Added polynomial induction variables analysis. With tests.
Rationale:
Information on polynomial sequences is nice to further enhance
BCE and last-value assignment. In this case, this CL enables more
loop optimizations for benchpress' Sum (80 x speedup). Also
changed rem-based geometric induction to wrap-around induction.
Test: test-art-host
Change-Id: Ie4d2659edefb814edda2c971c1f70ba400c31111
diff --git a/compiler/optimizing/induction_var_analysis.cc b/compiler/optimizing/induction_var_analysis.cc
index 1561502..c240c67 100644
--- a/compiler/optimizing/induction_var_analysis.cc
+++ b/compiler/optimizing/induction_var_analysis.cc
@@ -296,21 +296,22 @@
update = SolveAddSub(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true);
} else if (instruction->IsMul()) {
- update = SolveGeo(
+ update = SolveOp(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kMul);
} else if (instruction->IsDiv()) {
- update = SolveGeo(
+ update = SolveOp(
loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kDiv);
} else if (instruction->IsRem()) {
- update = SolveGeo(
- loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kNop);
+ update = SolveOp(
+ loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kRem);
} else if (instruction->IsShl()) {
HInstruction* mulc = GetMultConstantForShift(loop, instruction);
if (mulc != nullptr) {
- update = SolveGeo(loop, phi, instruction, instruction->InputAt(0), mulc, kMul);
+ update = SolveOp(loop, phi, instruction, instruction->InputAt(0), mulc, kMul);
}
} else if (instruction->IsXor()) {
- update = SolveXor(loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1));
+ update = SolveOp(
+ loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kXor);
} else if (instruction->IsEqual()) {
update = SolveTest(loop, phi, instruction, 0);
} else if (instruction->IsNotEqual()) {
@@ -334,6 +335,7 @@
FALLTHROUGH_INTENDED;
case kPolynomial:
case kGeometric:
+ case kWrapAround:
// Classify first phi and then the rest of the cycle "on-demand".
// Statements are scanned in order.
AssignInfo(loop, phi, induction);
@@ -402,14 +404,15 @@
InductionOp op) {
// Transfer over an addition or subtraction: any invariant, linear, polynomial, geometric,
// wrap-around, or periodic can be combined with an invariant to yield a similar result.
- // Even two linear inputs can be combined. Other combinations fail.
+ // Two linear or two polynomial inputs can be combined too. Other combinations fail.
if (a != nullptr && b != nullptr) {
type_ = Narrowest(type_, Narrowest(a->type, b->type));
if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
return CreateInvariantOp(op, a, b);
- } else if (a->induction_class == kLinear && b->induction_class == kLinear) {
- return CreateInduction(kLinear,
- kNop,
+ } else if ((a->induction_class == kLinear && b->induction_class == kLinear) ||
+ (a->induction_class == kPolynomial && b->induction_class == kPolynomial)) {
+ return CreateInduction(a->induction_class,
+ a->operation,
TransferAddSub(a->op_a, b->op_a, op),
TransferAddSub(a->op_b, b->op_b, op),
/*fetch*/ nullptr,
@@ -555,18 +558,33 @@
HInstruction* y,
InductionOp op,
bool is_first_call) {
- // Solve within a cycle over an addition or subtraction: adding or subtracting an
- // invariant value, seeded from phi, keeps adding to the stride of the linear induction.
+ // Solve within a cycle over an addition or subtraction.
InductionInfo* b = LookupInfo(loop, y);
- if (b != nullptr && b->induction_class == kInvariant) {
- if (x == entry_phi) {
- return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b);
- }
- auto it = cycle_.find(x);
- if (it != cycle_.end()) {
- InductionInfo* a = it->second;
- if (a->induction_class == kInvariant) {
- return CreateInvariantOp(op, a, b);
+ if (b != nullptr) {
+ if (b->induction_class == kInvariant) {
+ // Adding or subtracting an invariant value, seeded from phi,
+ // keeps adding to the stride of the linear induction.
+ if (x == entry_phi) {
+ return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b);
+ }
+ auto it = cycle_.find(x);
+ if (it != cycle_.end()) {
+ InductionInfo* a = it->second;
+ if (a->induction_class == kInvariant) {
+ return CreateInvariantOp(op, a, b);
+ }
+ }
+ } else if (op == kAdd && b->induction_class == kLinear) {
+ // Solve within a tight cycle that adds a term that is already classified as a linear
+ // induction for a polynomial induction k = k + i (represented as sum over linear terms).
+ if (x == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
+ InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
+ return CreateInduction(kPolynomial,
+ kNop,
+ b,
+ initial,
+ /*fetch*/ nullptr,
+ type_);
}
}
}
@@ -593,58 +611,63 @@
}
}
}
-
return nullptr;
}
-HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveGeo(HLoopInformation* loop,
+HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveOp(HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* instruction,
HInstruction* x,
HInstruction* y,
InductionOp op) {
- // Solve within a tight cycle that is formed by exactly two instructions, one phi and
- // one update, for a geometric induction of the form k = k * c.
- if (x == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
- InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
- InductionInfo* b = LookupInfo(loop, y);
- if (b != nullptr && b->induction_class == kInvariant && b->operation == kFetch) {
- return CreateInduction(kGeometric,
- op,
- initial,
- CreateConstant(0, type_),
- b->fetch,
- type_);
- }
- }
- return nullptr;
-}
-
-HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveXor(HLoopInformation* loop,
- HInstruction* entry_phi,
- HInstruction* instruction,
- HInstruction* x,
- HInstruction* y) {
- // Solve within a tight cycle on periodic idiom of the form x = c ^ x or x = x ^ c.
+ // Solve within a tight cycle for a binary operation k = k op c or, for some op, k = c op k.
if (entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
- InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
- InductionInfo* a = LookupInfo(loop, x);
- if (a != nullptr && a->induction_class == kInvariant && entry_phi == y) {
- return CreateInduction(kPeriodic,
- kNop,
- CreateInvariantOp(kXor, a, initial),
- initial,
- /*fetch*/ nullptr,
- type_);
- }
+ InductionInfo* c = nullptr;
InductionInfo* b = LookupInfo(loop, y);
if (b != nullptr && b->induction_class == kInvariant && entry_phi == x) {
- return CreateInduction(kPeriodic,
- kNop,
- CreateInvariantOp(kXor, initial, b),
- initial,
- /*fetch*/ nullptr,
- type_);
+ c = b;
+ } else if (op != kDiv && op != kRem) {
+ InductionInfo* a = LookupInfo(loop, x);
+ if (a != nullptr && a->induction_class == kInvariant && entry_phi == y) {
+ c = a;
+ }
+ }
+ // Found suitable operand left or right?
+ if (c != nullptr) {
+ InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
+ switch (op) {
+ case kMul:
+ case kDiv:
+ // Restrict base of geometric induction to direct fetch.
+ if (c->operation == kFetch) {
+ return CreateInduction(kGeometric,
+ op,
+ initial,
+ CreateConstant(0, type_),
+ c->fetch,
+ type_);
+ };
+ break;
+ case kRem:
+ // Idiomatic MOD wrap-around induction.
+ return CreateInduction(kWrapAround,
+ kNop,
+ initial,
+ CreateInvariantOp(kRem, initial, c),
+ /*fetch*/ nullptr,
+ type_);
+ case kXor:
+ // Idiomatic XOR periodic induction.
+ return CreateInduction(kPeriodic,
+ kNop,
+ CreateInvariantOp(kXor, initial, c),
+ initial,
+ /*fetch*/ nullptr,
+ type_);
+ default:
+ CHECK(false) << op;
+ break;
+ }
}
}
return nullptr;
@@ -659,9 +682,9 @@
HInstruction* x = instruction->InputAt(0);
HInstruction* y = instruction->InputAt(1);
if (IsExact(LookupInfo(loop, x), &value) && value == opposite_value) {
- return SolveXor(loop, entry_phi, instruction, graph_->GetIntConstant(1), y);
+ return SolveOp(loop, entry_phi, instruction, graph_->GetIntConstant(1), y, kXor);
} else if (IsExact(LookupInfo(loop, y), &value) && value == opposite_value) {
- return SolveXor(loop, entry_phi, instruction, x, graph_->GetIntConstant(1));
+ return SolveOp(loop, entry_phi, instruction, x, graph_->GetIntConstant(1), kXor);
}
return nullptr;
}
@@ -1018,7 +1041,7 @@
HInstruction* HInductionVarAnalysis::GetMultConstantForShift(HLoopInformation* loop,
HInstruction* instruction) {
// Obtain the constant needed to treat shift as equivalent multiplication. This yields an
- // existing instruction if the constants is already there. Otherwise, this has a side effect
+ // existing instruction if the constant is already there. Otherwise, this has a side effect
// on the HIR. The restriction on the shift factor avoids generating a negative constant
// (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that generalization for
// shift factors outside [0,32) and [0,64) ranges is done by earlier simplification.
@@ -1102,6 +1125,7 @@
case kNeg: inv += " - "; break;
case kMul: inv += " * "; break;
case kDiv: inv += " / "; break;
+ case kRem: inv += " % "; break;
case kXor: inv += " ^ "; break;
case kLT: inv += " < "; break;
case kLE: inv += " <= "; break;
@@ -1118,32 +1142,30 @@
return inv;
} else {
if (info->induction_class == kLinear) {
+ DCHECK(info->operation == kNop);
return "(" + InductionToString(info->op_a) + " * i + " +
InductionToString(info->op_b) + "):" +
Primitive::PrettyDescriptor(info->type);
} else if (info->induction_class == kPolynomial) {
- return "poly( sum_i(" + InductionToString(info->op_a) + ") + " +
+ DCHECK(info->operation == kNop);
+ return "poly(sum_lt(" + InductionToString(info->op_a) + ") + " +
InductionToString(info->op_b) + "):" +
Primitive::PrettyDescriptor(info->type);
} else if (info->induction_class == kGeometric) {
+ DCHECK(info->operation == kMul || info->operation == kDiv);
DCHECK(info->fetch != nullptr);
- if (info->operation == kNop) {
- return "geo(" + InductionToString(info->op_a) + " mod_i " +
- FetchToString(info->fetch) + " + " +
- InductionToString(info->op_b) + "):" +
- Primitive::PrettyDescriptor(info->type);
- } else {
- return "geo(" + InductionToString(info->op_a) + " * " +
- FetchToString(info->fetch) +
- (info->operation == kMul ? " ^ i + " : " ^ -i + ") +
- InductionToString(info->op_b) + "):" +
- Primitive::PrettyDescriptor(info->type);
- }
+ return "geo(" + InductionToString(info->op_a) + " * " +
+ FetchToString(info->fetch) +
+ (info->operation == kMul ? " ^ i + " : " ^ -i + ") +
+ InductionToString(info->op_b) + "):" +
+ Primitive::PrettyDescriptor(info->type);
} else if (info->induction_class == kWrapAround) {
+ DCHECK(info->operation == kNop);
return "wrap(" + InductionToString(info->op_a) + ", " +
InductionToString(info->op_b) + "):" +
Primitive::PrettyDescriptor(info->type);
} else if (info->induction_class == kPeriodic) {
+ DCHECK(info->operation == kNop);
return "periodic(" + InductionToString(info->op_a) + ", " +
InductionToString(info->op_b) + "):" +
Primitive::PrettyDescriptor(info->type);
diff --git a/compiler/optimizing/induction_var_analysis.h b/compiler/optimizing/induction_var_analysis.h
index 94afc71..4720f2d 100644
--- a/compiler/optimizing/induction_var_analysis.h
+++ b/compiler/optimizing/induction_var_analysis.h
@@ -65,6 +65,7 @@
kNeg,
kMul,
kDiv,
+ kRem,
kXor,
kFetch,
// Trip-counts.
@@ -85,10 +86,10 @@
* op: a + b, a - b, -b, a * b, a / b, a % b, a ^ b, fetch
* (2) linear:
* nop: a * i + b
- * (3) polynomial: // TODO: coming soon
- * nop: sum_i(a) + b, for linear a
+ * (3) polynomial:
+ * nop: sum_lt(a) + b, for linear a
* (4) geometric:
- * op: a * fetch^i + b, a * fetch^-i + b, a mod_i fetch + b
+ * op: a * fetch^i + b, a * fetch^-i + b
* (5) wrap-around
* nop: a, then defined by b
* (6) periodic
@@ -177,17 +178,12 @@
HInstruction* y,
InductionOp op,
bool is_first_call); // possibly swaps x and y to try again
- InductionInfo* SolveGeo(HLoopInformation* loop,
- HInstruction* entry_phi,
- HInstruction* instruction,
- HInstruction* x,
- HInstruction* y,
- InductionOp op);
- InductionInfo* SolveXor(HLoopInformation* loop,
- HInstruction* entry_phi,
- HInstruction* instruction,
- HInstruction* x,
- HInstruction* y);
+ InductionInfo* SolveOp(HLoopInformation* loop,
+ HInstruction* entry_phi,
+ HInstruction* instruction,
+ HInstruction* x,
+ HInstruction* y,
+ InductionOp op);
InductionInfo* SolveTest(HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* instruction,
diff --git a/compiler/optimizing/induction_var_analysis_test.cc b/compiler/optimizing/induction_var_analysis_test.cc
index 2199c8e..2d182f6 100644
--- a/compiler/optimizing/induction_var_analysis_test.cc
+++ b/compiler/optimizing/induction_var_analysis_test.cc
@@ -85,6 +85,7 @@
constant0_ = graph_->GetIntConstant(0);
constant1_ = graph_->GetIntConstant(1);
constant2_ = graph_->GetIntConstant(2);
+ constant7_ = graph_->GetIntConstant(7);
constant100_ = graph_->GetIntConstant(100);
float_constant0_ = graph_->GetFloatConstant(0.0f);
return_->AddInstruction(new (&allocator_) HReturnVoid());
@@ -193,6 +194,7 @@
HInstruction* constant0_;
HInstruction* constant1_;
HInstruction* constant2_;
+ HInstruction* constant7_;
HInstruction* constant100_;
HInstruction* float_constant0_;
@@ -378,6 +380,135 @@
EXPECT_TRUE(HaveSameInduction(store->InputAt(1), inc2));
}
+TEST_F(InductionVarAnalysisTest, AddLinear) {
+ // Setup:
+ // for (int i = 0; i < 100; i++) {
+ // t1 = i + i;
+ // t2 = 7 + i;
+ // t3 = t1 + t2;
+ // }
+ BuildLoopNest(1);
+
+ HInstruction* add1 = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, basic_[0], basic_[0]), 0);
+ HInstruction* add2 = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, constant7_, basic_[0]), 0);
+ HInstruction* add3 = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, add1, add2), 0);
+ PerformInductionVarAnalysis();
+
+ EXPECT_STREQ("((1) * i + (0)):PrimInt", GetInductionInfo(basic_[0], 0).c_str());
+ EXPECT_STREQ("(((1) + (1)) * i + (0)):PrimInt", GetInductionInfo(add1, 0).c_str());
+ EXPECT_STREQ("((1) * i + (7)):PrimInt", GetInductionInfo(add2, 0).c_str());
+ EXPECT_STREQ("((((1) + (1)) + (1)) * i + (7)):PrimInt", GetInductionInfo(add3, 0).c_str());
+}
+
+TEST_F(InductionVarAnalysisTest, FindPolynomialInduction) {
+ // Setup:
+ // k = 1;
+ // for (int i = 0; i < 100; i++) {
+ // t = i * 2;
+ // t = 100 + t
+ // k = t + k; // polynomial
+ // }
+ BuildLoopNest(1);
+ HPhi* k_header = InsertLoopPhi(0, 0);
+ k_header->AddInput(constant1_);
+
+ HInstruction* mul = InsertInstruction(
+ new (&allocator_) HMul(Primitive::kPrimInt, basic_[0], constant2_), 0);
+ HInstruction* add = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, constant100_, mul), 0);
+ HInstruction* pol = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, add, k_header), 0);
+ k_header->AddInput(pol);
+ PerformInductionVarAnalysis();
+
+ // Note, only the phi in the cycle and the base linear induction are classified.
+ EXPECT_STREQ("poly(sum_lt(((2) * i + (100)):PrimInt) + (1)):PrimInt",
+ GetInductionInfo(k_header, 0).c_str());
+ EXPECT_STREQ("((2) * i + (100)):PrimInt", GetInductionInfo(add, 0).c_str());
+ EXPECT_STREQ("", GetInductionInfo(pol, 0).c_str());
+}
+
+TEST_F(InductionVarAnalysisTest, FindPolynomialInductionAndDerived) {
+ // Setup:
+ // k = 1;
+ // for (int i = 0; i < 100; i++) {
+ // t = k + 100;
+ // t = k - 1;
+ // t = - t
+ // t = k * 2;
+ // t = k << 2;
+ // k = k + i; // polynomial
+ // }
+ BuildLoopNest(1);
+ HPhi* k_header = InsertLoopPhi(0, 0);
+ k_header->AddInput(constant1_);
+
+ HInstruction* add = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant100_), 0);
+ HInstruction* sub = InsertInstruction(
+ new (&allocator_) HSub(Primitive::kPrimInt, k_header, constant1_), 0);
+ HInstruction* neg = InsertInstruction(
+ new (&allocator_) HNeg(Primitive::kPrimInt, sub), 0);
+ HInstruction* mul = InsertInstruction(
+ new (&allocator_) HMul(Primitive::kPrimInt, k_header, constant2_), 0);
+ HInstruction* shl = InsertInstruction(
+ new (&allocator_) HShl(Primitive::kPrimInt, k_header, constant2_), 0);
+ HInstruction* pol = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, k_header, basic_[0]), 0);
+ k_header->AddInput(pol);
+ PerformInductionVarAnalysis();
+
+ // Note, only the phi in the cycle and derived are classified.
+ EXPECT_STREQ("poly(sum_lt(((1) * i + (0)):PrimInt) + (1)):PrimInt",
+ GetInductionInfo(k_header, 0).c_str());
+ EXPECT_STREQ("poly(sum_lt(((1) * i + (0)):PrimInt) + ((1) + (100))):PrimInt",
+ GetInductionInfo(add, 0).c_str());
+ EXPECT_STREQ("poly(sum_lt(((1) * i + (0)):PrimInt) + ((1) - (1))):PrimInt",
+ GetInductionInfo(sub, 0).c_str());
+ EXPECT_STREQ("poly(sum_lt((( - (1)) * i + (0)):PrimInt) + ((1) - (1))):PrimInt",
+ GetInductionInfo(neg, 0).c_str());
+ EXPECT_STREQ("poly(sum_lt(((2) * i + (0)):PrimInt) + (2)):PrimInt",
+ GetInductionInfo(mul, 0).c_str());
+ EXPECT_STREQ("poly(sum_lt(((4) * i + (0)):PrimInt) + (4)):PrimInt",
+ GetInductionInfo(shl, 0).c_str());
+ EXPECT_STREQ("", GetInductionInfo(pol, 0).c_str());
+}
+
+TEST_F(InductionVarAnalysisTest, AddPolynomial) {
+ // Setup:
+ // k = 7;
+ // for (int i = 0; i < 100; i++) {
+ // t = k + k;
+ // t = t + k;
+ // k = k + i
+ // }
+ BuildLoopNest(1);
+ HPhi* k_header = InsertLoopPhi(0, 0);
+ k_header->AddInput(constant7_);
+
+ HInstruction* add1 = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, k_header, k_header), 0);
+ HInstruction* add2 = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, add1, k_header), 0);
+ HInstruction* add3 = InsertInstruction(
+ new (&allocator_) HAdd(Primitive::kPrimInt, k_header, basic_[0]), 0);
+ k_header->AddInput(add3);
+ PerformInductionVarAnalysis();
+
+ // Note, only the phi in the cycle and added-derived are classified.
+ EXPECT_STREQ("poly(sum_lt(((1) * i + (0)):PrimInt) + (7)):PrimInt",
+ GetInductionInfo(k_header, 0).c_str());
+ EXPECT_STREQ("poly(sum_lt((((1) + (1)) * i + (0)):PrimInt) + ((7) + (7))):PrimInt",
+ GetInductionInfo(add1, 0).c_str());
+ EXPECT_STREQ(
+ "poly(sum_lt(((((1) + (1)) + (1)) * i + (0)):PrimInt) + (((7) + (7)) + (7))):PrimInt",
+ GetInductionInfo(add2, 0).c_str());
+ EXPECT_STREQ("", GetInductionInfo(add3, 0).c_str());
+}
+
TEST_F(InductionVarAnalysisTest, FindGeometricMulInduction) {
// Setup:
// k = 1;
@@ -481,20 +612,20 @@
EXPECT_STREQ("", GetInductionInfo(div, 0).c_str());
}
-TEST_F(InductionVarAnalysisTest, FindGeometricRemInductionAndDerived) {
+TEST_F(InductionVarAnalysisTest, FindRemWrapAroundInductionAndDerived) {
// Setup:
- // k = 1;
+ // k = 100;
// for (int i = 0; i < 100; i++) {
// t = k + 100;
// t = k - 1;
// t = -t
// t = k * 2;
// t = k << 2;
- // k = k % 100; // geometric (% 100)
+ // k = k % 7;
// }
BuildLoopNest(1);
HPhi* k_header = InsertLoopPhi(0, 0);
- k_header->AddInput(constant1_);
+ k_header->AddInput(constant100_);
HInstruction* add = InsertInstruction(
new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant100_), 0);
@@ -507,17 +638,17 @@
HInstruction* shl = InsertInstruction(
new (&allocator_) HShl(Primitive::kPrimInt, k_header, constant2_), 0);
HInstruction* rem = InsertInstruction(
- new (&allocator_) HRem(Primitive::kPrimInt, k_header, constant100_, kNoDexPc), 0);
+ new (&allocator_) HRem(Primitive::kPrimInt, k_header, constant7_, kNoDexPc), 0);
k_header->AddInput(rem);
PerformInductionVarAnalysis();
- // Note, only the phi in the cycle and direct additive derived are classified.
- EXPECT_STREQ("geo((1) mod_i 100 + (0)):PrimInt", GetInductionInfo(k_header, 0).c_str());
- EXPECT_STREQ("geo((1) mod_i 100 + (100)):PrimInt", GetInductionInfo(add, 0).c_str());
- EXPECT_STREQ("geo((1) mod_i 100 + ((0) - (1))):PrimInt", GetInductionInfo(sub, 0).c_str());
- EXPECT_STREQ("", GetInductionInfo(neg, 0).c_str());
- EXPECT_STREQ("", GetInductionInfo(mul, 0).c_str());
- EXPECT_STREQ("", GetInductionInfo(shl, 0).c_str());
+ // Note, only the phi in the cycle and derived are classified.
+ EXPECT_STREQ("wrap((100), ((100) % (7))):PrimInt", GetInductionInfo(k_header, 0).c_str());
+ EXPECT_STREQ("wrap(((100) + (100)), (((100) % (7)) + (100))):PrimInt", GetInductionInfo(add, 0).c_str());
+ EXPECT_STREQ("wrap(((100) - (1)), (((100) % (7)) - (1))):PrimInt", GetInductionInfo(sub, 0).c_str());
+ EXPECT_STREQ("wrap(( - ((100) - (1))), ( - (((100) % (7)) - (1)))):PrimInt", GetInductionInfo(neg, 0).c_str());
+ EXPECT_STREQ("wrap(((100) * (2)), (((100) % (7)) * (2))):PrimInt", GetInductionInfo(mul, 0).c_str());
+ EXPECT_STREQ("wrap(((100) * (4)), (((100) % (7)) * (4))):PrimInt", GetInductionInfo(shl, 0).c_str());
EXPECT_STREQ("", GetInductionInfo(rem, 0).c_str());
}
diff --git a/compiler/optimizing/induction_var_range.cc b/compiler/optimizing/induction_var_range.cc
index 75619a3..e665551 100644
--- a/compiler/optimizing/induction_var_range.cc
+++ b/compiler/optimizing/induction_var_range.cc
@@ -460,6 +460,8 @@
if (info != nullptr) {
if (info->induction_class == HInductionVarAnalysis::kLinear) {
return IsConstant(info->op_a, kExact, stride_value);
+ } else if (info->induction_class == HInductionVarAnalysis::kPolynomial) {
+ return NeedsTripCount(info->op_a, stride_value);
} else if (info->induction_class == HInductionVarAnalysis::kWrapAround) {
return NeedsTripCount(info->op_b, stride_value);
}
@@ -492,7 +494,7 @@
bool in_body,
bool is_min) const {
DCHECK(info != nullptr);
- DCHECK(info->induction_class == HInductionVarAnalysis::kLinear);
+ DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kLinear);
// Detect common situation where an offset inside the trip-count cancels out during range
// analysis (finding max a * (TC - 1) + OFFSET for a == 1 and TC = UPPER - OFFSET or finding
// min a * (TC - 1) + OFFSET for a == -1 and TC = OFFSET - UPPER) to avoid losing information
@@ -539,25 +541,49 @@
GetVal(info->op_b, trip, in_body, is_min));
}
+InductionVarRange::Value InductionVarRange::GetPolynomial(HInductionVarAnalysis::InductionInfo* info,
+ HInductionVarAnalysis::InductionInfo* trip,
+ bool in_body,
+ bool is_min) const {
+ DCHECK(info != nullptr);
+ DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial);
+ int64_t a = 0;
+ int64_t b = 0;
+ if (IsConstant(info->op_a->op_a, kExact, &a) && CanLongValueFitIntoInt(a) && a >= 0 &&
+ IsConstant(info->op_a->op_b, kExact, &b) && CanLongValueFitIntoInt(b) && b >= 0) {
+ // Evaluate bounds on sum_i=0^m-1(a * i + b) + c with a,b >= 0 for known
+ // maximum index value m as a * (m * (m-1)) / 2 + b * m + c.
+ Value c = GetVal(info->op_b, trip, in_body, is_min);
+ if (is_min) {
+ return c;
+ } else {
+ Value m = GetVal(trip, trip, in_body, is_min);
+ Value t = DivValue(MulValue(m, SubValue(m, Value(1))), Value(2));
+ Value x = MulValue(Value(a), t);
+ Value y = MulValue(Value(b), m);
+ return AddValue(AddValue(x, y), c);
+ }
+ }
+ return Value();
+}
+
InductionVarRange::Value InductionVarRange::GetGeometric(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip,
bool in_body,
bool is_min) const {
DCHECK(info != nullptr);
- DCHECK(info->induction_class == HInductionVarAnalysis::kGeometric);
+ DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric);
int64_t a = 0;
int64_t f = 0;
if (IsConstant(info->op_a, kExact, &a) &&
CanLongValueFitIntoInt(a) &&
- IsIntAndGet(info->fetch, &f) &&
- CanLongValueFitIntoInt(f) && f >= 1) {
- // Conservative bounds on a * f^-i + b with f >= 1 can be computed without trip count.
- // Same for mod. All other forms would require a much more elaborate evaluation.
+ IsIntAndGet(info->fetch, &f) && f >= 1) {
+ // Conservative bounds on a * f^-i + b with f >= 1 can be computed without
+ // trip count. Other forms would require a much more elaborate evaluation.
const bool is_min_a = a >= 0 ? is_min : !is_min;
if (info->operation == HInductionVarAnalysis::kDiv) {
- return AddValue(Value(is_min_a ? 0 : a), GetVal(info->op_b, trip, in_body, is_min));
- } else if (info->operation == HInductionVarAnalysis::kNop) {
- return AddValue(Value(is_min_a ? (a % f) : a), GetVal(info->op_b, trip, in_body, is_min));
+ Value b = GetVal(info->op_b, trip, in_body, is_min);
+ return is_min_a ? b : AddValue(Value(a), b);
}
}
return Value();
@@ -572,7 +598,7 @@
if (chase_hint_ == nullptr && in_body && trip != nullptr && instruction == trip->op_a->fetch) {
if (is_min) {
return Value(1);
- } else if (!IsUnsafeTripCount(trip)) {
+ } else if (!instruction->IsConstant() && !IsUnsafeTripCount(trip)) {
return Value(std::numeric_limits<int32_t>::max());
}
}
@@ -650,6 +676,8 @@
return GetMul(info->op_a, info->op_b, trip, in_body, is_min);
case HInductionVarAnalysis::kDiv:
return GetDiv(info->op_a, info->op_b, trip, in_body, is_min);
+ case HInductionVarAnalysis::kRem:
+ return GetRem(info->op_a, info->op_b);
case HInductionVarAnalysis::kXor:
return GetXor(info->op_a, info->op_b);
case HInductionVarAnalysis::kFetch:
@@ -675,7 +703,7 @@
case HInductionVarAnalysis::kLinear:
return CorrectForType(GetLinear(info, trip, in_body, is_min), info->type);
case HInductionVarAnalysis::kPolynomial:
- break;
+ return GetPolynomial(info, trip, in_body, is_min);
case HInductionVarAnalysis::kGeometric:
return GetGeometric(info, trip, in_body, is_min);
case HInductionVarAnalysis::kWrapAround:
@@ -757,6 +785,21 @@
return Value();
}
+InductionVarRange::Value InductionVarRange::GetRem(
+ HInductionVarAnalysis::InductionInfo* info1,
+ HInductionVarAnalysis::InductionInfo* info2) const {
+ int64_t v1 = 0;
+ int64_t v2 = 0;
+ // Only accept exact values.
+ if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2) && v2 != 0) {
+ int64_t value = v1 % v2;
+ if (CanLongValueFitIntoInt(value)) {
+ return Value(static_cast<int32_t>(value));
+ }
+ }
+ return Value();
+}
+
InductionVarRange::Value InductionVarRange::GetXor(
HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2) const {
@@ -898,8 +941,12 @@
upper = nullptr;
}
break;
+ case HInductionVarAnalysis::kPolynomial:
+ return GenerateLastValuePolynomial(info, trip, graph, block, lower);
case HInductionVarAnalysis::kGeometric:
return GenerateLastValueGeometric(info, trip, graph, block, lower);
+ case HInductionVarAnalysis::kWrapAround:
+ return GenerateLastValueWrapAround(info, trip, graph, block, lower);
case HInductionVarAnalysis::kPeriodic:
return GenerateLastValuePeriodic(info, trip, graph, block, lower, needs_taken_test);
default:
@@ -925,13 +972,43 @@
GenerateCode(info, trip, graph, block, upper, in_body, /* is_min */ false);
}
+bool InductionVarRange::GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo* info,
+ HInductionVarAnalysis::InductionInfo* trip,
+ HGraph* graph,
+ HBasicBlock* block,
+ /*out*/HInstruction** result) const {
+ DCHECK(info != nullptr);
+ DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial);
+ // Detect known coefficients and trip count (always taken).
+ int64_t a = 0;
+ int64_t b = 0;
+ int64_t m = 0;
+ if (IsConstant(info->op_a->op_a, kExact, &a) && a >= 0 &&
+ IsConstant(info->op_a->op_b, kExact, &b) && b >= 0 &&
+ IsConstant(trip->op_a, kExact, &m) && m >= 1) {
+ // Evaluate bounds on sum_i=0^m-1(a * i + b) + c with a,b >= 0 for known
+ // maximum index value m as a * (m * (m-1)) / 2 + b * m + c.
+ // TODO: generalize
+ HInstruction* c_instr = nullptr;
+ if (GenerateCode(info->op_b, nullptr, graph, block, graph ? &c_instr : nullptr, false, false)) {
+ if (graph != nullptr) {
+ int64_t sum = a * ((m * (m - 1)) / 2) + b * m;
+ *result = Insert(block, new (graph->GetArena()) HAdd(info->type,
+ graph->GetIntConstant(sum), c_instr));
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
bool InductionVarRange::GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip,
HGraph* graph,
HBasicBlock* block,
/*out*/HInstruction** result) const {
DCHECK(info != nullptr);
- DCHECK(info->induction_class == HInductionVarAnalysis::kGeometric);
+ DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric);
// Detect known base and trip count (always taken).
int64_t f = 0;
int64_t t = 0;
@@ -940,15 +1017,6 @@
HInstruction* opb = nullptr;
if (GenerateCode(info->op_a, nullptr, graph, block, &opa, false, false) &&
GenerateCode(info->op_b, nullptr, graph, block, &opb, false, false)) {
- // Generate a % f + b.
- if (info->operation == HInductionVarAnalysis::kNop) {
- if (graph != nullptr) {
- HInstruction* rem =
- Insert(block, new (graph->GetArena()) HRem(info->type, opa, info->fetch, kNoDexPc));
- *result = Insert(block, new (graph->GetArena()) HAdd(info->type, rem, opb));
- }
- return true;
- }
// Compute f ^ t.
int64_t fpowt = IntPow(f, t);
if (graph != nullptr) {
@@ -980,6 +1048,28 @@
return false;
}
+bool InductionVarRange::GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo* info,
+ HInductionVarAnalysis::InductionInfo* trip,
+ HGraph* graph,
+ HBasicBlock* block,
+ /*out*/HInstruction** result) const {
+ DCHECK(info != nullptr);
+ DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kWrapAround);
+ // Count depth.
+ int32_t depth = 0;
+ for (; info->induction_class == HInductionVarAnalysis::kWrapAround;
+ info = info->op_b, ++depth) {}
+ // Handle wrap(x, wrap(.., y)) if trip count reaches an invariant at end.
+ // TODO: generalize
+ int64_t t = 0;
+ if (info->induction_class == HInductionVarAnalysis::kInvariant &&
+ IsConstant(trip->op_a, kExact, &t) && t >= depth &&
+ GenerateCode(info, nullptr, graph, block, result, false, false)) {
+ return true;
+ }
+ return false;
+}
+
bool InductionVarRange::GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip,
HGraph* graph,
@@ -987,17 +1077,18 @@
/*out*/HInstruction** result,
/*out*/bool* needs_taken_test) const {
DCHECK(info != nullptr);
- DCHECK(info->induction_class == HInductionVarAnalysis::kPeriodic);
+ DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPeriodic);
// Count period.
int32_t period = 1;
for (HInductionVarAnalysis::InductionInfo* p = info;
p->induction_class == HInductionVarAnalysis::kPeriodic;
p = p->op_b, ++period) {}
// Handle periodic(x, y) case for restricted types.
+ // TODO: generalize
if (period != 2 ||
trip->op_a->type != Primitive::kPrimInt ||
(info->type != Primitive::kPrimInt && info->type != Primitive::kPrimBoolean)) {
- return false; // TODO: easy to generalize
+ return false;
}
HInstruction* x_instr = nullptr;
HInstruction* y_instr = nullptr;
@@ -1058,6 +1149,7 @@
// invariants, some effort is made to keep this parameter consistent).
switch (info->operation) {
case HInductionVarAnalysis::kAdd:
+ case HInductionVarAnalysis::kRem: // no proper is_min for second arg
case HInductionVarAnalysis::kXor: // no proper is_min for second arg
case HInductionVarAnalysis::kLT:
case HInductionVarAnalysis::kLE:
@@ -1070,6 +1162,8 @@
switch (info->operation) {
case HInductionVarAnalysis::kAdd:
operation = new (graph->GetArena()) HAdd(type, opa, opb); break;
+ case HInductionVarAnalysis::kRem:
+ operation = new (graph->GetArena()) HRem(type, opa, opb, kNoDexPc); break;
case HInductionVarAnalysis::kXor:
operation = new (graph->GetArena()) HXor(type, opa, opb); break;
case HInductionVarAnalysis::kLT:
diff --git a/compiler/optimizing/induction_var_range.h b/compiler/optimizing/induction_var_range.h
index f7360e8..ba14847 100644
--- a/compiler/optimizing/induction_var_range.h
+++ b/compiler/optimizing/induction_var_range.h
@@ -190,6 +190,10 @@
HInductionVarAnalysis::InductionInfo* trip,
bool in_body,
bool is_min) const;
+ Value GetPolynomial(HInductionVarAnalysis::InductionInfo* info,
+ HInductionVarAnalysis::InductionInfo* trip,
+ bool in_body,
+ bool is_min) const;
Value GetGeometric(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip,
bool in_body,
@@ -212,6 +216,8 @@
HInductionVarAnalysis::InductionInfo* trip,
bool in_body,
bool is_min) const;
+ Value GetRem(HInductionVarAnalysis::InductionInfo* info1,
+ HInductionVarAnalysis::InductionInfo* info2) const;
Value GetXor(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2) const;
@@ -249,12 +255,24 @@
/*out*/ bool* needs_finite_test,
/*out*/ bool* needs_taken_test) const;
+ bool GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo* info,
+ HInductionVarAnalysis::InductionInfo* trip,
+ HGraph* graph,
+ HBasicBlock* block,
+ /*out*/HInstruction** result) const;
+
bool GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip,
HGraph* graph,
HBasicBlock* block,
/*out*/HInstruction** result) const;
+ bool GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo* info,
+ HInductionVarAnalysis::InductionInfo* trip,
+ HGraph* graph,
+ HBasicBlock* block,
+ /*out*/HInstruction** result) const;
+
bool GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip,
HGraph* graph,
diff --git a/compiler/optimizing/induction_var_range_test.cc b/compiler/optimizing/induction_var_range_test.cc
index 510841e..aa3e1aa 100644
--- a/compiler/optimizing/induction_var_range_test.cc
+++ b/compiler/optimizing/induction_var_range_test.cc
@@ -135,6 +135,8 @@
case 'n': op = HInductionVarAnalysis::kNeg; break;
case '*': op = HInductionVarAnalysis::kMul; break;
case '/': op = HInductionVarAnalysis::kDiv; break;
+ case '%': op = HInductionVarAnalysis::kRem; break;
+ case '^': op = HInductionVarAnalysis::kXor; break;
case '<': op = HInductionVarAnalysis::kLT; break;
default: op = HInductionVarAnalysis::kNop; break;
}
@@ -178,12 +180,21 @@
Primitive::kPrimInt);
}
+ /** Constructs a polynomial sum(a * i + b) + c induction. */
+ HInductionVarAnalysis::InductionInfo* CreatePolynomial(int32_t a, int32_t b, int32_t c) {
+ return iva_->CreateInduction(HInductionVarAnalysis::kPolynomial,
+ HInductionVarAnalysis::kNop,
+ CreateLinear(a, b),
+ CreateConst(c),
+ nullptr,
+ Primitive::kPrimInt);
+ }
+
/** Constructs a geometric a * f^i + b induction. */
HInductionVarAnalysis::InductionInfo* CreateGeometric(int32_t a, int32_t b, int32_t f, char op) {
return iva_->CreateInduction(HInductionVarAnalysis::kGeometric,
- op == '*' ? HInductionVarAnalysis::kMul :
- op == '/' ? HInductionVarAnalysis::kDiv :
- HInductionVarAnalysis::kNop,
+ op == '*' ? HInductionVarAnalysis::kMul
+ : HInductionVarAnalysis::kDiv,
CreateConst(a),
CreateConst(b),
graph_->GetIntConstant(f),
@@ -200,7 +211,7 @@
Primitive::kPrimInt);
}
- /** Constructs a wrap-around induction consisting of a constant, followed info */
+ /** Constructs a wrap-around induction consisting of a constant, followed by info. */
HInductionVarAnalysis::InductionInfo* CreateWrapAround(
int32_t initial,
HInductionVarAnalysis::InductionInfo* info) {
@@ -256,6 +267,16 @@
return range_.GetDiv(info1, info2, nullptr, /* in_body */ true, is_min);
}
+ Value GetRem(HInductionVarAnalysis::InductionInfo* info1,
+ HInductionVarAnalysis::InductionInfo* info2) {
+ return range_.GetRem(info1, info2);
+ }
+
+ Value GetXor(HInductionVarAnalysis::InductionInfo* info1,
+ HInductionVarAnalysis::InductionInfo* info2) {
+ return range_.GetXor(info1, info2);
+ }
+
bool IsExact(HInductionVarAnalysis::InductionInfo* info, int64_t* value) {
return range_.IsConstant(info, InductionVarRange::kExact, value);
}
@@ -438,6 +459,27 @@
ExpectEqual(Value(20), GetMax(CreateWrapAround(20, -1, 10), nullptr));
}
+TEST_F(InductionVarRangeTest, GetMinMaxPolynomial) {
+ ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), nullptr));
+ ExpectEqual(Value(), GetMax(CreatePolynomial(3, 5, 7), nullptr));
+ ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), CreateTripCount(5, true, true)));
+ ExpectEqual(Value(45), GetMax(CreatePolynomial(3, 5, 7), CreateTripCount(5, true, true)));
+ ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), CreateTripCount(10, true, true)));
+ ExpectEqual(Value(160), GetMax(CreatePolynomial(3, 5, 7), CreateTripCount(10, true, true)));
+ ExpectEqual(Value(-7), GetMin(CreatePolynomial(11, 13, -7),
+ CreateTripCount(5, true, true)));
+ ExpectEqual(Value(111), GetMax(CreatePolynomial(11, 13, -7),
+ CreateTripCount(5, true, true)));
+ ExpectEqual(Value(-7), GetMin(CreatePolynomial(11, 13, -7),
+ CreateTripCount(10, true, true)));
+ ExpectEqual(Value(506), GetMax(CreatePolynomial(11, 13, -7),
+ CreateTripCount(10, true, true)));
+ ExpectEqual(Value(), GetMin(CreatePolynomial(-3, 5, 7), CreateTripCount(10, true, true)));
+ ExpectEqual(Value(), GetMax(CreatePolynomial(-3, 5, 7), CreateTripCount(10, true, true)));
+ ExpectEqual(Value(), GetMin(CreatePolynomial(3, -5, 7), CreateTripCount(10, true, true)));
+ ExpectEqual(Value(), GetMax(CreatePolynomial(3, -5, 7), CreateTripCount(10, true, true)));
+}
+
TEST_F(InductionVarRangeTest, GetMinMaxGeometricMul) {
ExpectEqual(Value(), GetMin(CreateGeometric(1, 1, 1, '*'), nullptr));
ExpectEqual(Value(), GetMax(CreateGeometric(1, 1, 1, '*'), nullptr));
@@ -454,17 +496,6 @@
ExpectEqual(Value(-5), GetMax(CreateGeometric(-11, -5, 3, '/'), nullptr));
}
-TEST_F(InductionVarRangeTest, GetMinMaxGeometricRem) {
- ExpectEqual(Value(7), GetMin(CreateGeometric(11, 5, 3, '%'), nullptr));
- ExpectEqual(Value(16), GetMax(CreateGeometric(11, 5, 3, '%'), nullptr));
- ExpectEqual(Value(-3), GetMin(CreateGeometric(11, -5, 3, '%'), nullptr));
- ExpectEqual(Value(6), GetMax(CreateGeometric(11, -5, 3, '%'), nullptr));
- ExpectEqual(Value(-6), GetMin(CreateGeometric(-11, 5, 3, '%'), nullptr));
- ExpectEqual(Value(3), GetMax(CreateGeometric(-11, 5, 3, '%'), nullptr));
- ExpectEqual(Value(-16), GetMin(CreateGeometric(-11, -5, 3, '%'), nullptr));
- ExpectEqual(Value(-7), GetMax(CreateGeometric(-11, -5, 3, '%'), nullptr));
-}
-
TEST_F(InductionVarRangeTest, GetMinMaxPeriodic) {
ExpectEqual(Value(-2), GetMin(CreateRange(-2, 99), nullptr));
ExpectEqual(Value(99), GetMax(CreateRange(-2, 99), nullptr));
@@ -530,6 +561,46 @@
ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1, 1), false));
}
+TEST_F(InductionVarRangeTest, GetMinMaxRem) {
+ ExpectEqual(Value(), GetMin(CreateInvariant('%', CreateConst(2), CreateRange(10, 20)), nullptr));
+ ExpectEqual(Value(), GetMax(CreateInvariant('%', CreateConst(2), CreateRange(10, 20)), nullptr));
+ ExpectEqual(Value(), GetMin(CreateInvariant('%', CreateRange(10, 20), CreateConst(2)), nullptr));
+ ExpectEqual(Value(), GetMax(CreateInvariant('%', CreateRange(10, 20), CreateConst(2)), nullptr));
+ ExpectEqual(Value(2), GetMin(CreateInvariant('%', CreateConst(2), CreateConst(5)), nullptr));
+ ExpectEqual(Value(2), GetMax(CreateInvariant('%', CreateConst(2), CreateConst(5)), nullptr));
+ ExpectEqual(Value(1), GetMin(CreateInvariant('%', CreateConst(11), CreateConst(5)), nullptr));
+ ExpectEqual(Value(1), GetMax(CreateInvariant('%', CreateConst(11), CreateConst(5)), nullptr));
+}
+
+TEST_F(InductionVarRangeTest, GetRem) {
+ ExpectEqual(Value(0), GetRem(CreateConst(1), CreateConst(1)));
+ ExpectEqual(Value(2), GetRem(CreateConst(2), CreateConst(5)));
+ ExpectEqual(Value(1), GetRem(CreateConst(11), CreateConst(5)));
+ ExpectEqual(Value(-2), GetRem(CreateConst(-2), CreateConst(5)));
+ ExpectEqual(Value(-1), GetRem(CreateConst(-11), CreateConst(5)));
+ ExpectEqual(Value(2), GetRem(CreateConst(2), CreateConst(-5)));
+ ExpectEqual(Value(1), GetRem(CreateConst(11), CreateConst(-5)));
+ ExpectEqual(Value(-2), GetRem(CreateConst(-2), CreateConst(-5)));
+ ExpectEqual(Value(-1), GetRem(CreateConst(-11), CreateConst(-5)));
+ ExpectEqual(Value(), GetRem(CreateConst(1), CreateConst(0)));
+}
+
+TEST_F(InductionVarRangeTest, GetMinMaxXor) {
+ ExpectEqual(Value(), GetMin(CreateInvariant('^', CreateConst(2), CreateRange(10, 20)), nullptr));
+ ExpectEqual(Value(), GetMax(CreateInvariant('^', CreateConst(2), CreateRange(10, 20)), nullptr));
+ ExpectEqual(Value(), GetMin(CreateInvariant('^', CreateRange(10, 20), CreateConst(2)), nullptr));
+ ExpectEqual(Value(), GetMax(CreateInvariant('^', CreateRange(10, 20), CreateConst(2)), nullptr));
+ ExpectEqual(Value(3), GetMin(CreateInvariant('^', CreateConst(1), CreateConst(2)), nullptr));
+ ExpectEqual(Value(3), GetMax(CreateInvariant('^', CreateConst(1), CreateConst(2)), nullptr));
+}
+
+TEST_F(InductionVarRangeTest, GetXor) {
+ ExpectEqual(Value(0), GetXor(CreateConst(1), CreateConst(1)));
+ ExpectEqual(Value(3), GetXor(CreateConst(1), CreateConst(2)));
+ ExpectEqual(Value(-2), GetXor(CreateConst(1), CreateConst(-1)));
+ ExpectEqual(Value(0), GetXor(CreateConst(-1), CreateConst(-1)));
+}
+
TEST_F(InductionVarRangeTest, AddValue) {
ExpectEqual(Value(110), AddValue(Value(10), Value(100)));
ExpectEqual(Value(-5), AddValue(Value(x_, 1, -4), Value(x_, -1, -1)));
diff --git a/compiler/optimizing/loop_optimization.cc b/compiler/optimizing/loop_optimization.cc
index f4616e3..9d73e29 100644
--- a/compiler/optimizing/loop_optimization.cc
+++ b/compiler/optimizing/loop_optimization.cc
@@ -64,7 +64,8 @@
top_loop_(nullptr),
last_loop_(nullptr),
iset_(nullptr),
- induction_simplication_count_(0) {
+ induction_simplication_count_(0),
+ simplified_(false) {
}
void HLoopOptimization::Run() {
@@ -169,9 +170,15 @@
if (current_induction_simplification_count != induction_simplication_count_) {
induction_range_.ReVisit(node->loop_info);
}
- SimplifyBlocks(node);
- SimplifyInduction(node);
- SimplifyBlocks(node);
+ // Repeat simplifications until no more changes occur. Note that since
+ // each simplification consists of eliminating code (without introducing
+ // new code), this process is always finite.
+ do {
+ simplified_ = false;
+ SimplifyBlocks(node);
+ SimplifyInduction(node);
+ } while (simplified_);
+ // Remove inner loops when empty.
if (node->inner == nullptr) {
RemoveIfEmptyInnerLoop(node);
}
@@ -198,63 +205,57 @@
for (HInstruction* i : *iset_) {
RemoveFromCycle(i);
}
+ simplified_ = true;
induction_simplication_count_++;
}
}
}
void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
- // Repeat the block simplifications until no more changes occur. Note that since
- // each simplification consists of eliminating code (without introducing new code),
- // this process is always finite.
- bool changed;
- do {
- changed = false;
- // Iterate over all basic blocks in the loop-body.
- for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
- HBasicBlock* block = it.Current();
- // Remove dead instructions from the loop-body.
- for (HBackwardInstructionIterator i(block->GetInstructions()); !i.Done(); i.Advance()) {
- HInstruction* instruction = i.Current();
- if (instruction->IsDeadAndRemovable()) {
- changed = true;
- block->RemoveInstruction(instruction);
- }
+ // Iterate over all basic blocks in the loop-body.
+ for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
+ HBasicBlock* block = it.Current();
+ // Remove dead instructions from the loop-body.
+ for (HBackwardInstructionIterator i(block->GetInstructions()); !i.Done(); i.Advance()) {
+ HInstruction* instruction = i.Current();
+ if (instruction->IsDeadAndRemovable()) {
+ simplified_ = true;
+ block->RemoveInstruction(instruction);
}
- // Remove trivial control flow blocks from the loop-body.
- HBasicBlock* succ = nullptr;
- if (IsGotoBlock(block, &succ) && succ->GetPredecessors().size() == 1) {
- // Trivial goto block can be removed.
- HBasicBlock* pred = block->GetSinglePredecessor();
- changed = true;
- pred->ReplaceSuccessor(block, succ);
- block->RemoveDominatedBlock(succ);
- block->DisconnectAndDelete();
- pred->AddDominatedBlock(succ);
- succ->SetDominator(pred);
- } else if (block->GetSuccessors().size() == 2) {
- // Trivial if block can be bypassed to either branch.
- HBasicBlock* succ0 = block->GetSuccessors()[0];
- HBasicBlock* succ1 = block->GetSuccessors()[1];
- HBasicBlock* meet0 = nullptr;
- HBasicBlock* meet1 = nullptr;
- if (succ0 != succ1 &&
- IsGotoBlock(succ0, &meet0) &&
- IsGotoBlock(succ1, &meet1) &&
- meet0 == meet1 && // meets again
- meet0 != block && // no self-loop
- meet0->GetPhis().IsEmpty()) { // not used for merging
- changed = true;
- succ0->DisconnectAndDelete();
- if (block->Dominates(meet0)) {
- block->RemoveDominatedBlock(meet0);
- succ1->AddDominatedBlock(meet0);
- meet0->SetDominator(succ1);
- }
+ }
+ // Remove trivial control flow blocks from the loop-body.
+ HBasicBlock* succ = nullptr;
+ if (IsGotoBlock(block, &succ) && succ->GetPredecessors().size() == 1) {
+ // Trivial goto block can be removed.
+ HBasicBlock* pred = block->GetSinglePredecessor();
+ simplified_ = true;
+ pred->ReplaceSuccessor(block, succ);
+ block->RemoveDominatedBlock(succ);
+ block->DisconnectAndDelete();
+ pred->AddDominatedBlock(succ);
+ succ->SetDominator(pred);
+ } else if (block->GetSuccessors().size() == 2) {
+ // Trivial if block can be bypassed to either branch.
+ HBasicBlock* succ0 = block->GetSuccessors()[0];
+ HBasicBlock* succ1 = block->GetSuccessors()[1];
+ HBasicBlock* meet0 = nullptr;
+ HBasicBlock* meet1 = nullptr;
+ if (succ0 != succ1 &&
+ IsGotoBlock(succ0, &meet0) &&
+ IsGotoBlock(succ1, &meet1) &&
+ meet0 == meet1 && // meets again
+ meet0 != block && // no self-loop
+ meet0->GetPhis().IsEmpty()) { // not used for merging
+ simplified_ = true;
+ succ0->DisconnectAndDelete();
+ if (block->Dominates(meet0)) {
+ block->RemoveDominatedBlock(meet0);
+ succ1->AddDominatedBlock(meet0);
+ meet0->SetDominator(succ1);
}
}
}
- } while (changed);
+ }
}
void HLoopOptimization::RemoveIfEmptyInnerLoop(LoopNode* node) {
diff --git a/compiler/optimizing/loop_optimization.h b/compiler/optimizing/loop_optimization.h
index 3391bef..0f05b24 100644
--- a/compiler/optimizing/loop_optimization.h
+++ b/compiler/optimizing/loop_optimization.h
@@ -95,6 +95,9 @@
// when the induction of inner loops has changed.
int32_t induction_simplication_count_;
+ // Flag that tracks if any simplifications have occurred.
+ bool simplified_;
+
friend class LoopOptimizationTest;
DISALLOW_COPY_AND_ASSIGN(HLoopOptimization);
diff --git a/test/530-checker-loops4/src/Main.java b/test/530-checker-loops4/src/Main.java
index 2e19c88..7d3d7d9 100644
--- a/test/530-checker-loops4/src/Main.java
+++ b/test/530-checker-loops4/src/Main.java
@@ -88,11 +88,9 @@
//
/// CHECK-START: int Main.geo4(int) loop_optimization (after)
/// CHECK-DAG: <<Par:i\d+>> ParameterValue loop:none
- /// CHECK-DAG: <<Zer:i\d+>> IntConstant 0 loop:none
/// CHECK-DAG: <<Int:i\d+>> IntConstant 7 loop:none
/// CHECK-DAG: <<Rem:i\d+>> Rem [<<Par>>,<<Int>>] loop:none
- /// CHECK-DAG: <<Add:i\d+>> Add [<<Rem>>,<<Zer>>] loop:none
- /// CHECK-DAG: Return [<<Add>>] loop:none
+ /// CHECK-DAG: Return [<<Rem>>] loop:none
//
/// CHECK-START: int Main.geo4(int) loop_optimization (after)
/// CHECK-NOT: Phi
@@ -104,6 +102,17 @@
}
// TODO: someday?
+ //
+ /// CHECK-START: int Main.geo1BCE() BCE (before)
+ /// CHECK-DAG: BoundsCheck loop:none
+ /// CHECK-DAG: BoundsCheck loop:{{B\d+}}
+ //
+ /// CHECK-START: int Main.geo1BCE() BCE (after)
+ /// CHECK-DAG: BoundsCheck loop:{{B\d+}}
+ //
+ /// CHECK-START: int Main.geo1BCE() BCE (after)
+ /// CHECK-NOT: BoundsCheck loop:none
+ /// CHECK-NOT: Deoptimize
public static int geo1BCE() {
int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 19, 19, 20,
@@ -118,6 +127,17 @@
}
// TODO: someday?
+ //
+ /// CHECK-START: int Main.geo2BCE() BCE (before)
+ /// CHECK-DAG: BoundsCheck loop:none
+ /// CHECK-DAG: BoundsCheck loop:{{B\d+}}
+ //
+ /// CHECK-START: int Main.geo2BCE() BCE (after)
+ /// CHECK-DAG: BoundsCheck loop:{{B\d+}}
+ //
+ /// CHECK-START: int Main.geo2BCE() BCE (after)
+ /// CHECK-NOT: BoundsCheck loop:none
+ /// CHECK-NOT: Deoptimize
public static int geo2BCE() {
int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 19, 19, 20,
@@ -225,16 +245,20 @@
return a;
}
- // TODO: Rem is already optimized away by the time the loop optimizer runs;
- // we could still optimize this case with last value on wrap-around!
+ // Even though Rem is already optimized away by the time induction analysis
+ // and the loop optimizer run, the loop is optimized with a trivial
+ // wrap-around induction just as the wrap-around for REM would.
//
/// CHECK-START: int Main.geoRemBlackHole(int) loop_optimization (before)
/// CHECK-DAG: Phi loop:<<Loop:B\d+>>
/// CHECK-DAG: Phi loop:<<Loop>>
//
/// CHECK-START: int Main.geoRemBlackHole(int) loop_optimization (after)
- /// CHECK-DAG: Phi loop:<<Loop:B\d+>>
- /// CHECK-DAG: Phi loop:<<Loop>>
+ /// CHECK-DAG: <<Zero:i\d+>> IntConstant 0
+ /// CHECK-DAG: Return [<<Zero>>]
+ //
+ /// CHECK-START: int Main.geoRemBlackHole(int) loop_optimization (after)
+ /// CHECK-NOT: Phi
public static int geoRemBlackHole(int a) {
for (int i = 0; i < 100; i++) {
a %= 1;
diff --git a/test/530-checker-loops5/expected.txt b/test/530-checker-loops5/expected.txt
new file mode 100644
index 0000000..b0aad4d
--- /dev/null
+++ b/test/530-checker-loops5/expected.txt
@@ -0,0 +1 @@
+passed
diff --git a/test/530-checker-loops5/info.txt b/test/530-checker-loops5/info.txt
new file mode 100644
index 0000000..15dbf37
--- /dev/null
+++ b/test/530-checker-loops5/info.txt
@@ -0,0 +1 @@
+Test on loop optimizations, in particular with polynomial induction.
diff --git a/test/530-checker-loops5/src/Main.java b/test/530-checker-loops5/src/Main.java
new file mode 100644
index 0000000..54b54d0
--- /dev/null
+++ b/test/530-checker-loops5/src/Main.java
@@ -0,0 +1,186 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+//
+// Test on loop optimizations, in particular around polynomial induction.
+//
+public class Main {
+
+ /// CHECK-START: int Main.poly1() loop_optimization (before)
+ /// CHECK-DAG: Phi loop:<<Loop:B\d+>>
+ /// CHECK-DAG: Add loop:<<Loop>>
+ /// CHECK-DAG: Add loop:<<Loop>>
+ //
+ /// CHECK-START: int Main.poly1() loop_optimization (after)
+ /// CHECK-DAG: <<Zer:i\d+>> IntConstant 0 loop:none
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 55 loop:none
+ /// CHECK-DAG: <<Add:i\d+>> Add [<<Int>>,<<Zer>>] loop:none
+ /// CHECK-DAG: Return [<<Add>>] loop:none
+ //
+ /// CHECK-START: int Main.poly1() instruction_simplifier$after_bce (after)
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 55 loop:none
+ /// CHECK-DAG: Return [<<Int>>] loop:none
+ //
+ /// CHECK-START: int Main.poly1() loop_optimization (after)
+ /// CHECK-NOT: Phi
+ public static int poly1() {
+ int a = 0;
+ for (int i = 0; i <= 10; i++) {
+ a += i;
+ }
+ return a;
+ }
+
+ // Multiplication in linear induction has been optimized earlier,
+ // but that does not stop the induction variable recognition
+ // and loop optimizer.
+ //
+ /// CHECK-START: int Main.poly2(int) loop_optimization (before)
+ /// CHECK-DAG: Phi loop:<<Loop:B\d+>>
+ /// CHECK-DAG: Shl loop:<<Loop>>
+ /// CHECK-DAG: Add loop:<<Loop>>
+ /// CHECK-DAG: Add loop:<<Loop>>
+ /// CHECK-DAG: Add loop:<<Loop>>
+ /// CHECK-DAG: Add loop:<<Loop>>
+ //
+ /// CHECK-START: int Main.poly2(int) loop_optimization (after)
+ /// CHECK-DAG: <<Par:i\d+>> ParameterValue loop:none
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 185 loop:none
+ /// CHECK-DAG: <<Add:i\d+>> Add [<<Int>>,<<Par>>] loop:none
+ /// CHECK-DAG: Return [<<Add>>] loop:none
+ //
+ /// CHECK-START: int Main.poly2(int) loop_optimization (after)
+ /// CHECK-NOT: Phi
+ public static int poly2(int a) {
+ for (int i = 0; i < 10; i++) {
+ int k = 3 * i + 5;
+ a += k;
+ }
+ return a;
+ }
+
+ /// CHECK-START: int Main.poly3() loop_optimization (before)
+ /// CHECK-DAG: Phi loop:<<Loop:B\d+>>
+ /// CHECK-DAG: Add loop:<<Loop>>
+ /// CHECK-DAG: Add loop:<<Loop>>
+ //
+ /// CHECK-START: int Main.poly3() loop_optimization (after)
+ /// CHECK-DAG: <<Ini:i\d+>> IntConstant 12345 loop:none
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant -2146736968 loop:none
+ /// CHECK-DAG: <<Add:i\d+>> Add [<<Int>>,<<Ini>>] loop:none
+ /// CHECK-DAG: Return [<<Add>>] loop:none
+ //
+ /// CHECK-START: int Main.poly3() instruction_simplifier$after_bce (after)
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant -2146724623 loop:none
+ /// CHECK-DAG: Return [<<Int>>] loop:none
+ //
+ /// CHECK-START: int Main.poly3() loop_optimization (after)
+ /// CHECK-NOT: Phi
+ public static int poly3() {
+ int a = 12345;
+ for (int i = 0; i <= 10; i++) {
+ a += (2147483646 * i + 67890);
+ }
+ return a;
+ }
+
+ /// CHECK-START: int Main.polyBCE1() BCE (before)
+ /// CHECK-DAG: BoundsCheck loop:none
+ /// CHECK-DAG: BoundsCheck loop:{{B\d+}}
+ //
+ /// CHECK-START: int Main.polyBCE1() BCE (after)
+ /// CHECK-NOT: BoundsCheck
+ /// CHECK-NOT: Deoptimize
+ public static int polyBCE1() {
+ int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17, 19, 19, 20,
+ 21, 22 };
+ int a = 0;
+ int r = 0;
+ for (int i = 0; i < 8; i++) {
+ r += x[a];
+ a += i;
+ }
+ return r;
+ }
+
+ /// CHECK-START: int Main.polyBCE2() BCE (before)
+ /// CHECK-DAG: BoundsCheck loop:none
+ /// CHECK-DAG: BoundsCheck loop:{{B\d+}}
+ //
+ /// CHECK-START: int Main.polyBCE2() BCE (after)
+ /// CHECK-NOT: BoundsCheck
+ /// CHECK-NOT: Deoptimize
+ public static int polyBCE2() {
+ int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17, 19, 19, 20,
+ 21, 22, 23, 24, 25, 26, 27 };
+ int a = 1;
+ int r = 0;
+ for (int i = 0; i < 6; i++) {
+ int k = 2 * i + 1;
+ r -= x[a];
+ a += k;
+ }
+ return r;
+ }
+
+ /// CHECK-START: int Main.polyBCE3() BCE (before)
+ /// CHECK-DAG: BoundsCheck loop:none
+ /// CHECK-DAG: BoundsCheck loop:{{B\d+}}
+ //
+ /// CHECK-START: int Main.polyBCE3() BCE (after)
+ /// CHECK-NOT: BoundsCheck
+ /// CHECK-NOT: Deoptimize
+ public static int polyBCE3() {
+ int[] x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17, 19, 19, 20,
+ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 31, 32, 33, 34, 35, 36, 37, 38 };
+ int r = 0;
+ int a1 = 1;
+ int a2 = 2;
+ for (int i = 0; i < 5; i++) {
+ int t = a1 + a2; // two polynomials combined into new polynomial
+ r -= x[t];
+ a1 += (3 * i + 1);
+ a2 += (2 * i);
+ }
+ return r;
+ }
+
+ //
+ // Verifier.
+ //
+
+ public static void main(String[] args) {
+ expectEquals(55, poly1());
+ expectEquals(185, poly2(0));
+ expectEquals(192, poly2(7));
+ expectEquals(-2146724623, poly3());
+ expectEquals(64, polyBCE1());
+ expectEquals(-68, polyBCE2());
+ expectEquals(-80, polyBCE3());
+
+ System.out.println("passed");
+ }
+
+ private static void expectEquals(int expected, int result) {
+ if (expected != result) {
+ throw new Error("Expected: " + expected + ", found: " + result);
+ }
+ }
+}
diff --git a/test/618-checker-induction/src/Main.java b/test/618-checker-induction/src/Main.java
index f85479a..87a69b2 100644
--- a/test/618-checker-induction/src/Main.java
+++ b/test/618-checker-induction/src/Main.java
@@ -25,7 +25,7 @@
/// CHECK-DAG: Phi loop:{{B\d+}} outer_loop:none
//
/// CHECK-START: void Main.deadSingleLoop() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
+ /// CHECK-NOT: Phi
static void deadSingleLoop() {
for (int i = 0; i < 4; i++) {
}
@@ -35,7 +35,7 @@
/// CHECK-DAG: Phi loop:{{B\d+}} outer_loop:none
//
/// CHECK-START: void Main.deadSingleLoop() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
+ /// CHECK-NOT: Phi
static void deadSingleLoopN(int n) {
for (int i = 0; i < n; i++) {
}
@@ -56,7 +56,7 @@
/// CHECK-DAG: Phi loop:{{B\d+}} outer_loop:<<Loop>>
//
/// CHECK-START: void Main.deadNestedLoops() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}}
+ /// CHECK-NOT: Phi
static void deadNestedLoops() {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
@@ -74,7 +74,7 @@
/// CHECK-DAG: Phi loop:{{B\d+}} outer_loop:none
//
/// CHECK-START: void Main.deadNestedAndFollowingLoops() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}}
+ /// CHECK-NOT: Phi
static void deadNestedAndFollowingLoops() {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
@@ -96,7 +96,7 @@
/// CHECK-DAG: Phi loop:{{B\d+}} outer_loop:none
//
/// CHECK-START: void Main.deadConditional(int) loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}}
+ /// CHECK-NOT: Phi
public static void deadConditional(int n) {
int k = 0;
int m = 0;
@@ -116,7 +116,7 @@
/// CHECK-DAG: Phi loop:<<Loop>> outer_loop:none
//
/// CHECK-START: void Main.deadConditionalCycle(int) loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}}
+ /// CHECK-NOT: Phi
public static void deadConditionalCycle(int n) {
int k = 0;
int m = 0;
@@ -215,12 +215,11 @@
/// CHECK-DAG: Return [<<Phi1>>] loop:none
//
/// CHECK-START: int Main.closedFormInductionUp() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.closedFormInductionUp() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 12395
- /// CHECK-DAG: Return [<<Int>>] loop:none
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 12395 loop:none
+ /// CHECK-DAG: Return [<<Int>>] loop:none
static int closedFormInductionUp() {
int closed = 12345;
for (int i = 0; i < 10; i++) {
@@ -235,8 +234,13 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: int Main.closedFormInductionInAndDown(int) loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
+ //
+ /// CHECK-START: int Main.closedFormInductionInAndDown(int) instruction_simplifier$after_bce (after)
+ /// CHECK-DAG: <<Par:i\d+>> ParameterValue loop:none
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant -50 loop:none
+ /// CHECK-DAG: <<Add:i\d+>> Add [<<Int>>,<<Par>>] loop:none
+ /// CHECK-DAG: Return [<<Add>>] loop:none
static int closedFormInductionInAndDown(int closed) {
for (int i = 0; i < 10; i++) {
closed -= 5;
@@ -252,12 +256,10 @@
/// CHECK-DAG: Return [<<Phi1>>] loop:none
//
/// CHECK-START: int Main.closedFormNested() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:loop{{B\d+}}
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.closedFormNested() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 100
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 100 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
static int closedFormNested() {
int closed = 0;
@@ -277,13 +279,11 @@
/// CHECK-DAG: Return [<<Phi1>>] loop:none
//
/// CHECK-START: int Main.closedFormNestedAlt() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:loop{{B\d+}}
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.closedFormNestedAlt() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 15082
- /// CHECK-DAG: Return [<<Int>>] loop:none
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 15082 loop:none
+ /// CHECK-DAG: Return [<<Int>>] loop:none
static int closedFormNestedAlt() {
int closed = 12345;
for (int i = 0; i < 17; i++) {
@@ -360,11 +360,10 @@
/// CHECK-DAG: Return [<<Phi>>] loop:none
//
/// CHECK-START: int Main.mainIndexReturned() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.mainIndexReturned() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 10
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 10 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
static int mainIndexReturned() {
int i;
@@ -378,11 +377,10 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: int Main.periodicReturned9() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.periodicReturned9() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 1
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 1 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
static int periodicReturned9() {
int k = 0;
@@ -398,11 +396,10 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: int Main.periodicReturned10() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.periodicReturned10() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 0
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 0 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
static int periodicReturned10() {
int k = 0;
@@ -412,7 +409,18 @@
return k;
}
- // If ever replaced by closed form, last value should be correct!
+ /// CHECK-START: int Main.getSum21() loop_optimization (before)
+ /// CHECK-DAG: <<Phi1:i\d+>> Phi loop:<<Loop:B\d+>> outer_loop:none
+ /// CHECK-DAG: <<Phi2:i\d+>> Phi loop:<<Loop>> outer_loop:none
+ /// CHECK-DAG: <<Phi3:i\d+>> Phi loop:<<Loop>> outer_loop:none
+ /// CHECK-DAG: Return [<<Phi3>>] loop:none
+ //
+ /// CHECK-START: int Main.getSum21() loop_optimization (after)
+ /// CHECK-NOT: Phi
+ //
+ /// CHECK-START: int Main.getSum21() instruction_simplifier$after_bce (after)
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 21 loop:none
+ /// CHECK-DAG: Return [<<Int>>] loop:none
private static int getSum21() {
int k = 0;
int sum = 0;
@@ -436,8 +444,7 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: int Main.periodicReturnedN(int) loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
static int periodicReturnedN(int n) {
int k = 0;
for (int i = 0; i < n; i++) {
@@ -480,11 +487,10 @@
/// CHECK-EVAL: "<<Loop1>>" != "<<Loop2>>"
//
/// CHECK-START: int Main.closedFeed() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.closedFeed() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 20
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 20 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
private static int closedFeed() {
int closed = 0;
@@ -505,11 +511,10 @@
/// CHECK-DAG: Return [<<Phi1>>] loop:none
//
/// CHECK-START: int Main.closedLargeUp() loop_optimization (after)
- /// CHECK-NOT: Phi loop:B\d+ outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.closedLargeUp() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant -10
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant -10 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
private static int closedLargeUp() {
int closed = 0;
@@ -525,11 +530,10 @@
/// CHECK-DAG: Return [<<Phi1>>] loop:none
//
/// CHECK-START: int Main.closedLargeDown() loop_optimization (after)
- /// CHECK-NOT: Phi loop:B\d+ outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.closedLargeDown() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 10
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 10 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
private static int closedLargeDown() {
int closed = 0;
@@ -548,11 +552,10 @@
/// CHECK-DAG: Return [<<Phi5>>] loop:none
//
/// CHECK-START: int Main.waterFall() loop_optimization (after)
- /// CHECK-NOT: Phi loop:B\d+ outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: int Main.waterFall() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 50
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 50 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
private static int waterFall() {
int i = 0;
@@ -570,11 +573,10 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: boolean Main.periodicBoolIdiom1() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: boolean Main.periodicBoolIdiom1() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 0
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 0 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
private static boolean periodicBoolIdiom1() {
boolean x = true;
@@ -590,11 +592,10 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: boolean Main.periodicBoolIdiom2() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: boolean Main.periodicBoolIdiom2() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 0
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 0 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
private static boolean periodicBoolIdiom2() {
boolean x = true;
@@ -610,11 +611,10 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: boolean Main.periodicBoolIdiom3() loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
//
/// CHECK-START: boolean Main.periodicBoolIdiom3() instruction_simplifier$after_bce (after)
- /// CHECK-DAG: <<Int:i\d+>> IntConstant 0
+ /// CHECK-DAG: <<Int:i\d+>> IntConstant 0 loop:none
/// CHECK-DAG: Return [<<Int>>] loop:none
private static boolean periodicBoolIdiom3() {
boolean x = true;
@@ -630,8 +630,7 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: boolean Main.periodicBoolIdiom1N(boolean, int) loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
private static boolean periodicBoolIdiom1N(boolean x, int n) {
for (int i = 0; i < n; i++) {
x = !x;
@@ -645,8 +644,7 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: boolean Main.periodicBoolIdiom2N(boolean, int) loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
private static boolean periodicBoolIdiom2N(boolean x, int n) {
for (int i = 0; i < n; i++) {
x = (x != true);
@@ -660,8 +658,7 @@
/// CHECK-DAG: Return [<<Phi2>>] loop:none
//
/// CHECK-START: boolean Main.periodicBoolIdiom3N(boolean, int) loop_optimization (after)
- /// CHECK-NOT: Phi loop:{{B\d+}} outer_loop:none
- /// CHECK-DAG: Return loop:none
+ /// CHECK-NOT: Phi
private static boolean periodicBoolIdiom3N(boolean x, int n) {
for (int i = 0; i < n; i++) {
x = (x == false);