| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_ |
| #define ART_RUNTIME_MIRROR_ARRAY_INL_H_ |
| |
| #include "array.h" |
| |
| #include <android-base/logging.h> |
| |
| #include "base/bit_utils.h" |
| #include "base/casts.h" |
| #include "class.h" |
| #include "obj_ptr-inl.h" |
| #include "runtime.h" |
| #include "thread-current-inl.h" |
| |
| namespace art { |
| namespace mirror { |
| |
| inline uint32_t Array::ClassSize(PointerSize pointer_size) { |
| uint32_t vtable_entries = Object::kVTableLength; |
| return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size); |
| } |
| |
| template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, bool kIsObjArray> |
| inline size_t Array::SizeOf() { |
| // When we are certain that this is a object array, then don't fetch shift |
| // from component_type_ as that doesn't work well with userfaultfd GC as the |
| // component-type class may be allocated at a higher address than the array. |
| size_t component_size_shift = kIsObjArray ? |
| Primitive::ComponentSizeShift(Primitive::kPrimNot) : |
| GetClass<kVerifyFlags, kReadBarrierOption>() |
| ->template GetComponentSizeShift<kReadBarrierOption>(); |
| // Don't need to check this since we already check this in GetClass. |
| int32_t component_count = |
| GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>(); |
| // This is safe from overflow because the array was already allocated. |
| size_t header_size = DataOffset(1U << component_size_shift).SizeValue(); |
| size_t data_size = component_count << component_size_shift; |
| return header_size + data_size; |
| } |
| |
| template<VerifyObjectFlags kVerifyFlags> |
| inline bool Array::CheckIsValidIndex(int32_t index) { |
| if (UNLIKELY(static_cast<uint32_t>(index) >= |
| static_cast<uint32_t>(GetLength<kVerifyFlags>()))) { |
| ThrowArrayIndexOutOfBoundsException(index); |
| return false; |
| } |
| return true; |
| } |
| |
| template<typename T> |
| inline T PrimitiveArray<T>::Get(int32_t i) { |
| if (!CheckIsValidIndex(i)) { |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| return T(0); |
| } |
| return GetWithoutChecks(i); |
| } |
| |
| template<typename T> |
| inline void PrimitiveArray<T>::Set(int32_t i, T value) { |
| if (Runtime::Current()->IsActiveTransaction()) { |
| Set<true>(i, value); |
| } else { |
| Set<false>(i, value); |
| } |
| } |
| |
| template<typename T> |
| template<bool kTransactionActive, bool kCheckTransaction> |
| inline void PrimitiveArray<T>::Set(int32_t i, T value) { |
| if (CheckIsValidIndex(i)) { |
| SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value); |
| } else { |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| } |
| } |
| |
| template<typename T> |
| template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> |
| inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) { |
| if (kCheckTransaction) { |
| DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); |
| } |
| if (kTransactionActive) { |
| Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i)); |
| } |
| DCHECK(CheckIsValidIndex<kVerifyFlags>(i)) << i << " " << GetLength<kVerifyFlags>(); |
| GetData()[i] = value; |
| } |
| // Backward copy where elements are of aligned appropriately for T. Count is in T sized units. |
| // Copies are guaranteed not to tear when the sizeof T is less-than 64bit. |
| template<typename T> |
| static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) { |
| d += count; |
| s += count; |
| for (int32_t i = 0; i < count; ++i) { |
| d--; |
| s--; |
| *d = *s; |
| } |
| } |
| |
| // Forward copy where elements are of aligned appropriately for T. Count is in T sized units. |
| // Copies are guaranteed not to tear when the sizeof T is less-than 64bit. |
| template<typename T> |
| static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) { |
| for (int32_t i = 0; i < count; ++i) { |
| *d = *s; |
| d++; |
| s++; |
| } |
| } |
| |
| template<class T> |
| inline void PrimitiveArray<T>::Memmove(int32_t dst_pos, |
| ObjPtr<PrimitiveArray<T>> src, |
| int32_t src_pos, |
| int32_t count) { |
| if (UNLIKELY(count == 0)) { |
| return; |
| } |
| DCHECK_GE(dst_pos, 0); |
| DCHECK_GE(src_pos, 0); |
| DCHECK_GT(count, 0); |
| DCHECK(src != nullptr); |
| DCHECK_LT(dst_pos, GetLength()); |
| DCHECK_LE(dst_pos, GetLength() - count); |
| DCHECK_LT(src_pos, src->GetLength()); |
| DCHECK_LE(src_pos, src->GetLength() - count); |
| |
| // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) |
| // in our implementation, because they may copy byte-by-byte. |
| if (LIKELY(src != this)) { |
| // Memcpy ok for guaranteed non-overlapping distinct arrays. |
| Memcpy(dst_pos, src, src_pos, count); |
| } else { |
| // Handle copies within the same array using the appropriate direction copy. |
| void* dst_raw = GetRawData(sizeof(T), dst_pos); |
| const void* src_raw = src->GetRawData(sizeof(T), src_pos); |
| if (sizeof(T) == sizeof(uint8_t)) { |
| uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw); |
| const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw); |
| memmove(d, s, count); |
| } else { |
| const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count); |
| if (sizeof(T) == sizeof(uint16_t)) { |
| uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw); |
| const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw); |
| if (copy_forward) { |
| ArrayForwardCopy<uint16_t>(d, s, count); |
| } else { |
| ArrayBackwardCopy<uint16_t>(d, s, count); |
| } |
| } else if (sizeof(T) == sizeof(uint32_t)) { |
| uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw); |
| const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw); |
| if (copy_forward) { |
| ArrayForwardCopy<uint32_t>(d, s, count); |
| } else { |
| ArrayBackwardCopy<uint32_t>(d, s, count); |
| } |
| } else { |
| DCHECK_EQ(sizeof(T), sizeof(uint64_t)); |
| uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw); |
| const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw); |
| if (copy_forward) { |
| ArrayForwardCopy<uint64_t>(d, s, count); |
| } else { |
| ArrayBackwardCopy<uint64_t>(d, s, count); |
| } |
| } |
| } |
| } |
| } |
| |
| template<class T> |
| inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos, |
| ObjPtr<PrimitiveArray<T>> src, |
| int32_t src_pos, |
| int32_t count) { |
| if (UNLIKELY(count == 0)) { |
| return; |
| } |
| DCHECK_GE(dst_pos, 0); |
| DCHECK_GE(src_pos, 0); |
| DCHECK_GT(count, 0); |
| DCHECK(src != nullptr); |
| DCHECK_LT(dst_pos, GetLength()); |
| DCHECK_LE(dst_pos, GetLength() - count); |
| DCHECK_LT(src_pos, src->GetLength()); |
| DCHECK_LE(src_pos, src->GetLength() - count); |
| |
| // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) |
| // in our implementation, because they may copy byte-by-byte. |
| void* dst_raw = GetRawData(sizeof(T), dst_pos); |
| const void* src_raw = src->GetRawData(sizeof(T), src_pos); |
| if (sizeof(T) == sizeof(uint8_t)) { |
| memcpy(dst_raw, src_raw, count); |
| } else if (sizeof(T) == sizeof(uint16_t)) { |
| uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw); |
| const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw); |
| ArrayForwardCopy<uint16_t>(d, s, count); |
| } else if (sizeof(T) == sizeof(uint32_t)) { |
| uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw); |
| const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw); |
| ArrayForwardCopy<uint32_t>(d, s, count); |
| } else { |
| DCHECK_EQ(sizeof(T), sizeof(uint64_t)); |
| uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw); |
| const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw); |
| ArrayForwardCopy<uint64_t>(d, s, count); |
| } |
| } |
| |
| template<typename T, PointerSize kPointerSize, VerifyObjectFlags kVerifyFlags> |
| inline T PointerArray::GetElementPtrSize(uint32_t idx) { |
| if (kPointerSize == PointerSize::k64) { |
| DCHECK(IsLongArray<kVerifyFlags>()); |
| } else { |
| DCHECK(IsIntArray<kVerifyFlags>()); |
| } |
| return GetElementPtrSizeUnchecked<T, kPointerSize, kVerifyFlags>(idx); |
| } |
| |
| template<typename T, PointerSize kPointerSize, VerifyObjectFlags kVerifyFlags> |
| inline T PointerArray::GetElementPtrSizeUnchecked(uint32_t idx) { |
| // C style casts here since we sometimes have T be a pointer, or sometimes an integer |
| // (for stack traces). |
| using ConversionType = typename std::conditional_t<std::is_pointer_v<T>, uintptr_t, T>; |
| // Note: we cast the array directly when unchecked as this code gets called by |
| // runtime_image, which can pass a 64bit pointer and therefore cannot be held |
| // by an ObjPtr. |
| if (kPointerSize == PointerSize::k64) { |
| uint64_t value = |
| static_cast<uint64_t>(reinterpret_cast<LongArray*>(this)->GetWithoutChecks(idx)); |
| return (T) dchecked_integral_cast<ConversionType>(value); |
| } else { |
| uint32_t value = |
| static_cast<uint32_t>(reinterpret_cast<IntArray*>(this)->GetWithoutChecks(idx)); |
| return (T) dchecked_integral_cast<ConversionType>(value); |
| } |
| } |
| |
| template<typename T, VerifyObjectFlags kVerifyFlags> |
| inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) { |
| if (ptr_size == PointerSize::k64) { |
| return GetElementPtrSize<T, PointerSize::k64, kVerifyFlags>(idx); |
| } |
| return GetElementPtrSize<T, PointerSize::k32, kVerifyFlags>(idx); |
| } |
| |
| template<bool kTransactionActive, bool kCheckTransaction, bool kUnchecked> |
| inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) { |
| // Note: we cast the array directly when unchecked as this code gets called by |
| // runtime_image, which can pass a 64bit pointer and therefore cannot be held |
| // by an ObjPtr. |
| if (ptr_size == PointerSize::k64) { |
| (kUnchecked ? reinterpret_cast<LongArray*>(this) : AsLongArray().Ptr())-> |
| SetWithoutChecks<kTransactionActive, kCheckTransaction>(idx, element); |
| } else { |
| uint32_t element32 = dchecked_integral_cast<uint32_t>(element); |
| (kUnchecked ? reinterpret_cast<IntArray*>(this) : AsIntArray().Ptr()) |
| ->SetWithoutChecks<kTransactionActive, kCheckTransaction>(idx, element32); |
| } |
| } |
| |
| template<bool kTransactionActive, bool kCheckTransaction, bool kUnchecked, typename T> |
| inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) { |
| SetElementPtrSize<kTransactionActive, kCheckTransaction, kUnchecked>( |
| idx, reinterpret_cast<uintptr_t>(element), ptr_size); |
| } |
| |
| template <VerifyObjectFlags kVerifyFlags, typename Visitor> |
| inline void PointerArray::Fixup(mirror::PointerArray* dest, |
| PointerSize pointer_size, |
| const Visitor& visitor) { |
| for (size_t i = 0, count = GetLength(); i < count; ++i) { |
| void* ptr = GetElementPtrSize<void*, kVerifyFlags>(i, pointer_size); |
| void* new_ptr = visitor(ptr); |
| if (ptr != new_ptr) { |
| dest->SetElementPtrSize</*kActiveTransaction=*/ false, |
| /*kCheckTransaction=*/ true, |
| /*kUnchecked=*/ true>(i, new_ptr, pointer_size); |
| } |
| } |
| } |
| |
| template<bool kUnchecked> |
| void PointerArray::Memcpy(int32_t dst_pos, |
| ObjPtr<PointerArray> src, |
| int32_t src_pos, |
| int32_t count, |
| PointerSize ptr_size) { |
| DCHECK(!Runtime::Current()->IsActiveTransaction()); |
| DCHECK(!src.IsNull()); |
| if (ptr_size == PointerSize::k64) { |
| ObjPtr<LongArray> l_this = (kUnchecked ? ObjPtr<LongArray>::DownCast(ObjPtr<Object>(this)) |
| : AsLongArray()); |
| ObjPtr<LongArray> l_src = (kUnchecked ? ObjPtr<LongArray>::DownCast(ObjPtr<Object>(src)) |
| : src->AsLongArray()); |
| l_this->Memcpy(dst_pos, l_src, src_pos, count); |
| } else { |
| ObjPtr<IntArray> i_this = (kUnchecked ? ObjPtr<IntArray>::DownCast(ObjPtr<Object>(this)) |
| : AsIntArray()); |
| ObjPtr<IntArray> i_src = (kUnchecked ? ObjPtr<IntArray>::DownCast(ObjPtr<Object>(src.Ptr())) |
| : src->AsIntArray()); |
| i_this->Memcpy(dst_pos, i_src, src_pos, count); |
| } |
| } |
| |
| } // namespace mirror |
| } // namespace art |
| |
| #endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_ |