Build dominator tree before generating HInstructions

Second CL in the series of merging HGraphBuilder and SsaBuilder. This
patch refactors the builders so that dominator tree can be built
before any HInstructions are generated. This puts the SsaBuilder
removal of HLoadLocals/HStoreLocals straight after HGraphBuilder's
HInstruction generation phase. Next CL will therefore be able to
merge them.

This patch also adds util classes for iterating bytecode and switch
tables which allowed to simplify the code.

Bug: 27894376
Change-Id: Ic425d298b2e6e7980481ed697230b1a0b7904526
diff --git a/compiler/optimizing/block_builder.cc b/compiler/optimizing/block_builder.cc
new file mode 100644
index 0000000..5e70a82
--- /dev/null
+++ b/compiler/optimizing/block_builder.cc
@@ -0,0 +1,370 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "block_builder.h"
+
+#include "bytecode_utils.h"
+
+namespace art {
+
+HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t dex_pc) {
+  return MaybeCreateBlockAt(dex_pc, dex_pc);
+}
+
+HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t semantic_dex_pc,
+                                                    uint32_t store_dex_pc) {
+  HBasicBlock* block = branch_targets_[store_dex_pc];
+  if (block == nullptr) {
+    block = new (arena_) HBasicBlock(graph_, semantic_dex_pc);
+    branch_targets_[store_dex_pc] = block;
+  }
+  DCHECK_EQ(block->GetDexPc(), semantic_dex_pc);
+  return block;
+}
+
+bool HBasicBlockBuilder::CreateBranchTargets() {
+  // Create the first block for the dex instructions, single successor of the entry block.
+  MaybeCreateBlockAt(0u);
+
+  if (code_item_.tries_size_ != 0) {
+    // Create branch targets at the start/end of the TryItem range. These are
+    // places where the program might fall through into/out of the a block and
+    // where TryBoundary instructions will be inserted later. Other edges which
+    // enter/exit the try blocks are a result of branches/switches.
+    for (size_t idx = 0; idx < code_item_.tries_size_; ++idx) {
+      const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item_, idx);
+      uint32_t dex_pc_start = try_item->start_addr_;
+      uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_;
+      MaybeCreateBlockAt(dex_pc_start);
+      if (dex_pc_end < code_item_.insns_size_in_code_units_) {
+        // TODO: Do not create block if the last instruction cannot fall through.
+        MaybeCreateBlockAt(dex_pc_end);
+      } else if (dex_pc_end == code_item_.insns_size_in_code_units_) {
+        // The TryItem spans until the very end of the CodeItem and therefore
+        // cannot have any code afterwards.
+      } else {
+        // The TryItem spans beyond the end of the CodeItem. This is invalid code.
+        return false;
+      }
+    }
+
+    // Create branch targets for exception handlers.
+    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item_, 0);
+    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
+    for (uint32_t idx = 0; idx < handlers_size; ++idx) {
+      CatchHandlerIterator iterator(handlers_ptr);
+      for (; iterator.HasNext(); iterator.Next()) {
+        MaybeCreateBlockAt(iterator.GetHandlerAddress());
+      }
+      handlers_ptr = iterator.EndDataPointer();
+    }
+  }
+
+  // Iterate over all instructions and find branching instructions. Create blocks for
+  // the locations these instructions branch to.
+  for (CodeItemIterator it(code_item_); !it.Done(); it.Advance()) {
+    uint32_t dex_pc = it.CurrentDexPc();
+    const Instruction& instruction = it.CurrentInstruction();
+
+    if (instruction.IsBranch()) {
+      number_of_branches_++;
+      MaybeCreateBlockAt(dex_pc + instruction.GetTargetOffset());
+    } else if (instruction.IsSwitch()) {
+      DexSwitchTable table(instruction, dex_pc);
+      for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
+        MaybeCreateBlockAt(dex_pc + s_it.CurrentTargetOffset());
+
+        // Create N-1 blocks where we will insert comparisons of the input value
+        // against the Switch's case keys.
+        if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
+          // Store the block under dex_pc of the current key at the switch data
+          // instruction for uniqueness but give it the dex_pc of the SWITCH
+          // instruction which it semantically belongs to.
+          MaybeCreateBlockAt(dex_pc, s_it.GetDexPcForCurrentIndex());
+        }
+      }
+    } else if (instruction.Opcode() == Instruction::MOVE_EXCEPTION) {
+      // End the basic block after MOVE_EXCEPTION. This simplifies the later
+      // stage of TryBoundary-block insertion.
+    } else {
+      continue;
+    }
+
+    if (instruction.CanFlowThrough()) {
+      if (it.IsLast()) {
+        // In the normal case we should never hit this but someone can artificially forge a dex
+        // file to fall-through out the method code. In this case we bail out compilation.
+        return false;
+      } else {
+        MaybeCreateBlockAt(dex_pc + it.CurrentInstruction().SizeInCodeUnits());
+      }
+    }
+  }
+
+  return true;
+}
+
+void HBasicBlockBuilder::ConnectBasicBlocks() {
+  HBasicBlock* block = graph_->GetEntryBlock();
+  graph_->AddBlock(block);
+
+  bool is_throwing_block = false;
+  for (CodeItemIterator it(code_item_); !it.Done(); it.Advance()) {
+    uint32_t dex_pc = it.CurrentDexPc();
+
+    // Check if this dex_pc address starts a new basic block.
+    HBasicBlock* next_block = GetBlockAt(dex_pc);
+    if (next_block != nullptr) {
+      if (block != nullptr) {
+        // Last instruction did not end its basic block but a new one starts here.
+        // It must have been a block falling through into the next one.
+        block->AddSuccessor(next_block);
+      }
+      block = next_block;
+      is_throwing_block = false;
+      graph_->AddBlock(block);
+    }
+
+    if (block == nullptr) {
+      // Ignore dead code.
+      continue;
+    }
+
+    const Instruction& instruction = it.CurrentInstruction();
+
+    if (!is_throwing_block && IsThrowingDexInstruction(instruction)) {
+      DCHECK(!ContainsElement(throwing_blocks_, block));
+      is_throwing_block = true;
+      throwing_blocks_.push_back(block);
+    }
+
+    if (instruction.IsBranch()) {
+      uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset();
+      block->AddSuccessor(GetBlockAt(target_dex_pc));
+    } else if (instruction.IsReturn() || (instruction.Opcode() == Instruction::THROW)) {
+      block->AddSuccessor(graph_->GetExitBlock());
+    } else if (instruction.IsSwitch()) {
+      DexSwitchTable table(instruction, dex_pc);
+      for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
+        uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset();
+        block->AddSuccessor(GetBlockAt(target_dex_pc));
+
+        if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
+          uint32_t next_case_dex_pc = s_it.GetDexPcForCurrentIndex();
+          HBasicBlock* next_case_block = GetBlockAt(next_case_dex_pc);
+          block->AddSuccessor(next_case_block);
+          block = next_case_block;
+          graph_->AddBlock(block);
+        }
+      }
+    } else {
+      // Remaining code only applies to instructions which end their basic block.
+      continue;
+    }
+
+    if (instruction.CanFlowThrough()) {
+      uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
+      block->AddSuccessor(GetBlockAt(next_dex_pc));
+    }
+
+    // The basic block ends here. Do not add any more instructions.
+    block = nullptr;
+  }
+
+  graph_->AddBlock(graph_->GetExitBlock());
+}
+
+// Returns the TryItem stored for `block` or nullptr if there is no info for it.
+static const DexFile::TryItem* GetTryItem(
+    HBasicBlock* block,
+    const ArenaSafeMap<uint32_t, const DexFile::TryItem*>& try_block_info) {
+  auto iterator = try_block_info.find(block->GetBlockId());
+  return (iterator == try_block_info.end()) ? nullptr : iterator->second;
+}
+
+// Iterates over the exception handlers of `try_item`, finds the corresponding
+// catch blocks and makes them successors of `try_boundary`. The order of
+// successors matches the order in which runtime exception delivery searches
+// for a handler.
+static void LinkToCatchBlocks(HTryBoundary* try_boundary,
+                              const DexFile::CodeItem& code_item,
+                              const DexFile::TryItem* try_item,
+                              const ArenaSafeMap<uint32_t, HBasicBlock*>& catch_blocks) {
+  for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) {
+    try_boundary->AddExceptionHandler(catch_blocks.Get(it.GetHandlerAddress()));
+  }
+}
+
+bool HBasicBlockBuilder::MightHaveLiveNormalPredecessors(HBasicBlock* catch_block) {
+  if (kIsDebugBuild) {
+    DCHECK_NE(catch_block->GetDexPc(), kNoDexPc) << "Should not be called on synthetic blocks";
+    DCHECK(!graph_->GetEntryBlock()->GetSuccessors().empty())
+        << "Basic blocks must have been created and connected";
+    for (HBasicBlock* predecessor : catch_block->GetPredecessors()) {
+      DCHECK(!predecessor->IsSingleTryBoundary())
+          << "TryBoundary blocks must not have not been created yet";
+    }
+  }
+
+  const Instruction& first = GetDexInstructionAt(code_item_, catch_block->GetDexPc());
+  if (first.Opcode() == Instruction::MOVE_EXCEPTION) {
+    // Verifier guarantees that if a catch block begins with MOVE_EXCEPTION then
+    // it has no live normal predecessors.
+    return false;
+  } else if (catch_block->GetPredecessors().empty()) {
+    // Normal control-flow edges have already been created. Since block's list of
+    // predecessors is empty, it cannot have any live or dead normal predecessors.
+    return false;
+  }
+
+  // The catch block has normal predecessors but we do not know which are live
+  // and which will be removed during the initial DCE. Return `true` to signal
+  // that it may have live normal predecessors.
+  return true;
+}
+
+void HBasicBlockBuilder::InsertTryBoundaryBlocks() {
+  if (code_item_.tries_size_ == 0) {
+    return;
+  }
+
+  // Keep a map of all try blocks and their respective TryItems. We do not use
+  // the block's pointer but rather its id to ensure deterministic iteration.
+  ArenaSafeMap<uint32_t, const DexFile::TryItem*> try_block_info(
+      std::less<uint32_t>(), arena_->Adapter(kArenaAllocGraphBuilder));
+
+  // Obtain TryItem information for blocks with throwing instructions, and split
+  // blocks which are both try & catch to simplify the graph.
+  for (HBasicBlock* block : graph_->GetBlocks()) {
+    if (block->GetDexPc() == kNoDexPc) {
+      continue;
+    }
+
+    // Do not bother creating exceptional edges for try blocks which have no
+    // throwing instructions. In that case we simply assume that the block is
+    // not covered by a TryItem. This prevents us from creating a throw-catch
+    // loop for synchronized blocks.
+    if (ContainsElement(throwing_blocks_, block)) {
+      // Try to find a TryItem covering the block.
+      const int32_t try_item_idx = DexFile::FindTryItem(code_item_, block->GetDexPc());
+      if (try_item_idx != -1) {
+        // Block throwing and in a TryItem. Store the try block information.
+        try_block_info.Put(block->GetBlockId(), DexFile::GetTryItems(code_item_, try_item_idx));
+      }
+    }
+  }
+
+  // Map from a handler dex_pc to the corresponding catch block.
+  ArenaSafeMap<uint32_t, HBasicBlock*> catch_blocks(
+      std::less<uint32_t>(), arena_->Adapter(kArenaAllocGraphBuilder));
+
+  // Iterate over catch blocks, create artifical landing pads if necessary to
+  // simplify the CFG, and set metadata.
+  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item_, 0);
+  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
+  for (uint32_t idx = 0; idx < handlers_size; ++idx) {
+    CatchHandlerIterator iterator(handlers_ptr);
+    for (; iterator.HasNext(); iterator.Next()) {
+      uint32_t address = iterator.GetHandlerAddress();
+      if (catch_blocks.find(address) != catch_blocks.end()) {
+        // Catch block already processed.
+        continue;
+      }
+
+      // Check if we should create an artifical landing pad for the catch block.
+      // We create one if the catch block is also a try block because we do not
+      // have a strategy for inserting TryBoundaries on exceptional edges.
+      // We also create one if the block might have normal predecessors so as to
+      // simplify register allocation.
+      HBasicBlock* catch_block = GetBlockAt(address);
+      bool is_try_block = (try_block_info.find(catch_block->GetBlockId()) != try_block_info.end());
+      if (is_try_block || MightHaveLiveNormalPredecessors(catch_block)) {
+        HBasicBlock* new_catch_block = new (arena_) HBasicBlock(graph_, address);
+        new_catch_block->AddInstruction(new (arena_) HGoto(address));
+        new_catch_block->AddSuccessor(catch_block);
+        graph_->AddBlock(new_catch_block);
+        catch_block = new_catch_block;
+      }
+
+      catch_blocks.Put(address, catch_block);
+      catch_block->SetTryCatchInformation(
+        new (arena_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
+    }
+    handlers_ptr = iterator.EndDataPointer();
+  }
+
+  // Do a pass over the try blocks and insert entering TryBoundaries where at
+  // least one predecessor is not covered by the same TryItem as the try block.
+  // We do not split each edge separately, but rather create one boundary block
+  // that all predecessors are relinked to. This preserves loop headers (b/23895756).
+  for (auto entry : try_block_info) {
+    HBasicBlock* try_block = graph_->GetBlocks()[entry.first];
+    for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
+      if (GetTryItem(predecessor, try_block_info) != entry.second) {
+        // Found a predecessor not covered by the same TryItem. Insert entering
+        // boundary block.
+        HTryBoundary* try_entry =
+            new (arena_) HTryBoundary(HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc());
+        try_block->CreateImmediateDominator()->AddInstruction(try_entry);
+        LinkToCatchBlocks(try_entry, code_item_, entry.second, catch_blocks);
+        break;
+      }
+    }
+  }
+
+  // Do a second pass over the try blocks and insert exit TryBoundaries where
+  // the successor is not in the same TryItem.
+  for (auto entry : try_block_info) {
+    HBasicBlock* try_block = graph_->GetBlocks()[entry.first];
+    // NOTE: Do not use iterators because SplitEdge would invalidate them.
+    for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
+      HBasicBlock* successor = try_block->GetSuccessors()[i];
+
+      // If the successor is a try block, all of its predecessors must be
+      // covered by the same TryItem. Otherwise the previous pass would have
+      // created a non-throwing boundary block.
+      if (GetTryItem(successor, try_block_info) != nullptr) {
+        DCHECK_EQ(entry.second, GetTryItem(successor, try_block_info));
+        continue;
+      }
+
+      // Insert TryBoundary and link to catch blocks.
+      HTryBoundary* try_exit =
+          new (arena_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc());
+      graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
+      LinkToCatchBlocks(try_exit, code_item_, entry.second, catch_blocks);
+    }
+  }
+}
+
+bool HBasicBlockBuilder::Build() {
+  DCHECK(graph_->GetBlocks().empty());
+
+  graph_->SetEntryBlock(new (arena_) HBasicBlock(graph_, kNoDexPc));
+  graph_->SetExitBlock(new (arena_) HBasicBlock(graph_, kNoDexPc));
+
+  // TODO(dbrazdil): Do CreateBranchTargets and ConnectBasicBlocks in one pass.
+  if (!CreateBranchTargets()) {
+    return false;
+  }
+
+  ConnectBasicBlocks();
+  InsertTryBoundaryBlocks();
+
+  return true;
+}
+
+}  // namespace art