| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_ |
| #define ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_ |
| |
| #include "card_table.h" |
| |
| #include <android-base/logging.h> |
| |
| #include "base/atomic.h" |
| #include "base/bit_utils.h" |
| #include "base/mem_map.h" |
| #include "space_bitmap.h" |
| |
| namespace art { |
| namespace gc { |
| namespace accounting { |
| |
| static inline bool byte_cas(uint8_t old_value, uint8_t new_value, uint8_t* address) { |
| #if defined(__i386__) || defined(__x86_64__) |
| Atomic<uint8_t>* byte_atomic = reinterpret_cast<Atomic<uint8_t>*>(address); |
| return byte_atomic->CompareAndSetWeakRelaxed(old_value, new_value); |
| #else |
| // Little endian means most significant byte is on the left. |
| const size_t shift_in_bytes = reinterpret_cast<uintptr_t>(address) % sizeof(uintptr_t); |
| // Align the address down. |
| address -= shift_in_bytes; |
| const size_t shift_in_bits = shift_in_bytes * kBitsPerByte; |
| Atomic<uintptr_t>* word_atomic = reinterpret_cast<Atomic<uintptr_t>*>(address); |
| |
| // Word with the byte we are trying to cas cleared. |
| const uintptr_t cur_word = word_atomic->load(std::memory_order_relaxed) & |
| ~(static_cast<uintptr_t>(0xFF) << shift_in_bits); |
| const uintptr_t old_word = cur_word | (static_cast<uintptr_t>(old_value) << shift_in_bits); |
| const uintptr_t new_word = cur_word | (static_cast<uintptr_t>(new_value) << shift_in_bits); |
| return word_atomic->CompareAndSetWeakRelaxed(old_word, new_word); |
| #endif |
| } |
| |
| template <bool kClearCard, typename Visitor> |
| inline size_t CardTable::Scan(ContinuousSpaceBitmap* bitmap, |
| uint8_t* const scan_begin, |
| uint8_t* const scan_end, |
| const Visitor& visitor, |
| const uint8_t minimum_age) { |
| DCHECK_GE(scan_begin, reinterpret_cast<uint8_t*>(bitmap->HeapBegin())); |
| // scan_end is the byte after the last byte we scan. |
| DCHECK_LE(scan_end, reinterpret_cast<uint8_t*>(bitmap->HeapLimit())); |
| uint8_t* const card_begin = CardFromAddr(scan_begin); |
| uint8_t* const card_end = CardFromAddr(AlignUp(scan_end, kCardSize)); |
| uint8_t* card_cur = card_begin; |
| CheckCardValid(card_cur); |
| CheckCardValid(card_end); |
| size_t cards_scanned = 0; |
| |
| // Handle any unaligned cards at the start. |
| while (!IsAligned<sizeof(intptr_t)>(card_cur) && card_cur < card_end) { |
| if (*card_cur >= minimum_age) { |
| uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur)); |
| bitmap->VisitMarkedRange(start, start + kCardSize, visitor); |
| ++cards_scanned; |
| } |
| ++card_cur; |
| } |
| |
| if (card_cur < card_end) { |
| DCHECK_ALIGNED(card_cur, sizeof(intptr_t)); |
| uint8_t* aligned_end = card_end - |
| (reinterpret_cast<uintptr_t>(card_end) & (sizeof(uintptr_t) - 1)); |
| DCHECK_LE(card_cur, aligned_end); |
| |
| uintptr_t* word_end = reinterpret_cast<uintptr_t*>(aligned_end); |
| for (uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur); word_cur < word_end; |
| ++word_cur) { |
| while (LIKELY(*word_cur == 0)) { |
| ++word_cur; |
| if (UNLIKELY(word_cur >= word_end)) { |
| goto exit_for; |
| } |
| } |
| |
| // Find the first dirty card. |
| uintptr_t start_word = *word_cur; |
| uintptr_t start = |
| reinterpret_cast<uintptr_t>(AddrFromCard(reinterpret_cast<uint8_t*>(word_cur))); |
| // TODO: Investigate if processing continuous runs of dirty cards with |
| // a single bitmap visit is more efficient. |
| for (size_t i = 0; i < sizeof(uintptr_t); ++i) { |
| if (static_cast<uint8_t>(start_word) >= minimum_age) { |
| auto* card = reinterpret_cast<uint8_t*>(word_cur) + i; |
| DCHECK(*card == static_cast<uint8_t>(start_word) || *card == kCardDirty) |
| << "card " << static_cast<size_t>(*card) << " intptr_t " << (start_word & 0xFF); |
| bitmap->VisitMarkedRange(start, start + kCardSize, visitor); |
| ++cards_scanned; |
| } |
| start_word >>= 8; |
| start += kCardSize; |
| } |
| } |
| exit_for: |
| |
| // Handle any unaligned cards at the end. |
| card_cur = reinterpret_cast<uint8_t*>(word_end); |
| while (card_cur < card_end) { |
| if (*card_cur >= minimum_age) { |
| uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur)); |
| bitmap->VisitMarkedRange(start, start + kCardSize, visitor); |
| ++cards_scanned; |
| } |
| ++card_cur; |
| } |
| } |
| |
| if (kClearCard) { |
| ClearCardRange(scan_begin, scan_end); |
| } |
| |
| return cards_scanned; |
| } |
| |
| template <typename Visitor, typename ModifiedVisitor> |
| inline void CardTable::ModifyCardsAtomic(uint8_t* scan_begin, |
| uint8_t* scan_end, |
| const Visitor& visitor, |
| const ModifiedVisitor& modified) { |
| uint8_t* card_cur = CardFromAddr(scan_begin); |
| uint8_t* card_end = CardFromAddr(AlignUp(scan_end, kCardSize)); |
| CheckCardValid(card_cur); |
| CheckCardValid(card_end); |
| DCHECK(visitor(kCardClean) == kCardClean); |
| |
| // Handle any unaligned cards at the start. |
| while (!IsAligned<sizeof(intptr_t)>(card_cur) && card_cur < card_end) { |
| uint8_t expected, new_value; |
| do { |
| expected = *card_cur; |
| new_value = visitor(expected); |
| } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_cur))); |
| if (expected != new_value) { |
| modified(card_cur, expected, new_value); |
| } |
| ++card_cur; |
| } |
| |
| // Handle unaligned cards at the end. |
| while (!IsAligned<sizeof(intptr_t)>(card_end) && card_end > card_cur) { |
| --card_end; |
| uint8_t expected, new_value; |
| do { |
| expected = *card_end; |
| new_value = visitor(expected); |
| } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_end))); |
| if (expected != new_value) { |
| modified(card_end, expected, new_value); |
| } |
| } |
| |
| // Now we have the words, we can process words in parallel. |
| uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur); |
| uintptr_t* word_end = reinterpret_cast<uintptr_t*>(card_end); |
| // TODO: This is not big endian safe. |
| union { |
| uintptr_t expected_word; |
| uint8_t expected_bytes[sizeof(uintptr_t)]; |
| }; |
| union { |
| uintptr_t new_word; |
| uint8_t new_bytes[sizeof(uintptr_t)]; |
| }; |
| |
| // TODO: Parallelize. |
| while (word_cur < word_end) { |
| while (true) { |
| expected_word = *word_cur; |
| static_assert(kCardClean == 0); |
| if (LIKELY(expected_word == 0 /* All kCardClean */ )) { |
| break; |
| } |
| for (size_t i = 0; i < sizeof(uintptr_t); ++i) { |
| new_bytes[i] = visitor(expected_bytes[i]); |
| } |
| Atomic<uintptr_t>* atomic_word = reinterpret_cast<Atomic<uintptr_t>*>(word_cur); |
| if (LIKELY(atomic_word->CompareAndSetWeakRelaxed(expected_word, new_word))) { |
| for (size_t i = 0; i < sizeof(uintptr_t); ++i) { |
| const uint8_t expected_byte = expected_bytes[i]; |
| const uint8_t new_byte = new_bytes[i]; |
| if (expected_byte != new_byte) { |
| modified(reinterpret_cast<uint8_t*>(word_cur) + i, expected_byte, new_byte); |
| } |
| } |
| break; |
| } |
| } |
| ++word_cur; |
| } |
| } |
| |
| inline void* CardTable::AddrFromCard(const uint8_t *card_addr) const { |
| DCHECK(IsValidCard(card_addr)) |
| << " card_addr: " << reinterpret_cast<const void*>(card_addr) |
| << " begin: " << reinterpret_cast<void*>(mem_map_.Begin() + offset_) |
| << " end: " << reinterpret_cast<void*>(mem_map_.End()); |
| uintptr_t offset = card_addr - biased_begin_; |
| return reinterpret_cast<void*>(offset << kCardShift); |
| } |
| |
| inline uint8_t* CardTable::CardFromAddr(const void *addr) const { |
| uint8_t *card_addr = biased_begin_ + (reinterpret_cast<uintptr_t>(addr) >> kCardShift); |
| // Check that the caller was asking for an address covered by the card table. |
| DCHECK(IsValidCard(card_addr)) << "addr: " << addr |
| << " card_addr: " << reinterpret_cast<void*>(card_addr); |
| return card_addr; |
| } |
| |
| inline bool CardTable::IsValidCard(const uint8_t* card_addr) const { |
| uint8_t* begin = mem_map_.Begin() + offset_; |
| uint8_t* end = mem_map_.End(); |
| return card_addr >= begin && card_addr < end; |
| } |
| |
| inline void CardTable::CheckCardValid(uint8_t* card) const { |
| DCHECK(IsValidCard(card)) |
| << " card_addr: " << reinterpret_cast<const void*>(card) |
| << " begin: " << reinterpret_cast<void*>(mem_map_.Begin() + offset_) |
| << " end: " << reinterpret_cast<void*>(mem_map_.End()); |
| } |
| |
| } // namespace accounting |
| } // namespace gc |
| } // namespace art |
| |
| #endif // ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_ |