| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "calling_convention_arm.h" |
| |
| #include <android-base/logging.h> |
| |
| #include "arch/instruction_set.h" |
| #include "base/macros.h" |
| #include "handle_scope-inl.h" |
| #include "utils/arm/managed_register_arm.h" |
| |
| namespace art { |
| namespace arm { |
| |
| static_assert(kArmPointerSize == PointerSize::k32, "Unexpected ARM pointer size"); |
| |
| // |
| // JNI calling convention constants. |
| // |
| |
| // List of parameters passed via registers for JNI. |
| // JNI uses soft-float, so there is only a GPR list. |
| static const Register kJniArgumentRegisters[] = { |
| R0, R1, R2, R3 |
| }; |
| |
| static const size_t kJniArgumentRegisterCount = arraysize(kJniArgumentRegisters); |
| |
| // |
| // Managed calling convention constants. |
| // |
| |
| // Used by hard float. (General purpose registers.) |
| static const Register kHFCoreArgumentRegisters[] = { |
| R0, R1, R2, R3 |
| }; |
| |
| // (VFP single-precision registers.) |
| static const SRegister kHFSArgumentRegisters[] = { |
| S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15 |
| }; |
| |
| // (VFP double-precision registers.) |
| static const DRegister kHFDArgumentRegisters[] = { |
| D0, D1, D2, D3, D4, D5, D6, D7 |
| }; |
| |
| static_assert(arraysize(kHFDArgumentRegisters) * 2 == arraysize(kHFSArgumentRegisters), |
| "ks d argument registers mismatch"); |
| |
| // |
| // Shared managed+JNI calling convention constants. |
| // |
| |
| static constexpr ManagedRegister kCalleeSaveRegisters[] = { |
| // Core registers. |
| ArmManagedRegister::FromCoreRegister(R5), |
| ArmManagedRegister::FromCoreRegister(R6), |
| ArmManagedRegister::FromCoreRegister(R7), |
| ArmManagedRegister::FromCoreRegister(R8), |
| ArmManagedRegister::FromCoreRegister(R10), |
| ArmManagedRegister::FromCoreRegister(R11), |
| // Hard float registers. |
| ArmManagedRegister::FromSRegister(S16), |
| ArmManagedRegister::FromSRegister(S17), |
| ArmManagedRegister::FromSRegister(S18), |
| ArmManagedRegister::FromSRegister(S19), |
| ArmManagedRegister::FromSRegister(S20), |
| ArmManagedRegister::FromSRegister(S21), |
| ArmManagedRegister::FromSRegister(S22), |
| ArmManagedRegister::FromSRegister(S23), |
| ArmManagedRegister::FromSRegister(S24), |
| ArmManagedRegister::FromSRegister(S25), |
| ArmManagedRegister::FromSRegister(S26), |
| ArmManagedRegister::FromSRegister(S27), |
| ArmManagedRegister::FromSRegister(S28), |
| ArmManagedRegister::FromSRegister(S29), |
| ArmManagedRegister::FromSRegister(S30), |
| ArmManagedRegister::FromSRegister(S31) |
| }; |
| |
| static constexpr uint32_t CalculateCoreCalleeSpillMask() { |
| // LR is a special callee save which is not reported by CalleeSaveRegisters(). |
| uint32_t result = 1 << LR; |
| for (auto&& r : kCalleeSaveRegisters) { |
| if (r.AsArm().IsCoreRegister()) { |
| result |= (1 << r.AsArm().AsCoreRegister()); |
| } |
| } |
| return result; |
| } |
| |
| static constexpr uint32_t CalculateFpCalleeSpillMask() { |
| uint32_t result = 0; |
| for (auto&& r : kCalleeSaveRegisters) { |
| if (r.AsArm().IsSRegister()) { |
| result |= (1 << r.AsArm().AsSRegister()); |
| } |
| } |
| return result; |
| } |
| |
| static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(); |
| static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask(); |
| |
| // Calling convention |
| |
| ManagedRegister ArmManagedRuntimeCallingConvention::InterproceduralScratchRegister() { |
| return ArmManagedRegister::FromCoreRegister(IP); // R12 |
| } |
| |
| ManagedRegister ArmJniCallingConvention::InterproceduralScratchRegister() { |
| return ArmManagedRegister::FromCoreRegister(IP); // R12 |
| } |
| |
| ManagedRegister ArmManagedRuntimeCallingConvention::ReturnRegister() { |
| switch (GetShorty()[0]) { |
| case 'V': |
| return ArmManagedRegister::NoRegister(); |
| case 'D': |
| return ArmManagedRegister::FromDRegister(D0); |
| case 'F': |
| return ArmManagedRegister::FromSRegister(S0); |
| case 'J': |
| return ArmManagedRegister::FromRegisterPair(R0_R1); |
| default: |
| return ArmManagedRegister::FromCoreRegister(R0); |
| } |
| } |
| |
| ManagedRegister ArmJniCallingConvention::ReturnRegister() { |
| switch (GetShorty()[0]) { |
| case 'V': |
| return ArmManagedRegister::NoRegister(); |
| case 'D': |
| case 'J': |
| return ArmManagedRegister::FromRegisterPair(R0_R1); |
| default: |
| return ArmManagedRegister::FromCoreRegister(R0); |
| } |
| } |
| |
| ManagedRegister ArmJniCallingConvention::IntReturnRegister() { |
| return ArmManagedRegister::FromCoreRegister(R0); |
| } |
| |
| // Managed runtime calling convention |
| |
| ManagedRegister ArmManagedRuntimeCallingConvention::MethodRegister() { |
| return ArmManagedRegister::FromCoreRegister(R0); |
| } |
| |
| bool ArmManagedRuntimeCallingConvention::IsCurrentParamInRegister() { |
| return false; // Everything moved to stack on entry. |
| } |
| |
| bool ArmManagedRuntimeCallingConvention::IsCurrentParamOnStack() { |
| return true; |
| } |
| |
| ManagedRegister ArmManagedRuntimeCallingConvention::CurrentParamRegister() { |
| LOG(FATAL) << "Should not reach here"; |
| UNREACHABLE(); |
| } |
| |
| FrameOffset ArmManagedRuntimeCallingConvention::CurrentParamStackOffset() { |
| CHECK(IsCurrentParamOnStack()); |
| FrameOffset result = |
| FrameOffset(displacement_.Int32Value() + // displacement |
| kFramePointerSize + // Method* |
| (itr_slots_ * kFramePointerSize)); // offset into in args |
| return result; |
| } |
| |
| const ManagedRegisterEntrySpills& ArmManagedRuntimeCallingConvention::EntrySpills() { |
| // We spill the argument registers on ARM to free them up for scratch use, we then assume |
| // all arguments are on the stack. |
| if ((entry_spills_.size() == 0) && (NumArgs() > 0)) { |
| uint32_t gpr_index = 1; // R0 ~ R3. Reserve r0 for ArtMethod*. |
| uint32_t fpr_index = 0; // S0 ~ S15. |
| uint32_t fpr_double_index = 0; // D0 ~ D7. |
| |
| ResetIterator(FrameOffset(0)); |
| while (HasNext()) { |
| if (IsCurrentParamAFloatOrDouble()) { |
| if (IsCurrentParamADouble()) { // Double. |
| // Double should not overlap with float. |
| fpr_double_index = (std::max(fpr_double_index * 2, RoundUp(fpr_index, 2))) / 2; |
| if (fpr_double_index < arraysize(kHFDArgumentRegisters)) { |
| entry_spills_.push_back( |
| ArmManagedRegister::FromDRegister(kHFDArgumentRegisters[fpr_double_index++])); |
| } else { |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 8); |
| } |
| } else { // Float. |
| // Float should not overlap with double. |
| if (fpr_index % 2 == 0) { |
| fpr_index = std::max(fpr_double_index * 2, fpr_index); |
| } |
| if (fpr_index < arraysize(kHFSArgumentRegisters)) { |
| entry_spills_.push_back( |
| ArmManagedRegister::FromSRegister(kHFSArgumentRegisters[fpr_index++])); |
| } else { |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 4); |
| } |
| } |
| } else { |
| // FIXME: Pointer this returns as both reference and long. |
| if (IsCurrentParamALong() && !IsCurrentParamAReference()) { // Long. |
| if (gpr_index < arraysize(kHFCoreArgumentRegisters) - 1) { |
| // Skip R1, and use R2_R3 if the long is the first parameter. |
| if (gpr_index == 1) { |
| gpr_index++; |
| } |
| } |
| |
| // If it spans register and memory, we must use the value in memory. |
| if (gpr_index < arraysize(kHFCoreArgumentRegisters) - 1) { |
| entry_spills_.push_back( |
| ArmManagedRegister::FromCoreRegister(kHFCoreArgumentRegisters[gpr_index++])); |
| } else if (gpr_index == arraysize(kHFCoreArgumentRegisters) - 1) { |
| gpr_index++; |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 4); |
| } else { |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 4); |
| } |
| } |
| // High part of long or 32-bit argument. |
| if (gpr_index < arraysize(kHFCoreArgumentRegisters)) { |
| entry_spills_.push_back( |
| ArmManagedRegister::FromCoreRegister(kHFCoreArgumentRegisters[gpr_index++])); |
| } else { |
| entry_spills_.push_back(ManagedRegister::NoRegister(), 4); |
| } |
| } |
| Next(); |
| } |
| } |
| return entry_spills_; |
| } |
| // JNI calling convention |
| |
| ArmJniCallingConvention::ArmJniCallingConvention(bool is_static, |
| bool is_synchronized, |
| bool is_critical_native, |
| const char* shorty) |
| : JniCallingConvention(is_static, |
| is_synchronized, |
| is_critical_native, |
| shorty, |
| kArmPointerSize) { |
| // AAPCS 4.1 specifies fundamental alignments for each type. All of our stack arguments are |
| // usually 4-byte aligned, however longs and doubles must be 8 bytes aligned. Add padding to |
| // maintain 8-byte alignment invariant. |
| // |
| // Compute padding to ensure longs and doubles are not split in AAPCS. |
| size_t shift = 0; |
| |
| size_t cur_arg, cur_reg; |
| if (LIKELY(HasExtraArgumentsForJni())) { |
| // Ignore the 'this' jobject or jclass for static methods and the JNIEnv. |
| // We start at the aligned register r2. |
| // |
| // Ignore the first 2 parameters because they are guaranteed to be aligned. |
| cur_arg = NumImplicitArgs(); // skip the "this" arg. |
| cur_reg = 2; // skip {r0=JNIEnv, r1=jobject} / {r0=JNIEnv, r1=jclass} parameters (start at r2). |
| } else { |
| // Check every parameter. |
| cur_arg = 0; |
| cur_reg = 0; |
| } |
| |
| // TODO: Maybe should just use IsCurrentParamALongOrDouble instead to be cleaner? |
| // (this just seems like an unnecessary micro-optimization). |
| |
| // Shift across a logical register mapping that looks like: |
| // |
| // | r0 | r1 | r2 | r3 | SP | SP+4| SP+8 | SP+12 | ... | SP+n | SP+n+4 | |
| // |
| // (where SP is some arbitrary stack pointer that our 0th stack arg would go into). |
| // |
| // Any time there would normally be a long/double in an odd logical register, |
| // we have to push out the rest of the mappings by 4 bytes to maintain an 8-byte alignment. |
| // |
| // This works for both physical register pairs {r0, r1}, {r2, r3} and for when |
| // the value is on the stack. |
| // |
| // For example: |
| // (a) long would normally go into r1, but we shift it into r2 |
| // | INT | (PAD) | LONG | |
| // | r0 | r1 | r2 | r3 | |
| // |
| // (b) long would normally go into r3, but we shift it into SP |
| // | INT | INT | INT | (PAD) | LONG | |
| // | r0 | r1 | r2 | r3 | SP+4 SP+8| |
| // |
| // where INT is any <=4 byte arg, and LONG is any 8-byte arg. |
| for (; cur_arg < NumArgs(); cur_arg++) { |
| if (IsParamALongOrDouble(cur_arg)) { |
| if ((cur_reg & 1) != 0) { // check that it's in a logical contiguous register pair |
| shift += 4; |
| cur_reg++; // additional bump to ensure alignment |
| } |
| cur_reg += 2; // bump the iterator twice for every long argument |
| } else { |
| cur_reg++; // bump the iterator for every non-long argument |
| } |
| } |
| |
| if (cur_reg < kJniArgumentRegisterCount) { |
| // As a special case when, as a result of shifting (or not) there are no arguments on the stack, |
| // we actually have 0 stack padding. |
| // |
| // For example with @CriticalNative and: |
| // (int, long) -> shifts the long but doesn't need to pad the stack |
| // |
| // shift |
| // \/ |
| // | INT | (PAD) | LONG | (EMPTY) ... |
| // | r0 | r1 | r2 | r3 | SP ... |
| // /\ |
| // no stack padding |
| padding_ = 0; |
| } else { |
| padding_ = shift; |
| } |
| |
| // TODO: add some new JNI tests for @CriticalNative that introduced new edge cases |
| // (a) Using r0,r1 pair = f(long,...) |
| // (b) Shifting r1 long into r2,r3 pair = f(int, long, int, ...); |
| // (c) Shifting but not introducing a stack padding = f(int, long); |
| } |
| |
| uint32_t ArmJniCallingConvention::CoreSpillMask() const { |
| // Compute spill mask to agree with callee saves initialized in the constructor |
| return kCoreCalleeSpillMask; |
| } |
| |
| uint32_t ArmJniCallingConvention::FpSpillMask() const { |
| return kFpCalleeSpillMask; |
| } |
| |
| ManagedRegister ArmJniCallingConvention::ReturnScratchRegister() const { |
| return ArmManagedRegister::FromCoreRegister(R2); |
| } |
| |
| size_t ArmJniCallingConvention::FrameSize() { |
| // Method*, LR and callee save area size, local reference segment state |
| const size_t method_ptr_size = static_cast<size_t>(kArmPointerSize); |
| const size_t lr_return_addr_size = kFramePointerSize; |
| const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize; |
| size_t frame_data_size = method_ptr_size + lr_return_addr_size + callee_save_area_size; |
| |
| if (LIKELY(HasLocalReferenceSegmentState())) { |
| // local reference segment state |
| frame_data_size += kFramePointerSize; |
| // TODO: Probably better to use sizeof(IRTSegmentState) here... |
| } |
| |
| // References plus link_ (pointer) and number_of_references_ (uint32_t) for HandleScope header |
| const size_t handle_scope_size = HandleScope::SizeOf(kArmPointerSize, ReferenceCount()); |
| |
| size_t total_size = frame_data_size; |
| if (LIKELY(HasHandleScope())) { |
| // HandleScope is sometimes excluded. |
| total_size += handle_scope_size; // handle scope size |
| } |
| |
| // Plus return value spill area size |
| total_size += SizeOfReturnValue(); |
| |
| return RoundUp(total_size, kStackAlignment); |
| } |
| |
| size_t ArmJniCallingConvention::OutArgSize() { |
| // TODO: Identical to x86_64 except for also adding additional padding. |
| return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize + padding_, |
| kStackAlignment); |
| } |
| |
| ArrayRef<const ManagedRegister> ArmJniCallingConvention::CalleeSaveRegisters() const { |
| return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters); |
| } |
| |
| // JniCallingConvention ABI follows AAPCS where longs and doubles must occur |
| // in even register numbers and stack slots |
| void ArmJniCallingConvention::Next() { |
| // Update the iterator by usual JNI rules. |
| JniCallingConvention::Next(); |
| |
| if (LIKELY(HasNext())) { // Avoid CHECK failure for IsCurrentParam |
| // Ensure slot is 8-byte aligned for longs/doubles (AAPCS). |
| if (IsCurrentParamALongOrDouble() && ((itr_slots_ & 0x1u) != 0)) { |
| // itr_slots_ needs to be an even number, according to AAPCS. |
| itr_slots_++; |
| } |
| } |
| } |
| |
| bool ArmJniCallingConvention::IsCurrentParamInRegister() { |
| return itr_slots_ < kJniArgumentRegisterCount; |
| } |
| |
| bool ArmJniCallingConvention::IsCurrentParamOnStack() { |
| return !IsCurrentParamInRegister(); |
| } |
| |
| ManagedRegister ArmJniCallingConvention::CurrentParamRegister() { |
| CHECK_LT(itr_slots_, kJniArgumentRegisterCount); |
| if (IsCurrentParamALongOrDouble()) { |
| // AAPCS 5.1.1 requires 64-bit values to be in a consecutive register pair: |
| // "A double-word sized type is passed in two consecutive registers (e.g., r0 and r1, or r2 and |
| // r3). The content of the registers is as if the value had been loaded from memory |
| // representation with a single LDM instruction." |
| if (itr_slots_ == 0u) { |
| return ArmManagedRegister::FromRegisterPair(R0_R1); |
| } else if (itr_slots_ == 2u) { |
| return ArmManagedRegister::FromRegisterPair(R2_R3); |
| } else { |
| // The register can either be R0 (+R1) or R2 (+R3). Cannot be other values. |
| LOG(FATAL) << "Invalid iterator register position for a long/double " << itr_args_; |
| UNREACHABLE(); |
| } |
| } else { |
| // All other types can fit into one register. |
| return ArmManagedRegister::FromCoreRegister(kJniArgumentRegisters[itr_slots_]); |
| } |
| } |
| |
| FrameOffset ArmJniCallingConvention::CurrentParamStackOffset() { |
| CHECK_GE(itr_slots_, kJniArgumentRegisterCount); |
| size_t offset = |
| displacement_.Int32Value() |
| - OutArgSize() |
| + ((itr_slots_ - kJniArgumentRegisterCount) * kFramePointerSize); |
| CHECK_LT(offset, OutArgSize()); |
| return FrameOffset(offset); |
| } |
| |
| size_t ArmJniCallingConvention::NumberOfOutgoingStackArgs() { |
| size_t static_args = HasSelfClass() ? 1 : 0; // count jclass |
| // regular argument parameters and this |
| size_t param_args = NumArgs() + NumLongOrDoubleArgs(); // twice count 8-byte args |
| // XX: Why is the long/ordouble counted twice but not JNIEnv* ??? |
| // count JNIEnv* less arguments in registers |
| size_t internal_args = (HasJniEnv() ? 1 : 0 /* jni env */); |
| size_t total_args = static_args + param_args + internal_args; |
| |
| return total_args - std::min(kJniArgumentRegisterCount, static_cast<size_t>(total_args)); |
| |
| // TODO: Very similar to x86_64 except for the return pc. |
| } |
| |
| } // namespace arm |
| } // namespace art |