURegister(instruction)),
HeapOperand(temp, XRegisterFrom(index), LSL, 1));
__ Bind(&done);
} else {
source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type));
}
}
if (!maybe_compressed_char_at) {
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
codegen_->Load(type, OutputCPURegister(instruction), source);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (type == DataType::Type::kReference) {
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
Location obj_loc = locations->InAt(0);
if (index.IsConstant()) {
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
} else {
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
}
}
}
}
void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
vixl::aarch64::Register out = OutputRegister(instruction);
{
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
__ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
// Mask out compression flag from String's array length.
if (mirror::kUseStringCompression && instruction->IsStringLength()) {
__ Lsr(out.W(), out.W(), 1u);
}
}
void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
DataType::Type value_type = instruction->GetComponentType();
bool needs_type_check = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction,
needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetIndex()));
HInstruction* value = instruction->GetValue();
if (IsZeroBitPattern(value)) {
locations->SetInAt(2, Location::ConstantLocation(value));
} else if (DataType::IsFloatingPointType(value_type)) {
locations->SetInAt(2, Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
DataType::Type value_type = instruction->GetComponentType();
LocationSummary* locations = instruction->GetLocations();
bool needs_type_check = instruction->NeedsTypeCheck();
const WriteBarrierKind write_barrier_kind = instruction->GetWriteBarrierKind();
bool needs_write_barrier =
codegen_->StoreNeedsWriteBarrier(value_type, instruction->GetValue(), write_barrier_kind);
Register array = InputRegisterAt(instruction, 0);
CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2);
CPURegister source = value;
Location index = locations->InAt(1);
size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
MemOperand destination = HeapOperand(array);
MacroAssembler* masm = GetVIXLAssembler();
if (!needs_write_barrier) {
if (codegen_->ShouldCheckGCCard(value_type, instruction->GetValue(), write_barrier_kind)) {
codegen_->CheckGCCardIsValid(array);
}
DCHECK(!needs_type_check);
UseScratchRegisterScope temps(masm);
if (index.IsConstant()) {
offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
destination = HeapOperand(array, offset);
} else {
Register temp_dest = temps.AcquireSameSizeAs(array);
if (instruction->GetArray()->IsIntermediateAddress()) {
// We do not need to compute the intermediate address from the array: the
// input instruction has done it already. See the comment in
// `TryExtractArrayAccessAddress()`.
if (kIsDebugBuild) {
HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
}
temp_dest = array;
} else {
__ Add(temp_dest, array, offset);
}
destination = HeapOperand(temp_dest,
XRegisterFrom(index),
LSL,
DataType::SizeShift(value_type));
}
if (kPoisonHeapReferences && value_type == DataType::Type::kReference) {
DCHECK(value.IsW());
Register temp_src = temps.AcquireW();
__ Mov(temp_src, value.W());
GetAssembler()->PoisonHeapReference(temp_src.W());
source = temp_src;
}
{
// Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
codegen_->Store(value_type, source, destination);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
} else {
DCHECK(!instruction->GetArray()->IsIntermediateAddress());
bool can_value_be_null = true;
SlowPathCodeARM64* slow_path = nullptr;
if (!Register(value).IsZero()) {
can_value_be_null = instruction->GetValueCanBeNull();
vixl::aarch64::Label do_store;
if (can_value_be_null) {
__ Cbz(Register(value), &do_store);
}
if (needs_type_check) {
slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction);
codegen_->AddSlowPath(slow_path);
const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireSameSizeAs(array);
Register temp2 = temps.AcquireSameSizeAs(array);
// Note that when Baker read barriers are enabled, the type
// checks are performed without read barriers. This is fine,
// even in the case where a class object is in the from-space
// after the flip, as a comparison involving such a type would
// not produce a false positive; it may of course produce a
// false negative, in which case we would take the ArraySet
// slow path.
// /* HeapReference<Class> */ temp = array->klass_
{
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
__ Ldr(temp, HeapOperand(array, class_offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
GetAssembler()->MaybeUnpoisonHeapReference(temp);
// /* HeapReference<Class> */ temp = temp->component_type_
__ Ldr(temp, HeapOperand(temp, component_offset));
// /* HeapReference<Class> */ temp2 = value->klass_
__ Ldr(temp2, HeapOperand(Register(value), class_offset));
// If heap poisoning is enabled, no need to unpoison `temp`
// nor `temp2`, as we are comparing two poisoned references.
__ Cmp(temp, temp2);
if (instruction->StaticTypeOfArrayIsObjectArray()) {
vixl::aarch64::Label do_put;
__ B(eq, &do_put);
// If heap poisoning is enabled, the `temp` reference has
// not been unpoisoned yet; unpoison it now.
GetAssembler()->MaybeUnpoisonHeapReference(temp);
// /* HeapReference<Class> */ temp = temp->super_class_
__ Ldr(temp, HeapOperand(temp, super_offset));
// If heap poisoning is enabled, no need to unpoison
// `temp`, as we are comparing against null below.
__ Cbnz(temp, slow_path->GetEntryLabel());
__ Bind(&do_put);
} else {
__ B(ne, slow_path->GetEntryLabel());
}
}
if (can_value_be_null) {
DCHECK(do_store.IsLinked());
__ Bind(&do_store);
}
}
DCHECK_NE(write_barrier_kind, WriteBarrierKind::kDontEmit);
// TODO(solanes): The WriteBarrierKind::kEmitNotBeingReliedOn case should be able to skip this
// write barrier when its value is null (without an extra cbz since we already checked if the
// value is null for the type check). This will be done as a follow-up since it is a runtime
// optimization that needs extra care.
// TODO(solanes): We can also skip it for known zero values which are not relied on i.e. when
// we have the Zero register as the value. If we do `HuntForOriginalReference` on the value
// we'll resolve this.
codegen_->MarkGCCard(array);
UseScratchRegisterScope temps(masm);
if (kPoisonHeapReferences) {
DCHECK(value.IsW());
Register temp_source = temps.AcquireW();
__ Mov(temp_source, value.W());
GetAssembler()->PoisonHeapReference(temp_source);
source = temp_source;
}
if (index.IsConstant()) {
offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
destination = HeapOperand(array, offset);
} else {
Register temp_base = temps.AcquireSameSizeAs(array);
__ Add(temp_base, array, offset);
destination = HeapOperand(temp_base,
XRegisterFrom(index),
LSL,
DataType::SizeShift(value_type));
}
{
// Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
__ Str(source, destination);
if (can_value_be_null || !needs_type_check) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
}
void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
RegisterSet caller_saves = RegisterSet::Empty();
InvokeRuntimeCallingConvention calling_convention;
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode()));
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
// If both index and length are constant, we can check the bounds statically and
// generate code accordingly. We want to make sure we generate constant locations
// in that case, regardless of whether they are encodable in the comparison or not.
HInstruction* index = instruction->InputAt(0);
HInstruction* length = instruction->InputAt(1);
bool both_const = index->IsConstant() && length->IsConstant();
locations->SetInAt(0, both_const
? Location::ConstantLocation(index)
: ARM64EncodableConstantOrRegister(index, instruction));
locations->SetInAt(1, both_const
? Location::ConstantLocation(length)
: ARM64EncodableConstantOrRegister(length, instruction));
}
void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location index_loc = locations->InAt(0);
Location length_loc = locations->InAt(1);
int cmp_first_input = 0;
int cmp_second_input = 1;
Condition cond = hs;
if (index_loc.IsConstant()) {
int64_t index = Int64FromLocation(index_loc);
if (length_loc.IsConstant()) {
int64_t length = Int64FromLocation(length_loc);
if (index < 0 || index >= length) {
BoundsCheckSlowPathARM64* slow_path =
new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
codegen_->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
} else {
// BCE will remove the bounds check if we are guaranteed to pass.
// However, some optimization after BCE may have generated this, and we should not
// generate a bounds check if it is a valid range.
}
return;
}
// Only the index is constant: change the order of the operands and commute the condition
// so we can use an immediate constant for the index (only the second input to a cmp
// instruction can be an immediate).
cmp_first_input = 1;
cmp_second_input = 0;
cond = ls;
}
BoundsCheckSlowPathARM64* slow_path =
new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
__ Cmp(InputRegisterAt(instruction, cmp_first_input),
InputOperandAt(instruction, cmp_second_input));
codegen_->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel(), cond);
}
void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
// Rely on the type initialization to save everything we need.
locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
}
void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
// We assume the class is not null.
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
}
static bool IsFloatingPointZeroConstant(HInstruction* inst) {
return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
|| (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
}
void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
VRegister lhs_reg = InputFPRegisterAt(instruction, 0);
Location rhs_loc = instruction->GetLocations()->InAt(1);
if (rhs_loc.IsConstant()) {
// 0.0 is the only immediate that can be encoded directly in
// an FCMP instruction.
//
// Both the JLS (section 15.20.1) and the JVMS (section 6.5)
// specify that in a floating-point comparison, positive zero
// and negative zero are considered equal, so we can use the
// literal 0.0 for both cases here.
//
// Note however that some methods (Float.equal, Float.compare,
// Float.compareTo, Double.equal, Double.compare,
// Double.compareTo, Math.max, Math.min, StrictMath.max,
// StrictMath.min) consider 0.0 to be (strictly) greater than
// -0.0. So if we ever translate calls to these methods into a
// HCompare instruction, we must handle the -0.0 case with
// care here.
DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
__ Fcmp(lhs_reg, 0.0);
} else {
__ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
}
}
void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
DataType::Type in_type = compare->InputAt(0)->GetType();
HInstruction* rhs = compare->InputAt(1);
switch (in_type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ARM64EncodableConstantOrRegister(rhs, compare));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1,
IsFloatingPointZeroConstant(rhs)
? Location::ConstantLocation(rhs)
: Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << in_type;
}
}
void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
DataType::Type in_type = compare->InputAt(0)->GetType();
// 0 if: left == right
// 1 if: left > right
// -1 if: left < right
switch (in_type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
Register result = OutputRegister(compare);
Register left = InputRegisterAt(compare, 0);
Operand right = InputOperandAt(compare, 1);
__ Cmp(left, right);
__ Cset(result, ne); // result == +1 if NE or 0 otherwise
__ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
Register result = OutputRegister(compare);
GenerateFcmp(compare);
__ Cset(result, ne);
__ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
break;
}
default:
LOG(FATAL) << "Unimplemented compare type " << in_type;
}
}
void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
HInstruction* rhs = instruction->InputAt(1);
if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1,
IsFloatingPointZeroConstant(rhs)
? Location::ConstantLocation(rhs)
: Location::RequiresFpuRegister());
} else {
// Integer cases.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ARM64EncodableConstantOrRegister(rhs, instruction));
}
if (!instruction->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
if (instruction->IsEmittedAtUseSite()) {
return;
}
LocationSummary* locations = instruction->GetLocations();
Register res = RegisterFrom(locations->Out(), instruction->GetType());
IfCondition if_cond = instruction->GetCondition();
if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
GenerateFcmp(instruction);
__ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
} else {
// Integer cases.
Register lhs = InputRegisterAt(instruction, 0);
Operand rhs = InputOperandAt(instruction, 1);
__ Cmp(lhs, rhs);
__ Cset(res, ARM64Condition(if_cond));
}
}
#define FOR_EACH_CONDITION_INSTRUCTION(M) \
M(Equal) \
M(NotEqual) \
M(LessThan) \
M(LessThanOrEqual) \
M(GreaterThan) \
M(GreaterThanOrEqual) \
M(Below) \
M(BelowOrEqual) \
M(Above) \
M(AboveOrEqual)
#define DEFINE_CONDITION_VISITORS(Name) \
void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \
void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
#undef DEFINE_CONDITION_VISITORS
#undef FOR_EACH_CONDITION_INSTRUCTION
void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) {
int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
Register out = OutputRegister(instruction);
Register dividend = InputRegisterAt(instruction, 0);
Register final_dividend;
if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
// No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
// NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends:
// imm == 2
// add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
// asr out, out(0x80000001), #1 => out = 0xc0000000
// This is the same as 'asr out, 0x80000000, #1'
//
// imm > 2
// add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number
// of the rightmost 1s is ctz_imm.
// cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
// csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1
// asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
// leftmost 1s is ctz_imm + 1.
// This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
//
// imm == INT32_MIN
// add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1
// cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
// csel out, temp(-1), dividend(0x80000000), lt => out = -1
// neg out, out(-1), asr #31 => out = 1
// This is the same as 'neg out, dividend(0x80000000), asr #31'.
final_dividend = dividend;
} else {
if (abs_imm == 2) {
int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte;
__ Add(out, dividend, Operand(dividend, LSR, bits - 1));
} else {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireSameSizeAs(out);
__ Add(temp, dividend, abs_imm - 1);
__ Cmp(dividend, 0);
__ Csel(out, temp, dividend, lt);
}
final_dividend = out;
}
int ctz_imm = CTZ(abs_imm);
if (imm > 0) {
__ Asr(out, final_dividend, ctz_imm);
} else {
__ Neg(out, Operand(final_dividend, ASR, ctz_imm));
}
}
// Return true if the magic number was modified by subtracting 2^32(Int32 div) or 2^64(Int64 div).
// So dividend needs to be added.
static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) {
return divisor > 0 && magic_number < 0;
}
// Return true if the magic number was modified by adding 2^32(Int32 div) or 2^64(Int64 div).
// So dividend needs to be subtracted.
static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) {
return divisor < 0 && magic_number > 0;
}
// Generate code which increments the value in register 'in' by 1 if the value is negative.
// It is done with 'add out, in, in, lsr #31 or #63'.
// If the value is a result of an operation setting the N flag, CINC MI can be used
// instead of ADD. 'use_cond_inc' controls this.
void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne(
Register out,
Register in,
bool use_cond_inc) {
if (use_cond_inc) {
__ Cinc(out, in, mi);
} else {
__ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1));
}
}
// Helper to generate code producing the result of HRem with a constant divisor.
void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant(
Register out,
Register dividend,
Register quotient,
int64_t divisor,
UseScratchRegisterScope* temps_scope) {
Register temp_imm = temps_scope->AcquireSameSizeAs(out);
__ Mov(temp_imm, divisor);
__ Msub(out, quotient, temp_imm, dividend);
}
// Helper to generate code for HDiv/HRem instructions when a dividend is non-negative and
// a divisor is a positive constant, not power of 2.
void InstructionCodeGeneratorARM64::GenerateInt64UnsignedDivRemWithAnyPositiveConstant(
HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = OutputRegister(instruction);
Register dividend = InputRegisterAt(instruction, 0);
int64_t imm = Int64FromConstant(second.GetConstant());
DCHECK_GT(imm, 0);
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireSameSizeAs(out);
auto generate_unsigned_div_code = [this, magic, shift](Register out,
Register dividend,
Register temp) {
// temp = get_high(dividend * magic)
__ Mov(temp, magic);
if (magic > 0 && shift == 0) {
__ Smulh(out, dividend, temp);
} else {
__ Smulh(temp, dividend, temp);
if (magic < 0) {
// The negative magic means that the multiplier m is greater than INT64_MAX.
// In such a case shift is never 0. See the proof in
// InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant.
__ Add(temp, temp, dividend);
}
DCHECK_NE(shift, 0);
__ Lsr(out, temp, shift);
}
};
if (instruction->IsDiv()) {
generate_unsigned_div_code(out, dividend, temp);
} else {
generate_unsigned_div_code(temp, dividend, temp);
GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
}
}
// Helper to generate code for HDiv/HRem instructions for any dividend and a constant divisor
// (not power of 2).
void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant(
HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = OutputRegister(instruction);
Register dividend = InputRegisterAt(instruction, 0);
int64_t imm = Int64FromConstant(second.GetConstant());
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireSameSizeAs(out);
// temp = get_high(dividend * magic)
__ Mov(temp, magic);
__ Smulh(temp, dividend, temp);
// The multiplication result might need some corrections to be finalized.
// The last correction is to increment by 1, if the result is negative.
// Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
// Such ADD usually has latency 2, e.g. on Cortex-A55.
// However if one of the corrections is ADD or SUB, the sign can be detected
// with ADDS/SUBS. They set the N flag if the result is negative.
// This allows to use CINC MI which has latency 1.
bool use_cond_inc = false;
// Some combinations of magic_number and the divisor require to correct the result.
// Check whether the correction is needed.
if (NeedToAddDividend(magic, imm)) {
__ Adds(temp, temp, dividend);
use_cond_inc = true;
} else if (NeedToSubDividend(magic, imm)) {
__ Subs(temp, temp, dividend);
use_cond_inc = true;
}
if (shift != 0) {
__ Asr(temp, temp, shift);
}
if (instruction->IsRem()) {
GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
} else {
GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
}
}
void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant(
HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = OutputRegister(instruction);
Register dividend = InputRegisterAt(instruction, 0);
int64_t imm = Int64FromConstant(second.GetConstant());
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireSameSizeAs(out);
// temp = get_high(dividend * magic)
__ Mov(temp, magic);
__ Smull(temp.X(), dividend, temp);
// The multiplication result might need some corrections to be finalized.
// The last correction is to increment by 1, if the result is negative.
// Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
// Such ADD usually has latency 2, e.g. on Cortex-A55.
// However if one of the corrections is ADD or SUB, the sign can be detected
// with ADDS/SUBS. They set the N flag if the result is negative.
// This allows to use CINC MI which has latency 1.
bool use_cond_inc = false;
// ADD/SUB correction is performed in the high 32 bits
// as high 32 bits are ignored because type are kInt32.
if (NeedToAddDividend(magic, imm)) {
__ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
use_cond_inc = true;
} else if (NeedToSubDividend(magic, imm)) {
__ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
use_cond_inc = true;
}
// Extract the result from the high 32 bits and apply the final right shift.
DCHECK_LT(shift, 32);
if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) {
// No need to adjust the result for a non-negative dividend and a positive divisor.
if (instruction->IsDiv()) {
__ Lsr(out.X(), temp.X(), 32 + shift);
} else {
__ Lsr(temp.X(), temp.X(), 32 + shift);
GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
}
} else {
__ Asr(temp.X(), temp.X(), 32 + shift);
if (instruction->IsRem()) {
GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
} else {
GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
}
}
}
void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction,
int64_t divisor) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
if (instruction->GetResultType() == DataType::Type::kInt64) {
if (divisor > 0 && HasNonNegativeInputAt(instruction, 0)) {
GenerateInt64UnsignedDivRemWithAnyPositiveConstant(instruction);
} else {
GenerateInt64DivRemWithAnyConstant(instruction);
}
} else {
GenerateInt32DivRemWithAnyConstant(instruction);
}
}
void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) {
int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
if (imm == 0) {
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
return;
}
if (IsPowerOfTwo(AbsOrMin(imm))) {
GenerateIntDivForPower2Denom(instruction);
} else {
// Cases imm == -1 or imm == 1 are handled by InstructionSimplifier.
DCHECK(imm < -2 || imm > 2) << imm;
GenerateDivRemWithAnyConstant(instruction, imm);
}
}
void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) {
DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
<< instruction->GetResultType();
if (instruction->GetLocations()->InAt(1).IsConstant()) {
GenerateIntDivForConstDenom(instruction);
} else {
Register out = OutputRegister(instruction);
Register dividend = InputRegisterAt(instruction, 0);
Register divisor = InputRegisterAt(instruction, 1);
__ Sdiv(out, dividend, divisor);
}
}
void LocationsBuilderARM64::VisitDiv(HDiv* div) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall);
switch (div->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
DataType::Type type = div->GetResultType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
GenerateIntDiv(div);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
__ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
break;
default:
LOG(FATAL) << "Unexpected div type " << type;
}
}
void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
}
void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction);
codegen_->AddSlowPath(slow_path);
Location value = instruction->GetLocations()->InAt(0);
DataType::Type type = instruction->GetType();
if (!DataType::IsIntegralType(type)) {
LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
UNREACHABLE();
}
if (value.IsConstant()) {
int64_t divisor = Int64FromLocation(value);
if (divisor == 0) {
__ B(slow_path->GetEntryLabel());
} else {
// A division by a non-null constant is valid. We don't need to perform
// any check, so simply fall through.
}
} else {
__ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
}
}
void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitDoubleConstant(
[[maybe_unused]] HDoubleConstant* constant) {
// Will be generated at use site.
}
void LocationsBuilderARM64::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitExit([[maybe_unused]] HExit* exit) {}
void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitFloatConstant([[maybe_unused]] HFloatConstant* constant) {
// Will be generated at use site.
}
void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
if (successor->IsExitBlock()) {
DCHECK(got->GetPrevious()->AlwaysThrows());
return; // no code needed
}
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
codegen_->MaybeIncrementHotness(info->GetSuspendCheck(), /* is_frame_entry= */ false);
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return; // `GenerateSuspendCheck()` emitted the jump.
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
if (!codegen_->GoesToNextBlock(block, successor)) {
__ B(codegen_->GetLabelOf(successor));
}
}
void LocationsBuilderARM64::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
HandleGoto(got, got->GetSuccessor());
}
void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
try_boundary->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
if (!successor->IsExitBlock()) {
HandleGoto(try_boundary, successor);
}
}
void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
vixl::aarch64::Label* true_target,
vixl::aarch64::Label* false_target) {
HInstruction* cond = instruction->InputAt(condition_input_index);
if (true_target == nullptr && false_target == nullptr) {
// Nothing to do. The code always falls through.
return;
} else if (cond->IsIntConstant()) {
// Constant condition, statically compared against "true" (integer value 1).
if (cond->AsIntConstant()->IsTrue()) {
if (true_target != nullptr) {
__ B(true_target);
}
} else {
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
if (false_target != nullptr) {
__ B(false_target);
}
}
return;
}
// The following code generates these patterns:
// (1) true_target == nullptr && false_target != nullptr
// - opposite condition true => branch to false_target
// (2) true_target != nullptr && false_target == nullptr
// - condition true => branch to true_target
// (3) true_target != nullptr && false_target != nullptr
// - condition true => branch to true_target
// - branch to false_target
if (IsBooleanValueOrMaterializedCondition(cond)) {
// The condition instruction has been materialized, compare the output to 0.
Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
DCHECK(cond_val.IsRegister());
if (true_target == nullptr) {
__ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
} else {
__ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
}
} else {
// The condition instruction has not been materialized, use its inputs as
// the comparison and its condition as the branch condition.
HCondition* condition = cond->AsCondition();
DataType::Type type = condition->InputAt(0)->GetType();
if (DataType::IsFloatingPointType(type)) {
GenerateFcmp(condition);
if (true_target == nullptr) {
IfCondition opposite_condition = condition->GetOppositeCondition();
__ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
} else {
__ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
}
} else {
// Integer cases.
Register lhs = InputRegisterAt(condition, 0);
Operand rhs = InputOperandAt(condition, 1);
Condition arm64_cond;
vixl::aarch64::Label* non_fallthrough_target;
if (true_target == nullptr) {
arm64_cond = ARM64Condition(condition->GetOppositeCondition());
non_fallthrough_target = false_target;
} else {
arm64_cond = ARM64Condition(condition->GetCondition());
non_fallthrough_target = true_target;
}
if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
rhs.IsImmediate() && (rhs.GetImmediate() == 0)) {
switch (arm64_cond) {
case eq:
__ Cbz(lhs, non_fallthrough_target);
break;
case ne:
__ Cbnz(lhs, non_fallthrough_target);
break;
case lt:
// Test the sign bit and branch accordingly.
__ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
break;
case ge:
// Test the sign bit and branch accordingly.
__ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
break;
default:
// Without the `static_cast` the compiler throws an error for
// `-Werror=sign-promo`.
LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
}
} else {
__ Cmp(lhs, rhs);
__ B(arm64_cond, non_fallthrough_target);
}
}
}
// If neither branch falls through (case 3), the conditional branch to `true_target`
// was already emitted (case 2) and we need to emit a jump to `false_target`.
if (true_target != nullptr && false_target != nullptr) {
__ B(false_target);
}
}
void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor);
if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) {
true_target = nullptr;
}
vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor);
if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) {
false_target = nullptr;
}
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
if (GetGraph()->IsCompilingBaseline() &&
codegen_->GetCompilerOptions().ProfileBranches() &&
!Runtime::Current()->IsAotCompiler()) {
DCHECK(if_instr->InputAt(0)->IsCondition());
ProfilingInfo* info = GetGraph()->GetProfilingInfo();
DCHECK(info != nullptr);
BranchCache* cache = info->GetBranchCache(if_instr->GetDexPc());
// Currently, not all If branches are profiled.
if (cache != nullptr) {
uint64_t address =
reinterpret_cast64<uint64_t>(cache) + BranchCache::FalseOffset().Int32Value();
static_assert(
BranchCache::TrueOffset().Int32Value() - BranchCache::FalseOffset().Int32Value() == 2,
"Unexpected offsets for BranchCache");
vixl::aarch64::Label done;
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireX();
Register counter = temps.AcquireW();
Register condition = InputRegisterAt(if_instr, 0).X();
__ Mov(temp, address);
__ Ldrh(counter, MemOperand(temp, condition, LSL, 1));
__ Add(counter, counter, 1);
__ Tbnz(counter, 16, &done);
__ Strh(counter, MemOperand(temp, condition, LSL, 1));
__ Bind(&done);
}
}
}
GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
}
void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
LocationSummary* locations = new (GetGraph()->GetAllocator())
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
InvokeRuntimeCallingConvention calling_convention;
RegisterSet caller_saves = RegisterSet::Empty();
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
locations->SetCustomSlowPathCallerSaves(caller_saves);
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
SlowPathCodeARM64* slow_path =
deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
GenerateTestAndBranch(deoptimize,
/* condition_input_index= */ 0,
slow_path->GetEntryLabel(),
/* false_target= */ nullptr);
}
void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
LocationSummary* locations = new (GetGraph()->GetAllocator())
LocationSummary(flag, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
__ Ldr(OutputRegister(flag),
MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
}
static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
return condition->IsCondition() &&
DataType::IsFloatingPointType(condition->InputAt(0)->GetType());
}
static inline Condition GetConditionForSelect(HCondition* condition) {
IfCondition cond = condition->GetCondition();
return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
: ARM64Condition(cond);
}
void LocationsBuilderARM64::VisitSelect(HSelect* select) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
if (DataType::IsFloatingPointType(select->GetType())) {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
HConstant* cst_true_value = select->GetTrueValue()->AsConstantOrNull();
HConstant* cst_false_value = select->GetFalseValue()->AsConstantOrNull();
bool is_true_value_constant = cst_true_value != nullptr;
bool is_false_value_constant = cst_false_value != nullptr;
// Ask VIXL whether we should synthesize constants in registers.
// We give an arbitrary register to VIXL when dealing with non-constant inputs.
Operand true_op = is_true_value_constant ?
Operand(Int64FromConstant(cst_true_value)) : Operand(x1);
Operand false_op = is_false_value_constant ?
Operand(Int64FromConstant(cst_false_value)) : Operand(x2);
bool true_value_in_register = false;
bool false_value_in_register = false;
MacroAssembler::GetCselSynthesisInformation(
x0, true_op, false_op, &true_value_in_register, &false_value_in_register);
true_value_in_register |= !is_true_value_constant;
false_value_in_register |= !is_false_value_constant;
locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister()
: Location::ConstantLocation(cst_true_value));
locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister()
: Location::ConstantLocation(cst_false_value));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
locations->SetInAt(2, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
HInstruction* cond = select->GetCondition();
Condition csel_cond;
if (IsBooleanValueOrMaterializedCondition(cond)) {
if (cond->IsCondition() && cond->GetNext() == select) {
// Use the condition flags set by the previous instruction.
csel_cond = GetConditionForSelect(cond->AsCondition());
} else {
__ Cmp(InputRegisterAt(select, 2), 0);
csel_cond = ne;
}
} else if (IsConditionOnFloatingPointValues(cond)) {
GenerateFcmp(cond);
csel_cond = GetConditionForSelect(cond->AsCondition());
} else {
__ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
csel_cond = GetConditionForSelect(cond->AsCondition());
}
if (DataType::IsFloatingPointType(select->GetType())) {
__ Fcsel(OutputFPRegister(select),
InputFPRegisterAt(select, 1),
InputFPRegisterAt(select, 0),
csel_cond);
} else {
__ Csel(OutputRegister(select),
InputOperandAt(select, 1),
InputOperandAt(select, 0),
csel_cond);
}
}
void LocationsBuilderARM64::VisitNop(HNop* nop) {
new (GetGraph()->GetAllocator()) LocationSummary(nop);
}
void InstructionCodeGeneratorARM64::VisitNop(HNop*) {
// The environment recording already happened in CodeGenerator::Compile.
}
void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) {
__ Claim(adjustment);
GetAssembler()->cfi().AdjustCFAOffset(adjustment);
}
void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) {
__ Drop(adjustment);
GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
}
void CodeGeneratorARM64::GenerateNop() {
__ Nop();
}
void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction);
}
void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction,
instruction->GetFieldInfo(),
instruction->GetValueCanBeNull(),
instruction->GetWriteBarrierKind());
}
// Temp is used for read barrier.
static size_t NumberOfInstanceOfTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) {
if (emit_read_barrier &&
(kUseBakerReadBarrier ||
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
return 1;
}
return 0;
}
// Interface case has 3 temps, one for holding the number of interfaces, one for the current
// interface pointer, one for loading the current interface.
// The other checks have one temp for loading the object's class.
static size_t NumberOfCheckCastTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) {
if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
return 3;
}
return 1 + NumberOfInstanceOfTemps(emit_read_barrier, type_check_kind);
}
void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
bool baker_read_barrier_slow_path = false;
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kAbstractClassCheck:
case TypeCheckKind::kClassHierarchyCheck:
case TypeCheckKind::kArrayObjectCheck: {
bool needs_read_barrier = codegen_->InstanceOfNeedsReadBarrier(instruction);
call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
break;
}
case TypeCheckKind::kArrayCheck:
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck:
call_kind = LocationSummary::kCallOnSlowPath;
break;
case TypeCheckKind::kBitstringCheck:
break;
}
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
if (baker_read_barrier_slow_path) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
if (type_check_kind == TypeCheckKind::kBitstringCheck) {
locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
// The "out" register is used as a temporary, so it overlaps with the inputs.
// Note that TypeCheckSlowPathARM64 uses this register too.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
// Add temps if necessary for read barriers.
locations->AddRegisterTemps(
NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind));
}
void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = InputRegisterAt(instruction, 0);
Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
? Register()
: InputRegisterAt(instruction, 1);
Location out_loc = locations->Out();
Register out = OutputRegister(instruction);
const size_t num_temps = NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind);
DCHECK_LE(num_temps, 1u);
Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
vixl::aarch64::Label done, zero;
SlowPathCodeARM64* slow_path = nullptr;
// Return 0 if `obj` is null.
// Avoid null check if we know `obj` is not null.
if (instruction->MustDoNullCheck()) {
__ Cbz(obj, &zero);
}
switch (type_check_kind) {
case TypeCheckKind::kExactCheck: {
ReadBarrierOption read_barrier_option =
codegen_->ReadBarrierOptionForInstanceOf(instruction);
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
read_barrier_option);
__ Cmp(out, cls);
__ Cset(out, eq);
if (zero.IsLinked()) {
__ B(&done);
}
break;
}
case TypeCheckKind::kAbstractClassCheck: {
ReadBarrierOption read_barrier_option =
codegen_->ReadBarrierOptionForInstanceOf(instruction);
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
read_barrier_option);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
vixl::aarch64::Label loop, success;
__ Bind(&loop);
// /* HeapReference<Class> */ out = out->super_class_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
super_offset,
maybe_temp_loc,
read_barrier_option);
// If `out` is null, we use it for the result, and jump to `done`.
__ Cbz(out, &done);
__ Cmp(out, cls);
__ B(ne, &loop);
__ Mov(out, 1);
if (zero.IsLinked()) {
__ B(&done);
}
break;
}
case TypeCheckKind::kClassHierarchyCheck: {
ReadBarrierOption read_barrier_option =
codegen_->ReadBarrierOptionForInstanceOf(instruction);
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
read_barrier_option);
// Walk over the class hierarchy to find a match.
vixl::aarch64::Label loop, success;
__ Bind(&loop);
__ Cmp(out, cls);
__ B(eq, &success);
// /* HeapReference<Class> */ out = out->super_class_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
super_offset,
maybe_temp_loc,
read_barrier_option);
__ Cbnz(out, &loop);
// If `out` is null, we use it for the result, and jump to `done`.
__ B(&done);
__ Bind(&success);
__ Mov(out, 1);
if (zero.IsLinked()) {
__ B(&done);
}
break;
}
case TypeCheckKind::kArrayObjectCheck: {
ReadBarrierOption read_barrier_option =
codegen_->ReadBarrierOptionForInstanceOf(instruction);
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
read_barrier_option);
// Do an exact check.
vixl::aarch64::Label exact_check;
__ Cmp(out, cls);
__ B(eq, &exact_check);
// Otherwise, we need to check that the object's class is a non-primitive array.
// /* HeapReference<Class> */ out = out->component_type_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
component_offset,
maybe_temp_loc,
read_barrier_option);
// If `out` is null, we use it for the result, and jump to `done`.
__ Cbz(out, &done);
__ Ldrh(out, HeapOperand(out, primitive_offset));
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Cbnz(out, &zero);
__ Bind(&exact_check);
__ Mov(out, 1);
__ B(&done);
break;
}
case TypeCheckKind::kArrayCheck: {
// No read barrier since the slow path will retry upon failure.
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kWithoutReadBarrier);
__ Cmp(out, cls);
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
instruction, /* is_fatal= */ false);
codegen_->AddSlowPath(slow_path);
__ B(ne, slow_path->GetEntryLabel());
__ Mov(out, 1);
if (zero.IsLinked()) {
__ B(&done);
}
break;
}
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck: {
// Note that we indeed only call on slow path, but we always go
// into the slow path for the unresolved and interface check
// cases.
//
// We cannot directly call the InstanceofNonTrivial runtime
// entry point without resorting to a type checking slow path
// here (i.e. by calling InvokeRuntime directly), as it would
// require to assign fixed registers for the inputs of this
// HInstanceOf instruction (following the runtime calling
// convention), which might be cluttered by the potential first
// read barrier emission at the beginning of this method.
//
// TODO: Introduce a new runtime entry point taking the object
// to test (instead of its class) as argument, and let it deal
// with the read barrier issues. This will let us refactor this
// case of the `switch` code as it was previously (with a direct
// call to the runtime not using a type checking slow path).
// This should also be beneficial for the other cases above.
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
instruction, /* is_fatal= */ false);
codegen_->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
if (zero.IsLinked()) {
__ B(&done);
}
break;
}
case TypeCheckKind::kBitstringCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kWithoutReadBarrier);
GenerateBitstringTypeCheckCompare(instruction, out);
__ Cset(out, eq);
if (zero.IsLinked()) {
__ B(&done);
}
break;
}
}
if (zero.IsLinked()) {
__ Bind(&zero);
__ Mov(out, 0);
}
if (done.IsLinked()) {
__ Bind(&done);
}
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary::CallKind call_kind = codegen_->GetCheckCastCallKind(instruction);
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
if (type_check_kind == TypeCheckKind::kBitstringCheck) {
locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
locations->AddRegisterTemps(NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind));
}
void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = InputRegisterAt(instruction, 0);
Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
? Register()
: InputRegisterAt(instruction, 1);
const size_t num_temps = NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind);
DCHECK_GE(num_temps, 1u);
DCHECK_LE(num_temps, 3u);
Location temp_loc = locations->GetTemp(0);
Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
Register temp = WRegisterFrom(temp_loc);
const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
const uint32_t object_array_data_offset =
mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
bool is_type_check_slow_path_fatal = codegen_->IsTypeCheckSlowPathFatal(instruction);
SlowPathCodeARM64* type_check_slow_path =
new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
instruction, is_type_check_slow_path_fatal);
codegen_->AddSlowPath(type_check_slow_path);
vixl::aarch64::Label done;
// Avoid null check if we know obj is not null.
if (instruction->MustDoNullCheck()) {
__ Cbz(obj, &done);
}
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kArrayCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
__ Cmp(temp, cls);
// Jump to slow path for throwing the exception or doing a
// more involved array check.
__ B(ne, type_check_slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kAbstractClassCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
vixl::aarch64::Label loop;
__ Bind(&loop);
// /* HeapReference<Class> */ temp = temp->super_class_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
super_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class reference currently in `temp` is null, jump to the slow path to throw the
// exception.
__ Cbz(temp, type_check_slow_path->GetEntryLabel());
// Otherwise, compare classes.
__ Cmp(temp, cls);
__ B(ne, &loop);
break;
}
case TypeCheckKind::kClassHierarchyCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Walk over the class hierarchy to find a match.
vixl::aarch64::Label loop;
__ Bind(&loop);
__ Cmp(temp, cls);
__ B(eq, &done);
// /* HeapReference<Class> */ temp = temp->super_class_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
super_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class reference currently in `temp` is not null, jump
// back at the beginning of the loop.
__ Cbnz(temp, &loop);
// Otherwise, jump to the slow path to throw the exception.
__ B(type_check_slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kArrayObjectCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Do an exact check.
__ Cmp(temp, cls);
__ B(eq, &done);
// Otherwise, we need to check that the object's class is a non-primitive array.
// /* HeapReference<Class> */ temp = temp->component_type_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
component_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the component type is null, jump to the slow path to throw the exception.
__ Cbz(temp, type_check_slow_path->GetEntryLabel());
// Otherwise, the object is indeed an array. Further check that this component type is not a
// primitive type.
__ Ldrh(temp, HeapOperand(temp, primitive_offset));
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Cbnz(temp, type_check_slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kUnresolvedCheck:
// We always go into the type check slow path for the unresolved check cases.
//
// We cannot directly call the CheckCast runtime entry point
// without resorting to a type checking slow path here (i.e. by
// calling InvokeRuntime directly), as it would require to
// assign fixed registers for the inputs of this HInstanceOf
// instruction (following the runtime calling convention), which
// might be cluttered by the potential first read barrier
// emission at the beginning of this method.
__ B(type_check_slow_path->GetEntryLabel());
break;
case TypeCheckKind::kInterfaceCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// /* HeapReference<Class> */ temp = temp->iftable_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
iftable_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Iftable is never null.
__ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset));
// Loop through the iftable and check if any class matches.
vixl::aarch64::Label start_loop;
__ Bind(&start_loop);
__ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel());
__ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset));
GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc));
// Go to next interface.
__ Add(temp, temp, 2 * kHeapReferenceSize);
__ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2);
// Compare the classes and continue the loop if they do not match.
__ Cmp(cls, WRegisterFrom(maybe_temp3_loc));
__ B(ne, &start_loop);
break;
}
case TypeCheckKind::kBitstringCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
GenerateBitstringTypeCheckCompare(instruction, temp);
__ B(ne, type_check_slow_path->GetEntryLabel());
break;
}
}
__ Bind(&done);
__ Bind(type_check_slow_path->GetExitLabel());
}
void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitIntConstant([[maybe_unused]] HIntConstant* constant) {
// Will be generated at use site.
}
void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitNullConstant([[maybe_unused]] HNullConstant* constant) {
// Will be generated at use site.
}
void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
// The trampoline uses the same calling convention as dex calling conventions,
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
// the method_idx.
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
}
void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
// We cannot request ip1 as it's blocked by the register allocator.
invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any());
}
}
void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
Register klass) {
DCHECK_EQ(klass.GetCode(), 0u);
if (ProfilingInfoBuilder::IsInlineCacheUseful(instruction->AsInvoke(), this)) {
ProfilingInfo* info = GetGraph()->GetProfilingInfo();
DCHECK(info != nullptr);
InlineCache* cache = ProfilingInfoBuilder::GetInlineCache(
info, GetCompilerOptions(), instruction->AsInvoke());
if (cache != nullptr) {
uint64_t address = reinterpret_cast64<uint64_t>(cache);
vixl::aarch64::Label done;
__ Mov(x8, address);
__ Ldr(w9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value()));
// Fast path for a monomorphic cache.
__ Cmp(klass.W(), w9);
__ B(eq, &done);
InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
__ Bind(&done);
} else {
// This is unexpected, but we don't guarantee stable compilation across
// JIT runs so just warn about it.
ScopedObjectAccess soa(Thread::Current());
LOG(WARNING) << "Missing inline cache for " << GetGraph()->GetArtMethod()->PrettyMethod();
}
}
}
void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
LocationSummary* locations = invoke->GetLocations();
Register temp = XRegisterFrom(locations->GetTemp(0));
Location receiver = locations->InAt(0);
Offset class_offset = mirror::Object::ClassOffset();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
if (receiver.IsStackSlot()) {
__ Ldr(temp.W(), StackOperandFrom(receiver));
{
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
// /* HeapReference<Class> */ temp = temp->klass_
__ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
codegen_->MaybeRecordImplicitNullCheck(invoke);
}
} else {
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
// /* HeapReference<Class> */ temp = receiver->klass_
__ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
codegen_->MaybeRecordImplicitNullCheck(invoke);
}
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
// If we're compiling baseline, update the inline cache.
codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
// The register ip1 is required to be used for the hidden argument in
// art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
MacroAssembler* masm = GetVIXLAssembler();
UseScratchRegisterScope scratch_scope(masm);
scratch_scope.Exclude(ip1);
if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
Location interface_method = locations->InAt(invoke->GetNumberOfArguments() - 1);
if (interface_method.IsStackSlot()) {
__ Ldr(ip1, StackOperandFrom(interface_method));
} else {
__ Mov(ip1, XRegisterFrom(interface_method));
}
// If the load kind is through a runtime call, we will pass the method we
// fetch the IMT, which will either be a no-op if we don't hit the conflict
// stub, or will make us always go through the trampoline when there is a
// conflict.
} else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) {
codegen_->LoadMethod(
invoke->GetHiddenArgumentLoadKind(), Location::RegisterLocation(ip1.GetCode()), invoke);
}
__ Ldr(temp,
MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
invoke->GetImtIndex(), kArm64PointerSize));
// temp = temp->GetImtEntryAt(method_offset);
__ Ldr(temp, MemOperand(temp, method_offset));
if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
// We pass the method from the IMT in case of a conflict. This will ensure
// we go into the runtime to resolve the actual method.
__ Mov(ip1, temp);
}
// lr = temp->GetEntryPoint();
__ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
{
// Ensure the pc position is recorded immediately after the `blr` instruction.
ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
// lr();
__ blr(lr);
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor(
/*for_register_allocation=*/ true);
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
} else {
HandleInvoke(invoke);
}
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorARM64 intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
[[maybe_unused]] ArtMethod* method) {
// On ARM64 we support all dispatch types.
return desired_dispatch_info;
}
void CodeGeneratorARM64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
switch (load_kind) {
case MethodLoadKind::kBootImageLinkTimePcRelative: {
DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
// Add ADRP with its PC-relative method patch.
vixl::aarch64::Label* adrp_label =
NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
// Add ADD with its PC-relative method patch.
vixl::aarch64::Label* add_label =
NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label);
EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp));
break;
}
case MethodLoadKind::kBootImageRelRo: {
// Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
uint32_t boot_image_offset = GetBootImageOffset(invoke);
LoadBootImageRelRoEntry(WRegisterFrom(temp), boot_image_offset);
break;
}
case MethodLoadKind::kBssEntry: {
// Add ADRP with its PC-relative .bss entry patch.
vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(invoke->GetMethodReference());
EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
// Add LDR with its PC-relative .bss entry patch.
vixl::aarch64::Label* ldr_label =
NewMethodBssEntryPatch(invoke->GetMethodReference(), adrp_label);
// All aligned loads are implicitly atomic consume operations on ARM64.
EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp));
break;
}
case MethodLoadKind::kJitDirectAddress: {
// Load method address from literal pool.
__ Ldr(XRegisterFrom(temp),
jit_patches_.DeduplicateUint64Literal(
reinterpret_cast<uint64_t>(invoke->GetResolvedMethod())));
break;
}
case MethodLoadKind::kRuntimeCall: {
// Test situation, don't do anything.
break;
}
default: {
LOG(FATAL) << "Load kind should have already been handled " << load_kind;
UNREACHABLE();
}
}
}
void CodeGeneratorARM64::GenerateStaticOrDirectCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
// Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
switch (invoke->GetMethodLoadKind()) {
case MethodLoadKind::kStringInit: {
uint32_t offset =
GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
// temp = thread->string_init_entrypoint
__ Ldr(XRegisterFrom(temp), MemOperand(tr, offset));
break;
}
case MethodLoadKind::kRecursive:
callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
break;
case MethodLoadKind::kRuntimeCall:
GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
return; // No code pointer retrieval; the runtime performs the call directly.
case MethodLoadKind::kBootImageLinkTimePcRelative:
DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
// Do not materialize the method pointer, load directly the entrypoint.
// Add ADRP with its PC-relative JNI entrypoint patch.
vixl::aarch64::Label* adrp_label =
NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference());
EmitAdrpPlaceholder(adrp_label, lr);
// Add the LDR with its PC-relative method patch.
vixl::aarch64::Label* add_label =
NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), adrp_label);
EmitLdrOffsetPlaceholder(add_label, lr, lr);
break;
}
FALLTHROUGH_INTENDED;
default:
LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
break;
}
auto call_lr = [&]() {
// Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
ExactAssemblyScope eas(GetVIXLAssembler(),
kInstructionSize,
CodeBufferCheckScope::kExactSize);
// lr()
__ blr(lr);
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
};
switch (invoke->GetCodePtrLocation()) {
case CodePtrLocation::kCallSelf:
{
DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
// Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
ExactAssemblyScope eas(GetVIXLAssembler(),
kInstructionSize,
CodeBufferCheckScope::kExactSize);
__ bl(&frame_entry_label_);
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
}
break;
case CodePtrLocation::kCallCriticalNative: {
size_t out_frame_size =
PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARM64,
kAapcs64StackAlignment,
GetCriticalNativeDirectCallFrameSize>(invoke);
if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) {
call_lr();
} else {
// LR = callee_method->ptr_sized_fields_.data_; // EntryPointFromJni
MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kArm64PointerSize);
__ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
// lr()
call_lr();
}
// Zero-/sign-extend the result when needed due to native and managed ABI mismatch.
switch (invoke->GetType()) {
case DataType::Type::kBool:
__ Ubfx(w0, w0, 0, 8);
break;
case DataType::Type::kInt8:
__ Sbfx(w0, w0, 0, 8);
break;
case DataType::Type::kUint16:
__ Ubfx(w0, w0, 0, 16);
break;
case DataType::Type::kInt16:
__ Sbfx(w0, w0, 0, 16);
break;
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
case DataType::Type::kVoid:
break;
default:
DCHECK(false) << invoke->GetType();
break;
}
if (out_frame_size != 0u) {
DecreaseFrame(out_frame_size);
}
break;
}
case CodePtrLocation::kCallArtMethod: {
// LR = callee_method->ptr_sized_fields_.entry_point_from_quick_compiled_code_;
MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
__ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
// lr()
call_lr();
break;
}
}
DCHECK(!IsLeafMethod());
}
void CodeGeneratorARM64::GenerateVirtualCall(
HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
// Use the calling convention instead of the location of the receiver, as
// intrinsics may have put the receiver in a different register. In the intrinsics
// slow path, the arguments have been moved to the right place, so here we are
// guaranteed that the receiver is the first register of the calling convention.
InvokeDexCallingConvention calling_convention;
Register receiver = calling_convention.GetRegisterAt(0);
Register temp = XRegisterFrom(temp_in);
size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
Offset class_offset = mirror::Object::ClassOffset();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
DCHECK(receiver.IsRegister());
{
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
// /* HeapReference<Class> */ temp = receiver->klass_
__ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
MaybeRecordImplicitNullCheck(invoke);
}
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
// If we're compiling baseline, update the inline cache.
MaybeGenerateInlineCacheCheck(invoke, temp);
// temp = temp->GetMethodAt(method_offset);
__ Ldr(temp, MemOperand(temp, method_offset));
// lr = temp->GetEntryPoint();
__ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
{
// Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
// lr();
__ blr(lr);
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
}
}
void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) {
if (!trg.IsValid()) {
DCHECK(type == DataType::Type::kVoid);
return;
}
DCHECK_NE(type, DataType::Type::kVoid);
if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
Register trg_reg = RegisterFrom(trg, type);
Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type);
__ Mov(trg_reg, res_reg, kDiscardForSameWReg);
} else {
VRegister trg_reg = FPRegisterFrom(trg, type);
VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type);
__ Fmov(trg_reg, res_reg);
}
}
void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
return;
}
codegen_->GenerateInvokePolymorphicCall(invoke);
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
codegen_->GenerateInvokeCustomCall(invoke);
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch(
uint32_t intrinsic_data,
vixl::aarch64::Label* adrp_label) {
return NewPcRelativePatch(
/* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch(
uint32_t boot_image_offset,
vixl::aarch64::Label* adrp_label) {
return NewPcRelativePatch(
/* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch(
MethodReference target_method,
vixl::aarch64::Label* adrp_label) {
return NewPcRelativePatch(
target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch(
MethodReference target_method,
vixl::aarch64::Label* adrp_label) {
return NewPcRelativePatch(
target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch(
const DexFile& dex_file,
dex::TypeIndex type_index,
vixl::aarch64::Label* adrp_label) {
return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch(
HLoadClass* load_class,
vixl::aarch64::Label* adrp_label) {
const DexFile& dex_file = load_class->GetDexFile();
dex::TypeIndex type_index = load_class->GetTypeIndex();
ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
switch (load_class->GetLoadKind()) {
case HLoadClass::LoadKind::kBssEntry:
patches = &type_bss_entry_patches_;
break;
case HLoadClass::LoadKind::kBssEntryPublic:
patches = &public_type_bss_entry_patches_;
break;
case HLoadClass::LoadKind::kBssEntryPackage:
patches = &package_type_bss_entry_patches_;
break;
default:
LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
UNREACHABLE();
}
return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, patches);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch(
const DexFile& dex_file,
dex::StringIndex string_index,
vixl::aarch64::Label* adrp_label) {
return NewPcRelativePatch(
&dex_file, string_index.index_, adrp_label, &boot_image_string_patches_);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch(
const DexFile& dex_file,
dex::StringIndex string_index,
vixl::aarch64::Label* adrp_label) {
return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_);
}
vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageJniEntrypointPatch(
MethodReference target_method,
vixl::aarch64::Label* adrp_label) {
return NewPcRelativePatch(
target_method.dex_file, target_method.index, adrp_label, &boot_image_jni_entrypoint_patches_);
}
void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) {
DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
DCHECK(!GetCompilerOptions().IsJitCompiler());
call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label;
__ bind(bl_label);
__ bl(static_cast<int64_t>(0)); // Placeholder, patched at link-time.
}
void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) {
DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
if (GetCompilerOptions().IsJitCompiler()) {
auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
vixl::aarch64::Label* slow_path_entry = &it->second.label;
__ cbnz(mr, slow_path_entry);
} else {
baker_read_barrier_patches_.emplace_back(custom_data);
vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label;
__ bind(cbnz_label);
__ cbnz(mr, static_cast<int64_t>(0)); // Placeholder, patched at link-time.
}
}
vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch(
const DexFile* dex_file,
uint32_t offset_or_index,
vixl::aarch64::Label* adrp_label,
ArenaDeque<PcRelativePatchInfo>* patches) {
// Add a patch entry and return the label.
patches->emplace_back(dex_file, offset_or_index);
PcRelativePatchInfo* info = &patches->back();
vixl::aarch64::Label* label = &info->label;
// If adrp_label is null, this is the ADRP patch and needs to point to its own label.
info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
return label;
}
void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
jit_patches_.EmitJitRootPatches(code, roots_data, *GetCodeGenerationData());
}
void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label,
vixl::aarch64::Register reg) {
DCHECK(reg.IsX());
SingleEmissionCheckScope guard(GetVIXLAssembler());
__ Bind(fixup_label);
__ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0));
}
void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
vixl::aarch64::Register out,
vixl::aarch64::Register base) {
DCHECK(out.IsX());
DCHECK(base.IsX());
SingleEmissionCheckScope guard(GetVIXLAssembler());
__ Bind(fixup_label);
__ add(out, base, Operand(/* offset placeholder */ 0));
}
void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
vixl::aarch64::Register out,
vixl::aarch64::Register base) {
DCHECK(base.IsX());
SingleEmissionCheckScope guard(GetVIXLAssembler());
__ Bind(fixup_label);
__ ldr(out, MemOperand(base, /* offset placeholder */ 0));
}
void CodeGeneratorARM64::LoadBootImageRelRoEntry(vixl::aarch64::Register reg,
uint32_t boot_image_offset) {
DCHECK(reg.IsW());
// Add ADRP with its PC-relative .data.bimg.rel.ro patch.
vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset);
EmitAdrpPlaceholder(adrp_label, reg.X());
// Add LDR with its PC-relative .data.bimg.rel.ro patch.
vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label);
EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X());
}
void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg,
uint32_t boot_image_reference) {
if (GetCompilerOptions().IsBootImage()) {
// Add ADRP with its PC-relative type patch.
vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference);
EmitAdrpPlaceholder(adrp_label, reg.X());
// Add ADD with its PC-relative type patch.
vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label);
EmitAddPlaceholder(add_label, reg.X(), reg.X());
} else if (GetCompilerOptions().GetCompilePic()) {
LoadBootImageRelRoEntry(reg, boot_image_reference);
} else {
DCHECK(GetCompilerOptions().IsJitCompiler());
gc::Heap* heap = Runtime::Current()->GetHeap();
DCHECK(!heap->GetBootImageSpaces().empty());
const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
__ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address)));
}
}
void CodeGeneratorARM64::LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,
TypeReference target_type) {
// Load the type the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
// Add ADRP with its PC-relative type patch.
vixl::aarch64::Label* adrp_label =
NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
EmitAdrpPlaceholder(adrp_label, reg.X());
// Add ADD with its PC-relative type patch.
vixl::aarch64::Label* add_label =
NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), adrp_label);
EmitAddPlaceholder(add_label, reg.X(), reg.X());
}
void CodeGeneratorARM64::LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke) {
DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
if (GetCompilerOptions().IsBootImage()) {
MethodReference target_method = invoke->GetResolvedMethodReference();
dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx));
} else {
uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
LoadBootImageAddress(reg, boot_image_offset);
}
}
void CodeGeneratorARM64::LoadClassRootForIntrinsic(vixl::aarch64::Register reg,
ClassRoot class_root) {
if (GetCompilerOptions().IsBootImage()) {
ScopedObjectAccess soa(Thread::Current());
ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
LoadTypeForBootImageIntrinsic(reg, target_type);
} else {
uint32_t boot_image_offset = GetBootImageOffset(class_root);
LoadBootImageAddress(reg, boot_image_offset);
}
}
template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches(
const ArenaDeque<PcRelativePatchInfo>& infos,
ArenaVector<linker::LinkerPatch>* linker_patches) {
for (const PcRelativePatchInfo& info : infos) {
linker_patches->push_back(Factory(info.label.GetLocation(),
info.target_dex_file,
info.pc_insn_label->GetLocation(),
info.offset_or_index));
}
}
template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t pc_insn_offset,
uint32_t boot_image_offset) {
DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
return Factory(literal_offset, pc_insn_offset, boot_image_offset);
}
void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
DCHECK(linker_patches->empty());
size_t size =
boot_image_method_patches_.size() +
method_bss_entry_patches_.size() +
boot_image_type_patches_.size() +
type_bss_entry_patches_.size() +
public_type_bss_entry_patches_.size() +
package_type_bss_entry_patches_.size() +
boot_image_string_patches_.size() +
string_bss_entry_patches_.size() +
boot_image_jni_entrypoint_patches_.size() +
boot_image_other_patches_.size() +
call_entrypoint_patches_.size() +
baker_read_barrier_patches_.size();
linker_patches->reserve(size);
if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
boot_image_method_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
boot_image_type_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
boot_image_string_patches_, linker_patches);
} else {
DCHECK(boot_image_method_patches_.empty());
DCHECK(boot_image_type_patches_.empty());
DCHECK(boot_image_string_patches_.empty());
}
if (GetCompilerOptions().IsBootImage()) {
EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
boot_image_other_patches_, linker_patches);
} else {
EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
boot_image_other_patches_, linker_patches);
}
EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
method_bss_entry_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
type_bss_entry_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
public_type_bss_entry_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
package_type_bss_entry_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
string_bss_entry_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>(
boot_image_jni_entrypoint_patches_, linker_patches);
for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) {
DCHECK(info.target_dex_file == nullptr);
linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
info.label.GetLocation(), info.offset_or_index));
}
for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
info.label.GetLocation(), info.custom_data));
}
DCHECK_EQ(size, linker_patches->size());
}
bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const {
return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
}
void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch,
/*out*/ ArenaVector<uint8_t>* code,
/*out*/ std::string* debug_name) {
Arm64Assembler assembler(GetGraph()->GetAllocator());
switch (patch.GetType()) {
case linker::LinkerPatch::Type::kCallRelative: {
// The thunk just uses the entry point in the ArtMethod. This works even for calls
// to the generic JNI and interpreter trampolines.
Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kArm64PointerSize).Int32Value());
assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
*debug_name = "MethodCallThunk";
}
break;
}
case linker::LinkerPatch::Type::kCallEntrypoint: {
Offset offset(patch.EntrypointOffset());
assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0));
if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
*debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value());
}
break;
}
case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
break;
}
default:
LOG(FATAL) << "Unexpected patch type " << patch.GetType();
UNREACHABLE();
}
// Ensure we emit the literal pool if any.
assembler.FinalizeCode();
code->resize(assembler.CodeSize());
MemoryRegion code_region(code->data(), code->size());
assembler.CopyInstructions(code_region);
}
void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
return;
}
LocationSummary* locations = invoke->GetLocations();
codegen_->GenerateStaticOrDirectCall(
invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
return;
}
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
DCHECK(!codegen_->IsLeafMethod());
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) {
switch (desired_class_load_kind) {
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
case HLoadClass::LoadKind::kReferrersClass:
break;
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
case HLoadClass::LoadKind::kBootImageRelRo:
case HLoadClass::LoadKind::kBssEntry:
case HLoadClass::LoadKind::kBssEntryPublic:
case HLoadClass::LoadKind::kBssEntryPackage:
DCHECK(!GetCompilerOptions().IsJitCompiler());
break;
case HLoadClass::LoadKind::kJitBootImageAddress:
case HLoadClass::LoadKind::kJitTableAddress:
DCHECK(GetCompilerOptions().IsJitCompiler());
break;
case HLoadClass::LoadKind::kRuntimeCall:
break;
}
return desired_class_load_kind;
}
void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
InvokeRuntimeCallingConvention calling_convention;
CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
cls,
LocationFrom(calling_convention.GetRegisterAt(0)),
LocationFrom(vixl::aarch64::x0));
DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0));
return;
}
DCHECK_EQ(cls->NeedsAccessCheck(),
load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
load_kind == HLoadClass::LoadKind::kBssEntryPackage);
const bool requires_read_barrier = !cls->IsInBootImage() && codegen_->EmitReadBarrier();
LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
locations->SetInAt(0, Location::RequiresRegister());
}
locations->SetOut(Location::RequiresRegister());
if (load_kind == HLoadClass::LoadKind::kBssEntry ||
load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
load_kind == HLoadClass::LoadKind::kBssEntryPackage) {
if (codegen_->EmitNonBakerReadBarrier()) {
// For non-Baker read barrier we have a temp-clobbering call.
} else {
// Rely on the type resolution or initialization and marking to save everything we need.
locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
}
}
}
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
// move.
void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
codegen_->GenerateLoadClassRuntimeCall(cls);
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
return;
}
DCHECK_EQ(cls->NeedsAccessCheck(),
load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
load_kind == HLoadClass::LoadKind::kBssEntryPackage);
Location out_loc = cls->GetLocations()->Out();
Register out = OutputRegister(cls);
const ReadBarrierOption read_barrier_option =
cls->IsInBootImage() ? kWithoutReadBarrier : codegen_->GetCompilerReadBarrierOption();
bool generate_null_check = false;
switch (load_kind) {
case HLoadClass::LoadKind::kReferrersClass: {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
Register current_method = InputRegisterAt(cls, 0);
codegen_->GenerateGcRootFieldLoad(cls,
out_loc,
current_method,
ArtMethod::DeclaringClassOffset().Int32Value(),
/* fixup_label= */ nullptr,
read_barrier_option);
break;
}
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
codegen_->GetCompilerOptions().IsBootImageExtension());
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
// Add ADRP with its PC-relative type patch.
const DexFile& dex_file = cls->GetDexFile();
dex::TypeIndex type_index = cls->GetTypeIndex();
vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
// Add ADD with its PC-relative type patch.
vixl::aarch64::Label* add_label =
codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
break;
}
case HLoadClass::LoadKind::kBootImageRelRo: {
DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls);
codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
break;
}
case HLoadClass::LoadKind::kBssEntry:
case HLoadClass::LoadKind::kBssEntryPublic:
case HLoadClass::LoadKind::kBssEntryPackage: {
// Add ADRP with its PC-relative Class .bss entry patch.
vixl::aarch64::Register temp = XRegisterFrom(out_loc);
vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(cls);
codegen_->EmitAdrpPlaceholder(adrp_label, temp);
// Add LDR with its PC-relative Class .bss entry patch.
vixl::aarch64::Label* ldr_label = codegen_->NewBssEntryTypePatch(cls, adrp_label);
// /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */
// All aligned loads are implicitly atomic consume operations on ARM64.
codegen_->GenerateGcRootFieldLoad(cls,
out_loc,
temp,
/* offset placeholder */ 0u,
ldr_label,
read_barrier_option);
generate_null_check = true;
break;
}
case HLoadClass::LoadKind::kJitBootImageAddress: {
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
DCHECK_NE(address, 0u);
__ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
break;
}
case HLoadClass::LoadKind::kJitTableAddress: {
__ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
cls->GetTypeIndex(),
cls->GetClass()));
codegen_->GenerateGcRootFieldLoad(cls,
out_loc,
out.X(),
/* offset= */ 0,
/* fixup_label= */ nullptr,
read_barrier_option);
break;
}
case HLoadClass::LoadKind::kRuntimeCall:
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
bool do_clinit = cls->MustGenerateClinitCheck();
if (generate_null_check || do_clinit) {
DCHECK(cls->CanCallRuntime());
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls);
codegen_->AddSlowPath(slow_path);
if (generate_null_check) {
__ Cbz(out, slow_path->GetEntryLabel());
}
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
}
void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
InvokeRuntimeCallingConvention calling_convention;
Location location = LocationFrom(calling_convention.GetRegisterAt(0));
CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
}
void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
codegen_->GenerateLoadMethodHandleRuntimeCall(load);
}
void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) {
InvokeRuntimeCallingConvention calling_convention;
Location location = LocationFrom(calling_convention.GetRegisterAt(0));
CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
}
void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) {
codegen_->GenerateLoadMethodTypeRuntimeCall(load);
}
static MemOperand GetExceptionTlsAddress() {
return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value());
}
void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
__ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
}
void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
}
void InstructionCodeGeneratorARM64::VisitClearException([[maybe_unused]] HClearException* clear) {
__ Str(wzr, GetExceptionTlsAddress());
}
HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) {
switch (desired_string_load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
case HLoadString::LoadKind::kBootImageRelRo:
case HLoadString::LoadKind::kBssEntry:
DCHECK(!GetCompilerOptions().IsJitCompiler());
break;
case HLoadString::LoadKind::kJitBootImageAddress:
case HLoadString::LoadKind::kJitTableAddress:
DCHECK(GetCompilerOptions().IsJitCompiler());
break;
case HLoadString::LoadKind::kRuntimeCall:
break;
}
return desired_string_load_kind;
}
void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
LocationSummary::CallKind call_kind = codegen_->GetLoadStringCallKind(load);
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
} else {
locations->SetOut(Location::RequiresRegister());
if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) {
if (codegen_->EmitNonBakerReadBarrier()) {
// For non-Baker read barrier we have a temp-clobbering call.
} else {
// Rely on the pResolveString and marking to save everything we need.
locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
}
}
}
}
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
// move.
void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
Register out = OutputRegister(load);
Location out_loc = load->GetLocations()->Out();
switch (load->GetLoadKind()) {
case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
codegen_->GetCompilerOptions().IsBootImageExtension());
// Add ADRP with its PC-relative String patch.
const DexFile& dex_file = load->GetDexFile();
const dex::StringIndex string_index = load->GetStringIndex();
vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
// Add ADD with its PC-relative String patch.
vixl::aarch64::Label* add_label =
codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
return;
}
case HLoadString::LoadKind::kBootImageRelRo: {
DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load);
codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
return;
}
case HLoadString::LoadKind::kBssEntry: {
// Add ADRP with its PC-relative String .bss entry patch.
const DexFile& dex_file = load->GetDexFile();
const dex::StringIndex string_index = load->GetStringIndex();
Register temp = XRegisterFrom(out_loc);
vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index);
codegen_->EmitAdrpPlaceholder(adrp_label, temp);
// Add LDR with its PC-relative String .bss entry patch.
vixl::aarch64::Label* ldr_label =
codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label);
// /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */
// All aligned loads are implicitly atomic consume operations on ARM64.
codegen_->GenerateGcRootFieldLoad(load,
out_loc,
temp,
/* offset placeholder */ 0u,
ldr_label,
codegen_->GetCompilerReadBarrierOption());
SlowPathCodeARM64* slow_path =
new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load);
codegen_->AddSlowPath(slow_path);
__ Cbz(out.X(), slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
return;
}
case HLoadString::LoadKind::kJitBootImageAddress: {
uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
DCHECK_NE(address, 0u);
__ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
return;
}
case HLoadString::LoadKind::kJitTableAddress: {
__ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
load->GetStringIndex(),
load->GetString()));
codegen_->GenerateGcRootFieldLoad(load,
out_loc,
out.X(),
/* offset= */ 0,
/* fixup_label= */ nullptr,
codegen_->GetCompilerReadBarrierOption());
return;
}
default:
break;
}
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode());
__ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_);
codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitLongConstant([[maybe_unused]] HLongConstant* constant) {
// Will be generated at use site.
}
void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
instruction,
instruction->GetDexPc());
if (instruction->IsEnter()) {
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
} else {
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
}
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void LocationsBuilderARM64::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
switch (mul->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
__ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
__ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
break;
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
switch (neg->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
__ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
__ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetOut(LocationFrom(x0));
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
// Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
}
void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void LocationsBuilderARM64::VisitNot(HNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
switch (instruction->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
__ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
break;
default:
LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
}
}
void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
__ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1));
}
void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
locations->SetInAt(0, Location::RequiresRegister());
}
void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (CanMoveNullCheckToUser(instruction)) {
return;
}
{
// Ensure that between load and RecordPcInfo there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
Location obj = instruction->GetLocations()->InAt(0);
__ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
RecordPcInfo(instruction, instruction->GetDexPc());
}
}
void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction);
AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
__ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
codegen_->GenerateNullCheck(instruction);
}
void LocationsBuilderARM64::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitParallelMove([[maybe_unused]] HParallelMove* instruction) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
if (instruction->GetNext()->IsSuspendCheck() &&
instruction->GetBlock()->GetLoopInformation() != nullptr) {
HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
// The back edge will generate the suspend check.
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
}
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorARM64::VisitParameterValue(
[[maybe_unused]] HParameterValue* instruction) {
// Nothing to do, the parameter is already at its location.
}
void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(LocationFrom(kArtMethodRegister));
}
void InstructionCodeGeneratorARM64::VisitCurrentMethod(
[[maybe_unused]] HCurrentMethod* instruction) {
// Nothing to do, the method is already at its location.
}
void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorARM64::VisitPhi([[maybe_unused]] HPhi* instruction) {
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderARM64::VisitRem(HRem* rem) {
DataType::Type type = rem->GetResultType();
LocationSummary::CallKind call_kind =
DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) {
int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
Register out = OutputRegister(instruction);
Register dividend = InputRegisterAt(instruction, 0);
if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
// No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
// NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends.
// INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits
// 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros.
// So 'and' always produces zero.
__ And(out, dividend, abs_imm - 1);
} else {
if (abs_imm == 2) {
__ Cmp(dividend, 0);
__ And(out, dividend, 1);
__ Csneg(out, out, out, ge);
} else {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireSameSizeAs(out);
__ Negs(temp, dividend);
__ And(out, dividend, abs_imm - 1);
__ And(temp, temp, abs_imm - 1);
__ Csneg(out, out, temp, mi);
}
}
}
void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) {
int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
if (imm == 0) {
// Do not generate anything.
// DivZeroCheck would prevent any code to be executed.
return;
}
if (IsPowerOfTwo(AbsOrMin(imm))) {
// Cases imm == -1 or imm == 1 are handled in constant folding by
// InstructionWithAbsorbingInputSimplifier.
// If the cases have survided till code generation they are handled in
// GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0).
// The correct code is generated for them, just more instructions.
GenerateIntRemForPower2Denom(instruction);
} else {
DCHECK(imm < -2 || imm > 2) << imm;
GenerateDivRemWithAnyConstant(instruction, imm);
}
}
void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) {
DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
<< instruction->GetResultType();
if (instruction->GetLocations()->InAt(1).IsConstant()) {
GenerateIntRemForConstDenom(instruction);
} else {
Register out = OutputRegister(instruction);
Register dividend = InputRegisterAt(instruction, 0);
Register divisor = InputRegisterAt(instruction, 1);
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireSameSizeAs(out);
__ Sdiv(temp, dividend, divisor);
__ Msub(out, temp, divisor, dividend);
}
}
void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
DataType::Type type = rem->GetResultType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
GenerateIntRem(rem);
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
QuickEntrypointEnum entrypoint =
(type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc());
if (type == DataType::Type::kFloat32) {
CheckEntrypointTypes<kQuickFmodf, float, float, float>();
} else {
CheckEntrypointTypes<kQuickFmod, double, double, double>();
}
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitMin(HMin* min) {
HandleBinaryOp(min);
}
void InstructionCodeGeneratorARM64::VisitMin(HMin* min) {
HandleBinaryOp(min);
}
void LocationsBuilderARM64::VisitMax(HMax* max) {
HandleBinaryOp(max);
}
void InstructionCodeGeneratorARM64::VisitMax(HMax* max) {
HandleBinaryOp(max);
}
void LocationsBuilderARM64::VisitAbs(HAbs* abs) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
switch (abs->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
}
}
void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) {
switch (abs->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64: {
Register in_reg = InputRegisterAt(abs, 0);
Register out_reg = OutputRegister(abs);
__ Cmp(in_reg, Operand(0));
__ Cneg(out_reg, in_reg, lt);
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
VRegister in_reg = InputFPRegisterAt(abs, 0);
VRegister out_reg = OutputFPRegister(abs);
__ Fabs(out_reg, in_reg);
break;
}
default:
LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
}
}
void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) {
constructor_fence->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitConstructorFence(
[[maybe_unused]] HConstructorFence* constructor_fence) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
memory_barrier->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
}
void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
DataType::Type return_type = instruction->InputAt(0)->GetType();
locations->SetInAt(0, ARM64ReturnLocation(return_type));
}
void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) {
if (GetGraph()->IsCompilingOsr()) {
// To simplify callers of an OSR method, we put the return value in both
// floating point and core register.
switch (ret->InputAt(0)->GetType()) {
case DataType::Type::kFloat32:
__ Fmov(w0, s0);
break;
case DataType::Type::kFloat64:
__ Fmov(x0, d0);
break;
default:
break;
}
}
codegen_->GenerateFrameExit();
}
void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
instruction->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitReturnVoid([[maybe_unused]] HReturnVoid* instruction) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderARM64::VisitRor(HRor* ror) {
HandleBinaryOp(ror);
}
void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
HandleBinaryOp(ror);
}
void LocationsBuilderARM64::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderARM64::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderARM64::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction);
}
void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction,
instruction->GetFieldInfo(),
instruction->GetValueCanBeNull(),
instruction->GetWriteBarrierKind());
}
void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0));
}
void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
__ Mov(w0, instruction->GetFormat()->GetValue());
codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
}
void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionARM64 calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionARM64 calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionARM64 calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionARM64 calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionARM64 calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionARM64 calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionARM64 calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionARM64 calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnSlowPath);
// In suspend check slow path, usually there are no caller-save registers at all.
// If SIMD instructions are present, however, we force spilling all live SIMD
// registers in full width (since the runtime only saves/restores lower part).
// Note that only a suspend check can see live SIMD registers. In the
// loop optimization, we make sure this does not happen for any other slow
// path.
locations->SetCustomSlowPathCallerSaves(
GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
}
void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}
void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall);
DataType::Type input_type = conversion->GetInputType();
DataType::Type result_type = conversion->GetResultType();
DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
<< input_type << " -> " << result_type;
if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
(result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
}
if (DataType::IsFloatingPointType(input_type)) {
locations->SetInAt(0, Location::RequiresFpuRegister());
} else {
locations->SetInAt(0, Location::RequiresRegister());
}
if (DataType::IsFloatingPointType(result_type)) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
DataType::Type result_type = conversion->GetResultType();
DataType::Type input_type = conversion->GetInputType();
DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
<< input_type << " -> " << result_type;
if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
int result_size = DataType::Size(result_type);
int input_size = DataType::Size(input_type);
int min_size = std::min(result_size, input_size);
Register output = OutputRegister(conversion);
Register source = InputRegisterAt(conversion, 0);
if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) {
// 'int' values are used directly as W registers, discarding the top
// bits, so we don't need to sign-extend and can just perform a move.
// We do not pass the `kDiscardForSameWReg` argument to force clearing the
// top 32 bits of the target register. We theoretically could leave those
// bits unchanged, but we would have to make sure that no code uses a
// 32bit input value as a 64bit value assuming that the top 32 bits are
// zero.
__ Mov(output.W(), source.W());
} else if (DataType::IsUnsignedType(result_type) ||
(DataType::IsUnsignedType(input_type) && input_size < result_size)) {
__ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte);
} else {
__ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
}
} else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
__ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
} else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
__ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
} else if (DataType::IsFloatingPointType(result_type) &&
DataType::IsFloatingPointType(input_type)) {
__ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
} else {
LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderARM64::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitBoundType([[maybe_unused]] HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM64::VisitBoundType([[maybe_unused]] HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
// Simple implementation of packed switch - generate cascaded compare/jumps.
void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
int32_t lower_bound = switch_instr->GetStartValue();
uint32_t num_entries = switch_instr->GetNumEntries();
Register value_reg = InputRegisterAt(switch_instr, 0);
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
// Roughly set 16 as max average assemblies generated per HIR in a graph.
static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize;
// ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
// make sure we don't emit it if the target may run out of range.
// TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
// ranges and emit the tables only as required.
static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
if (num_entries <= kPackedSwitchCompareJumpThreshold ||
// Current instruction id is an upper bound of the number of HIRs in the graph.
GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
// Create a series of compare/jumps.
UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
Register temp = temps.AcquireW();
__ Subs(temp, value_reg, Operand(lower_bound));
const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
// Jump to successors[0] if value == lower_bound.
__ B(eq, codegen_->GetLabelOf(successors[0]));
int32_t last_index = 0;
for (; num_entries - last_index > 2; last_index += 2) {
__ Subs(temp, temp, Operand(2));
// Jump to successors[last_index + 1] if value < case_value[last_index + 2].
__ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
// Jump to successors[last_index + 2] if value == case_value[last_index + 2].
__ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
}
if (num_entries - last_index == 2) {
// The last missing case_value.
__ Cmp(temp, Operand(1));
__ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
}
// And the default for any other value.
if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
__ B(codegen_->GetLabelOf(default_block));
}
} else {
JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
// Below instructions should use at most one blocked register. Since there are two blocked
// registers, we are free to block one.
Register temp_w = temps.AcquireW();
Register index;
// Remove the bias.
if (lower_bound != 0) {
index = temp_w;
__ Sub(index, value_reg, Operand(lower_bound));
} else {
index = value_reg;
}
// Jump to default block if index is out of the range.
__ Cmp(index, Operand(num_entries));
__ B(hs, codegen_->GetLabelOf(default_block));
// In current VIXL implementation, it won't require any blocked registers to encode the
// immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
// register pressure.
Register table_base = temps.AcquireX();
// Load jump offset from the table.
__ Adr(table_base, jump_table->GetTableStartLabel());
Register jump_offset = temp_w;
__ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
// Jump to target block by branching to table_base(pc related) + offset.
Register target_address = table_base;
__ Add(target_address, table_base, Operand(jump_offset, SXTW));
__ Br(target_address);
}
}
void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(
HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
DataType::Type type = DataType::Type::kReference;
Register out_reg = RegisterFrom(out, type);
if (read_barrier_option == kWithReadBarrier) {
DCHECK(codegen_->EmitReadBarrier());
if (kUseBakerReadBarrier) {
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(out + offset)
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
out,
out_reg,
offset,
maybe_temp,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
} else {
// Load with slow path based read barrier.
// Save the value of `out` into `maybe_temp` before overwriting it
// in the following move operation, as we will need it for the
// read barrier below.
Register temp_reg = RegisterFrom(maybe_temp, type);
__ Mov(temp_reg, out_reg);
// /* HeapReference<Object> */ out = *(out + offset)
__ Ldr(out_reg, HeapOperand(out_reg, offset));
codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
}
} else {
// Plain load with no read barrier.
// /* HeapReference<Object> */ out = *(out + offset)
__ Ldr(out_reg, HeapOperand(out_reg, offset));
GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
}
}
void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(
HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
DataType::Type type = DataType::Type::kReference;
Register out_reg = RegisterFrom(out, type);
Register obj_reg = RegisterFrom(obj, type);
if (read_barrier_option == kWithReadBarrier) {
DCHECK(codegen_->EmitReadBarrier());
if (kUseBakerReadBarrier) {
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
out,
obj_reg,
offset,
maybe_temp,
/* needs_null_check= */ false,
/* use_load_acquire= */ false);
} else {
// Load with slow path based read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
__ Ldr(out_reg, HeapOperand(obj_reg, offset));
codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
}
} else {
// Plain load with no read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
__ Ldr(out_reg, HeapOperand(obj_reg, offset));
GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
}
}
void CodeGeneratorARM64::GenerateGcRootFieldLoad(
HInstruction* instruction,
Location root,
Register obj,
uint32_t offset,
vixl::aarch64::Label* fixup_label,
ReadBarrierOption read_barrier_option) {
DCHECK(fixup_label == nullptr || offset == 0u);
Register root_reg = RegisterFrom(root, DataType::Type::kReference);
if (read_barrier_option == kWithReadBarrier) {
DCHECK(EmitReadBarrier());
if (kUseBakerReadBarrier) {
// Fast path implementation of art::ReadBarrier::BarrierForRoot when
// Baker's read barrier are used.
// Query `art::Thread::Current()->GetIsGcMarking()` (stored in
// the Marking Register) to decide whether we need to enter
// the slow path to mark the GC root.
//
// We use shared thunks for the slow path; shared within the method
// for JIT, across methods for AOT. That thunk checks the reference
// and jumps to the entrypoint if needed.
//
// lr = &return_address;
// GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
// if (mr) { // Thread::Current()->GetIsGcMarking()
// goto gc_root_thunk<root_reg>(lr)
// }
// return_address:
UseScratchRegisterScope temps(GetVIXLAssembler());
DCHECK(temps.IsAvailable(ip0));
DCHECK(temps.IsAvailable(ip1));
temps.Exclude(ip0, ip1);
uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode());
ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
vixl::aarch64::Label return_address;
__ adr(lr, &return_address);
if (fixup_label != nullptr) {
__ bind(fixup_label);
}
static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
"GC root LDR must be 2 instructions (8B) before the return address label.");
__ ldr(root_reg, MemOperand(obj.X(), offset));
EmitBakerReadBarrierCbnz(custom_data);
__ bind(&return_address);
} else {
// GC root loaded through a slow path for read barriers other
// than Baker's.
// /* GcRoot<mirror::Object>* */ root = obj + offset
if (fixup_label == nullptr) {
__ Add(root_reg.X(), obj.X(), offset);
} else {
EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X());
}
// /* mirror::Object* */ root = root->Read()
GenerateReadBarrierForRootSlow(instruction, root, root);
}
} else {
// Plain GC root load with no read barrier.
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
if (fixup_label == nullptr) {
__ Ldr(root_reg, MemOperand(obj, offset));
} else {
EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X());
}
// Note that GC roots are not affected by heap poisoning, thus we
// do not have to unpoison `root_reg` here.
}
MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
}
void CodeGeneratorARM64::GenerateIntrinsicMoveWithBakerReadBarrier(
vixl::aarch64::Register marked_old_value,
vixl::aarch64::Register old_value) {
DCHECK(EmitBakerReadBarrier());
// Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode());
ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
vixl::aarch64::Label return_address;
__ adr(lr, &return_address);
static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
"GC root LDR must be 2 instructions (8B) before the return address label.");
__ mov(marked_old_value, old_value);
EmitBakerReadBarrierCbnz(custom_data);
__ bind(&return_address);
}
void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
vixl::aarch64::Register obj,
const vixl::aarch64::MemOperand& src,
bool needs_null_check,
bool use_load_acquire) {
DCHECK(EmitBakerReadBarrier());
// Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
// Marking Register) to decide whether we need to enter the slow
// path to mark the reference. Then, in the slow path, check the
// gray bit in the lock word of the reference's holder (`obj`) to
// decide whether to mark `ref` or not.
//
// We use shared thunks for the slow path; shared within the method
// for JIT, across methods for AOT. That thunk checks the holder
// and jumps to the entrypoint if needed. If the holder is not gray,
// it creates a fake dependency and returns to the LDR instruction.
//
// lr = &gray_return_address;
// if (mr) { // Thread::Current()->GetIsGcMarking()
// goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr)
// }
// not_gray_return_address:
// // Original reference load. If the offset is too large to fit
// // into LDR, we use an adjusted base register here.
// HeapReference<mirror::Object> reference = *(obj+offset);
// gray_return_address:
DCHECK(src.GetAddrMode() == vixl::aarch64::Offset);
DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>));
UseScratchRegisterScope temps(GetVIXLAssembler());
DCHECK(temps.IsAvailable(ip0));
DCHECK(temps.IsAvailable(ip1));
temps.Exclude(ip0, ip1);
uint32_t custom_data = use_load_acquire
? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode())
: EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode());
{
ExactAssemblyScope guard(GetVIXLAssembler(),
(kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
vixl::aarch64::Label return_address;
__ adr(lr, &return_address);
EmitBakerReadBarrierCbnz(custom_data);
static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
"Field LDR must be 1 instruction (4B) before the return address label; "
" 2 instructions (8B) for heap poisoning.");
Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
if (use_load_acquire) {
DCHECK_EQ(src.GetOffset(), 0);
__ ldar(ref_reg, src);
} else {
__ ldr(ref_reg, src);
}
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
// Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
// macro instructions disallowed in ExactAssemblyScope.
if (kPoisonHeapReferences) {
__ neg(ref_reg, Operand(ref_reg));
}
__ bind(&return_address);
}
MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
}
void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location maybe_temp,
bool needs_null_check,
bool use_load_acquire) {
DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
Register base = obj;
if (use_load_acquire) {
DCHECK(maybe_temp.IsRegister());
base = WRegisterFrom(maybe_temp);
__ Add(base, obj, offset);
offset = 0u;
} else if (offset >= kReferenceLoadMinFarOffset) {
DCHECK(maybe_temp.IsRegister());
base = WRegisterFrom(maybe_temp);
static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
__ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
offset &= (kReferenceLoadMinFarOffset - 1u);
}
MemOperand src(base.X(), offset);
GenerateFieldLoadWithBakerReadBarrier(
instruction, ref, obj, src, needs_null_check, use_load_acquire);
}
void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction,
Location ref,
Register obj,
uint32_t data_offset,
Location index,
bool needs_null_check) {
DCHECK(EmitBakerReadBarrier());
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
size_t scale_factor = DataType::SizeShift(DataType::Type::kReference);
// Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
// Marking Register) to decide whether we need to enter the slow
// path to mark the reference. Then, in the slow path, check the
// gray bit in the lock word of the reference's holder (`obj`) to
// decide whether to mark `ref` or not.
//
// We use shared thunks for the slow path; shared within the method
// for JIT, across methods for AOT. That thunk checks the holder
// and jumps to the entrypoint if needed. If the holder is not gray,
// it creates a fake dependency and returns to the LDR instruction.
//
// lr = &gray_return_address;
// if (mr) { // Thread::Current()->GetIsGcMarking()
// goto array_thunk<base_reg>(lr)
// }
// not_gray_return_address:
// // Original reference load. If the offset is too large to fit
// // into LDR, we use an adjusted base register here.
// HeapReference<mirror::Object> reference = data[index];
// gray_return_address:
DCHECK(index.IsValid());
Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
UseScratchRegisterScope temps(GetVIXLAssembler());
DCHECK(temps.IsAvailable(ip0));
DCHECK(temps.IsAvailable(ip1));
temps.Exclude(ip0, ip1);
Register temp;
if (instruction->GetArray()->IsIntermediateAddress()) {
// We do not need to compute the intermediate address from the array: the
// input instruction has done it already. See the comment in
// `TryExtractArrayAccessAddress()`.
if (kIsDebugBuild) {
HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
}
temp = obj;
} else {
temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0));
__ Add(temp.X(), obj.X(), Operand(data_offset));
}
uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode());
{
ExactAssemblyScope guard(GetVIXLAssembler(),
(kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
vixl::aarch64::Label return_address;
__ adr(lr, &return_address);
EmitBakerReadBarrierCbnz(custom_data);
static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
"Array LDR must be 1 instruction (4B) before the return address label; "
" 2 instructions (8B) for heap poisoning.");
__ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor));
DCHECK(!needs_null_check); // The thunk cannot handle the null check.
// Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
// macro instructions disallowed in ExactAssemblyScope.
if (kPoisonHeapReferences) {
__ neg(ref_reg, Operand(ref_reg));
}
__ bind(&return_address);
}
MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
}
void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
// The following condition is a compile-time one, so it does not have a run-time cost.
if (kIsDebugBuild && EmitBakerReadBarrier()) {
// The following condition is a run-time one; it is executed after the
// previous compile-time test, to avoid penalizing non-debug builds.
if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW();
GetAssembler()->GenerateMarkingRegisterCheck(temp, code);
}
}
}
SlowPathCodeARM64* CodeGeneratorARM64::AddReadBarrierSlowPath(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
SlowPathCodeARM64* slow_path = new (GetScopedAllocator())
ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
AddSlowPath(slow_path);
return slow_path;
}
void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
DCHECK(EmitReadBarrier());
// Insert a slow path based read barrier *after* the reference load.
//
// If heap poisoning is enabled, the unpoisoning of the loaded
// reference will be carried out by the runtime within the slow
// path.
//
// Note that `ref` currently does not get unpoisoned (when heap
// poisoning is enabled), which is alright as the `ref` argument is
// not used by the artReadBarrierSlow entry point.
//
// TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
SlowPathCodeARM64* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index);
__ B(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
if (EmitReadBarrier()) {
// Baker's read barriers shall be handled by the fast path
// (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
DCHECK(!kUseBakerReadBarrier);
// If heap poisoning is enabled, unpoisoning will be taken care of
// by the runtime within the slow path.
GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
} else if (kPoisonHeapReferences) {
GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
}
}
void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
Location out,
Location root) {
DCHECK(EmitReadBarrier());
// Insert a slow path based read barrier *after* the GC root load.
//
// Note that GC roots are not affected by heap poisoning, so we do
// not need to do anything special for this here.
SlowPathCodeARM64* slow_path =
new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
instruction->GetIndex(), kArm64PointerSize).SizeValue();
__ Ldr(XRegisterFrom(locations->Out()),
MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
} else {
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
instruction->GetIndex(), kArm64PointerSize));
__ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
__ Ldr(XRegisterFrom(locations->Out()),
MemOperand(XRegisterFrom(locations->Out()), method_offset));
}
}
MemOperand InstructionCodeGeneratorARM64::VecNEONAddress(
HVecMemoryOperation* instruction,
UseScratchRegisterScope* temps_scope,
size_t size,
bool is_string_char_at,
/*out*/ Register* scratch) {
LocationSummary* locations = instruction->GetLocations();
Register base = InputRegisterAt(instruction, 0);
if (instruction->InputAt(1)->IsIntermediateAddressIndex()) {
DCHECK(!is_string_char_at);
return MemOperand(base.X(), InputRegisterAt(instruction, 1).X());
}
Location index = locations->InAt(1);
uint32_t offset = is_string_char_at
? mirror::String::ValueOffset().Uint32Value()
: mirror::Array::DataOffset(size).Uint32Value();
size_t shift = ComponentSizeShiftWidth(size);
// HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet.
DCHECK(!instruction->InputAt(0)->IsIntermediateAddress());
if (index.IsConstant()) {
offset += Int64FromLocation(index) << shift;
return HeapOperand(base, offset);
} else {
*scratch = temps_scope->AcquireSameSizeAs(base);
__ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift));
return HeapOperand(*scratch, offset);
}
}
SVEMemOperand InstructionCodeGeneratorARM64::VecSVEAddress(
HVecMemoryOperation* instruction,
UseScratchRegisterScope* temps_scope,
size_t size,
bool is_string_char_at,
/*out*/ Register* scratch) {
LocationSummary* locations = instruction->GetLocations();
Register base = InputRegisterAt(instruction, 0);
Location index = locations->InAt(1);
DCHECK(!instruction->InputAt(1)->IsIntermediateAddressIndex());
DCHECK(!index.IsConstant());
uint32_t offset = is_string_char_at
? mirror::String::ValueOffset().Uint32Value()
: mirror::Array::DataOffset(size).Uint32Value();
size_t shift = ComponentSizeShiftWidth(size);
if (instruction->InputAt(0)->IsIntermediateAddress()) {
return SVEMemOperand(base.X(), XRegisterFrom(index), LSL, shift);
}
*scratch = temps_scope->AcquireSameSizeAs(base);
__ Add(*scratch, base, offset);
return SVEMemOperand(scratch->X(), XRegisterFrom(index), LSL, shift);
}
#undef __
#undef QUICK_ENTRY_POINT
#define __ assembler.GetVIXLAssembler()->
static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
vixl::aarch64::Register base_reg,
vixl::aarch64::MemOperand& lock_word,
vixl::aarch64::Label* slow_path,
vixl::aarch64::Label* throw_npe = nullptr) {
vixl::aarch64::Label throw_npe_cont;
// Load the lock word containing the rb_state.
__ Ldr(ip0.W(), lock_word);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
static_assert(
BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
"Field and array LDR offsets must be the same to reuse the same code.");
// To throw NPE, we return to the fast path; the artificial dependence below does not matter.
if (throw_npe != nullptr) {
__ Bind(&throw_npe_cont);
}
// Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
"Field LDR must be 1 instruction (4B) before the return address label; "
" 2 instructions (8B) for heap poisoning.");
__ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
// Introduce a dependency on the lock_word including rb_state,
// to prevent load-load reordering, and without using
// a memory barrier (which would be more expensive).
__ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
__ Br(lr); // And return back to the function.
if (throw_npe != nullptr) {
// Clear IP0 before returning to the fast path.
__ Bind(throw_npe);
__ Mov(ip0.X(), xzr);
__ B(&throw_npe_cont);
}
// Note: The fake dependency is unnecessary for the slow path.
}
// Load the read barrier introspection entrypoint in register `entrypoint`.
static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
vixl::aarch64::Register entrypoint) {
// entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
DCHECK_EQ(ip0.GetCode(), 16u);
const int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
__ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
}
void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler,
uint32_t encoded_data,
/*out*/ std::string* debug_name) {
BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
switch (kind) {
case BakerReadBarrierKind::kField:
case BakerReadBarrierKind::kAcquire: {
Register base_reg =
vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
CheckValidReg(base_reg.GetCode());
Register holder_reg =
vixl::aarch64::XRegister(BakerReadBarrierSecondRegField::Decode(encoded_data));
CheckValidReg(holder_reg.GetCode());
UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
temps.Exclude(ip0, ip1);
// In the case of a field load (with relaxed semantic), if `base_reg` differs from
// `holder_reg`, the offset was too large and we must have emitted (during the construction
// of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
// (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
// the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
// not necessarily do that check before going to the thunk.
//
// In the case of a field load with load-acquire semantics (where `base_reg` always differs
// from `holder_reg`), we also need an explicit null check when implicit null checks are
// allowed, as we do not emit one before going to the thunk.
vixl::aarch64::Label throw_npe_label;
vixl::aarch64::Label* throw_npe = nullptr;
if (GetCompilerOptions().GetImplicitNullChecks() &&
(holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) {
throw_npe = &throw_npe_label;
__ Cbz(holder_reg.W(), throw_npe);
}
// Check if the holder is gray and, if not, add fake dependency to the base register
// and return to the LDR instruction to load the reference. Otherwise, use introspection
// to load the reference and call the entrypoint that performs further checks on the
// reference and marks it if needed.
vixl::aarch64::Label slow_path;
MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe);
__ Bind(&slow_path);
if (kind == BakerReadBarrierKind::kField) {
MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
__ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
__ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
__ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
} else {
DCHECK(kind == BakerReadBarrierKind::kAcquire);
DCHECK(!base_reg.Is(holder_reg));
LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
__ Ldar(ip0.W(), MemOperand(base_reg));
}
// Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
__ Br(ip1); // Jump to the entrypoint.
break;
}
case BakerReadBarrierKind::kArray: {
Register base_reg =
vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
CheckValidReg(base_reg.GetCode());
DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
BakerReadBarrierSecondRegField::Decode(encoded_data));
UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
temps.Exclude(ip0, ip1);
vixl::aarch64::Label slow_path;
int32_t data_offset =
mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
DCHECK_LT(lock_word.GetOffset(), 0);
EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
__ Bind(&slow_path);
MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
__ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset.
LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
__ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set).
__ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create
// a switch case target based on the index register.
__ Mov(ip0, base_reg); // Move the base register to ip0.
__ Br(ip1); // Jump to the entrypoint's array switch case.
break;
}
case BakerReadBarrierKind::kGcRoot: {
// Check if the reference needs to be marked and if so (i.e. not null, not marked yet
// and it does not have a forwarding address), call the correct introspection entrypoint;
// otherwise return the reference (or the extracted forwarding address).
// There is no gray bit check for GC roots.
Register root_reg =
vixl::aarch64::WRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
CheckValidReg(root_reg.GetCode());
DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
BakerReadBarrierSecondRegField::Decode(encoded_data));
UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
temps.Exclude(ip0, ip1);
vixl::aarch64::Label return_label, not_marked, forwarding_address;
__ Cbz(root_reg, &return_label);
MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
__ Ldr(ip0.W(), lock_word);
__ Tbz(ip0.W(), LockWord::kMarkBitStateShift, &not_marked);
__ Bind(&return_label);
__ Br(lr);
__ Bind(&not_marked);
__ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
__ B(&forwarding_address, mi);
LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
// Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
// art_quick_read_barrier_mark_introspection_gc_roots.
__ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
__ Mov(ip0.W(), root_reg);
__ Br(ip1);
__ Bind(&forwarding_address);
__ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
__ Br(lr);
break;
}
default:
LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
UNREACHABLE();
}
// For JIT, the slow path is considered part of the compiled method,
// so JIT should pass null as `debug_name`.
DCHECK_IMPLIES(GetCompilerOptions().IsJitCompiler(), debug_name == nullptr);
if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
std::ostringstream oss;
oss << "BakerReadBarrierThunk";
switch (kind) {
case BakerReadBarrierKind::kField:
oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
<< "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
break;
case BakerReadBarrierKind::kAcquire:
oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
<< "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
break;
case BakerReadBarrierKind::kArray:
oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
BakerReadBarrierSecondRegField::Decode(encoded_data));
break;
case BakerReadBarrierKind::kGcRoot:
oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
BakerReadBarrierSecondRegField::Decode(encoded_data));
break;
}
*debug_name = oss.str();
}
}
#undef __
} // namespace arm64
} // namespace art