blob: cc24a1adffbd5491451e8b1c19fad11e08704cf0 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
#define ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
#include "card_table.h"
#include <android-base/logging.h>
#include "base/atomic.h"
#include "base/bit_utils.h"
#include "base/mem_map.h"
#include "space_bitmap.h"
namespace art {
namespace gc {
namespace accounting {
static inline bool byte_cas(uint8_t old_value, uint8_t new_value, uint8_t* address) {
#if defined(__i386__) || defined(__x86_64__)
Atomic<uint8_t>* byte_atomic = reinterpret_cast<Atomic<uint8_t>*>(address);
return byte_atomic->CompareAndSetWeakRelaxed(old_value, new_value);
#else
// Little endian means most significant byte is on the left.
const size_t shift_in_bytes = reinterpret_cast<uintptr_t>(address) % sizeof(uintptr_t);
// Align the address down.
address -= shift_in_bytes;
const size_t shift_in_bits = shift_in_bytes * kBitsPerByte;
Atomic<uintptr_t>* word_atomic = reinterpret_cast<Atomic<uintptr_t>*>(address);
// Word with the byte we are trying to cas cleared.
const uintptr_t cur_word = word_atomic->load(std::memory_order_relaxed) &
~(static_cast<uintptr_t>(0xFF) << shift_in_bits);
const uintptr_t old_word = cur_word | (static_cast<uintptr_t>(old_value) << shift_in_bits);
const uintptr_t new_word = cur_word | (static_cast<uintptr_t>(new_value) << shift_in_bits);
return word_atomic->CompareAndSetWeakRelaxed(old_word, new_word);
#endif
}
template <bool kClearCard, typename Visitor>
inline size_t CardTable::Scan(ContinuousSpaceBitmap* bitmap,
uint8_t* const scan_begin,
uint8_t* const scan_end,
const Visitor& visitor,
const uint8_t minimum_age) {
DCHECK_GE(scan_begin, reinterpret_cast<uint8_t*>(bitmap->HeapBegin()));
// scan_end is the byte after the last byte we scan.
DCHECK_LE(scan_end, reinterpret_cast<uint8_t*>(bitmap->HeapLimit()));
uint8_t* const card_begin = CardFromAddr(scan_begin);
uint8_t* const card_end = CardFromAddr(AlignUp(scan_end, kCardSize));
uint8_t* card_cur = card_begin;
CheckCardValid(card_cur);
CheckCardValid(card_end);
size_t cards_scanned = 0;
// Handle any unaligned cards at the start.
while (!IsAligned<sizeof(intptr_t)>(card_cur) && card_cur < card_end) {
if (*card_cur >= minimum_age) {
uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
++cards_scanned;
}
++card_cur;
}
if (card_cur < card_end) {
DCHECK_ALIGNED(card_cur, sizeof(intptr_t));
uint8_t* aligned_end = card_end -
(reinterpret_cast<uintptr_t>(card_end) & (sizeof(uintptr_t) - 1));
DCHECK_LE(card_cur, aligned_end);
uintptr_t* word_end = reinterpret_cast<uintptr_t*>(aligned_end);
for (uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur); word_cur < word_end;
++word_cur) {
while (LIKELY(*word_cur == 0)) {
++word_cur;
if (UNLIKELY(word_cur >= word_end)) {
goto exit_for;
}
}
// Find the first dirty card.
uintptr_t start_word = *word_cur;
uintptr_t start =
reinterpret_cast<uintptr_t>(AddrFromCard(reinterpret_cast<uint8_t*>(word_cur)));
// TODO: Investigate if processing continuous runs of dirty cards with
// a single bitmap visit is more efficient.
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
if (static_cast<uint8_t>(start_word) >= minimum_age) {
auto* card = reinterpret_cast<uint8_t*>(word_cur) + i;
DCHECK(*card == static_cast<uint8_t>(start_word) || *card == kCardDirty)
<< "card " << static_cast<size_t>(*card) << " intptr_t " << (start_word & 0xFF);
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
++cards_scanned;
}
start_word >>= 8;
start += kCardSize;
}
}
exit_for:
// Handle any unaligned cards at the end.
card_cur = reinterpret_cast<uint8_t*>(word_end);
while (card_cur < card_end) {
if (*card_cur >= minimum_age) {
uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
++cards_scanned;
}
++card_cur;
}
}
if (kClearCard) {
ClearCardRange(scan_begin, scan_end);
}
return cards_scanned;
}
template <typename Visitor, typename ModifiedVisitor>
inline void CardTable::ModifyCardsAtomic(uint8_t* scan_begin,
uint8_t* scan_end,
const Visitor& visitor,
const ModifiedVisitor& modified) {
uint8_t* card_cur = CardFromAddr(scan_begin);
uint8_t* card_end = CardFromAddr(AlignUp(scan_end, kCardSize));
CheckCardValid(card_cur);
CheckCardValid(card_end);
DCHECK(visitor(kCardClean) == kCardClean);
// Handle any unaligned cards at the start.
while (!IsAligned<sizeof(intptr_t)>(card_cur) && card_cur < card_end) {
uint8_t expected, new_value;
do {
expected = *card_cur;
new_value = visitor(expected);
} while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_cur)));
if (expected != new_value) {
modified(card_cur, expected, new_value);
}
++card_cur;
}
// Handle unaligned cards at the end.
while (!IsAligned<sizeof(intptr_t)>(card_end) && card_end > card_cur) {
--card_end;
uint8_t expected, new_value;
do {
expected = *card_end;
new_value = visitor(expected);
} while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_end)));
if (expected != new_value) {
modified(card_end, expected, new_value);
}
}
// Now we have the words, we can process words in parallel.
uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur);
uintptr_t* word_end = reinterpret_cast<uintptr_t*>(card_end);
// TODO: This is not big endian safe.
union {
uintptr_t expected_word;
uint8_t expected_bytes[sizeof(uintptr_t)];
};
union {
uintptr_t new_word;
uint8_t new_bytes[sizeof(uintptr_t)];
};
// TODO: Parallelize.
while (word_cur < word_end) {
while (true) {
expected_word = *word_cur;
static_assert(kCardClean == 0);
if (LIKELY(expected_word == 0 /* All kCardClean */ )) {
break;
}
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
new_bytes[i] = visitor(expected_bytes[i]);
}
Atomic<uintptr_t>* atomic_word = reinterpret_cast<Atomic<uintptr_t>*>(word_cur);
if (LIKELY(atomic_word->CompareAndSetWeakRelaxed(expected_word, new_word))) {
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
const uint8_t expected_byte = expected_bytes[i];
const uint8_t new_byte = new_bytes[i];
if (expected_byte != new_byte) {
modified(reinterpret_cast<uint8_t*>(word_cur) + i, expected_byte, new_byte);
}
}
break;
}
}
++word_cur;
}
}
inline void* CardTable::AddrFromCard(const uint8_t *card_addr) const {
DCHECK(IsValidCard(card_addr))
<< " card_addr: " << reinterpret_cast<const void*>(card_addr)
<< " begin: " << reinterpret_cast<void*>(mem_map_.Begin() + offset_)
<< " end: " << reinterpret_cast<void*>(mem_map_.End());
uintptr_t offset = card_addr - biased_begin_;
return reinterpret_cast<void*>(offset << kCardShift);
}
inline uint8_t* CardTable::CardFromAddr(const void *addr) const {
uint8_t *card_addr = biased_begin_ + (reinterpret_cast<uintptr_t>(addr) >> kCardShift);
// Check that the caller was asking for an address covered by the card table.
DCHECK(IsValidCard(card_addr)) << "addr: " << addr
<< " card_addr: " << reinterpret_cast<void*>(card_addr);
return card_addr;
}
inline bool CardTable::IsValidCard(const uint8_t* card_addr) const {
uint8_t* begin = mem_map_.Begin() + offset_;
uint8_t* end = mem_map_.End();
return card_addr >= begin && card_addr < end;
}
inline void CardTable::CheckCardValid(uint8_t* card) const {
DCHECK(IsValidCard(card))
<< " card_addr: " << reinterpret_cast<const void*>(card)
<< " begin: " << reinterpret_cast<void*>(mem_map_.Begin() + offset_)
<< " end: " << reinterpret_cast<void*>(mem_map_.End());
}
} // namespace accounting
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_