| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "block_builder.h" |
| |
| #include "base/logging.h" // FOR VLOG. |
| #include "dex/bytecode_utils.h" |
| #include "dex/code_item_accessors-inl.h" |
| #include "dex/dex_file_exception_helpers.h" |
| #include "quicken_info.h" |
| |
| namespace art HIDDEN { |
| |
| HBasicBlockBuilder::HBasicBlockBuilder(HGraph* graph, |
| const DexFile* const dex_file, |
| const CodeItemDebugInfoAccessor& accessor, |
| ScopedArenaAllocator* local_allocator) |
| : allocator_(graph->GetAllocator()), |
| graph_(graph), |
| dex_file_(dex_file), |
| code_item_accessor_(accessor), |
| local_allocator_(local_allocator), |
| branch_targets_(code_item_accessor_.HasCodeItem() |
| ? code_item_accessor_.InsnsSizeInCodeUnits() |
| : /* fake dex_pc=0 for intrinsic graph */ 1u, |
| nullptr, |
| local_allocator->Adapter(kArenaAllocGraphBuilder)), |
| throwing_blocks_(kDefaultNumberOfThrowingBlocks, |
| local_allocator->Adapter(kArenaAllocGraphBuilder)), |
| number_of_branches_(0u), |
| quicken_index_for_dex_pc_(std::less<uint32_t>(), |
| local_allocator->Adapter(kArenaAllocGraphBuilder)) {} |
| |
| HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t dex_pc) { |
| return MaybeCreateBlockAt(dex_pc, dex_pc); |
| } |
| |
| HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t semantic_dex_pc, |
| uint32_t store_dex_pc) { |
| HBasicBlock* block = branch_targets_[store_dex_pc]; |
| if (block == nullptr) { |
| block = new (allocator_) HBasicBlock(graph_, semantic_dex_pc); |
| branch_targets_[store_dex_pc] = block; |
| } |
| DCHECK_EQ(block->GetDexPc(), semantic_dex_pc); |
| return block; |
| } |
| |
| bool HBasicBlockBuilder::CreateBranchTargets() { |
| // Create the first block for the dex instructions, single successor of the entry block. |
| MaybeCreateBlockAt(0u); |
| |
| if (code_item_accessor_.TriesSize() != 0) { |
| // Create branch targets at the start/end of the TryItem range. These are |
| // places where the program might fall through into/out of the a block and |
| // where TryBoundary instructions will be inserted later. Other edges which |
| // enter/exit the try blocks are a result of branches/switches. |
| for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) { |
| uint32_t dex_pc_start = try_item.start_addr_; |
| uint32_t dex_pc_end = dex_pc_start + try_item.insn_count_; |
| MaybeCreateBlockAt(dex_pc_start); |
| if (dex_pc_end < code_item_accessor_.InsnsSizeInCodeUnits()) { |
| // TODO: Do not create block if the last instruction cannot fall through. |
| MaybeCreateBlockAt(dex_pc_end); |
| } else if (dex_pc_end == code_item_accessor_.InsnsSizeInCodeUnits()) { |
| // The TryItem spans until the very end of the CodeItem and therefore |
| // cannot have any code afterwards. |
| } else { |
| // The TryItem spans beyond the end of the CodeItem. This is invalid code. |
| VLOG(compiler) << "Not compiled: TryItem spans beyond the end of the CodeItem"; |
| return false; |
| } |
| } |
| |
| // Create branch targets for exception handlers. |
| const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData(); |
| uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| for (uint32_t idx = 0; idx < handlers_size; ++idx) { |
| CatchHandlerIterator iterator(handlers_ptr); |
| for (; iterator.HasNext(); iterator.Next()) { |
| MaybeCreateBlockAt(iterator.GetHandlerAddress()); |
| } |
| handlers_ptr = iterator.EndDataPointer(); |
| } |
| } |
| |
| // Iterate over all instructions and find branching instructions. Create blocks for |
| // the locations these instructions branch to. |
| for (const DexInstructionPcPair& pair : code_item_accessor_) { |
| const uint32_t dex_pc = pair.DexPc(); |
| const Instruction& instruction = pair.Inst(); |
| |
| if (instruction.IsBranch()) { |
| number_of_branches_++; |
| MaybeCreateBlockAt(dex_pc + instruction.GetTargetOffset()); |
| } else if (instruction.IsSwitch()) { |
| number_of_branches_++; // count as at least one branch (b/77652521) |
| DexSwitchTable table(instruction, dex_pc); |
| for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) { |
| MaybeCreateBlockAt(dex_pc + s_it.CurrentTargetOffset()); |
| |
| // Create N-1 blocks where we will insert comparisons of the input value |
| // against the Switch's case keys. |
| if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) { |
| // Store the block under dex_pc of the current key at the switch data |
| // instruction for uniqueness but give it the dex_pc of the SWITCH |
| // instruction which it semantically belongs to. |
| MaybeCreateBlockAt(dex_pc, s_it.GetDexPcForCurrentIndex()); |
| } |
| } |
| } else if (instruction.Opcode() == Instruction::MOVE_EXCEPTION) { |
| // End the basic block after MOVE_EXCEPTION. This simplifies the later |
| // stage of TryBoundary-block insertion. |
| } else { |
| continue; |
| } |
| |
| if (instruction.CanFlowThrough()) { |
| DexInstructionIterator next(std::next(DexInstructionIterator(pair))); |
| if (next == code_item_accessor_.end()) { |
| // In the normal case we should never hit this but someone can artificially forge a dex |
| // file to fall-through out the method code. In this case we bail out compilation. |
| VLOG(compiler) << "Not compiled: Fall-through beyond the CodeItem"; |
| return false; |
| } |
| MaybeCreateBlockAt(next.DexPc()); |
| } |
| } |
| |
| return true; |
| } |
| |
| void HBasicBlockBuilder::ConnectBasicBlocks() { |
| HBasicBlock* block = graph_->GetEntryBlock(); |
| graph_->AddBlock(block); |
| |
| size_t quicken_index = 0; |
| bool is_throwing_block = false; |
| // Calculate the qucikening index here instead of CreateBranchTargets since it's easier to |
| // calculate in dex_pc order. |
| for (const DexInstructionPcPair& pair : code_item_accessor_) { |
| const uint32_t dex_pc = pair.DexPc(); |
| const Instruction& instruction = pair.Inst(); |
| |
| // Check if this dex_pc address starts a new basic block. |
| HBasicBlock* next_block = GetBlockAt(dex_pc); |
| if (next_block != nullptr) { |
| // We only need quicken index entries for basic block boundaries. |
| quicken_index_for_dex_pc_.Put(dex_pc, quicken_index); |
| if (block != nullptr) { |
| // Last instruction did not end its basic block but a new one starts here. |
| // It must have been a block falling through into the next one. |
| block->AddSuccessor(next_block); |
| } |
| block = next_block; |
| is_throwing_block = false; |
| graph_->AddBlock(block); |
| } |
| // Make sure to increment this before the continues. |
| if (QuickenInfoTable::NeedsIndexForInstruction(&instruction)) { |
| ++quicken_index; |
| } |
| |
| if (block == nullptr) { |
| // Ignore dead code. |
| continue; |
| } |
| |
| if (!is_throwing_block && IsThrowingDexInstruction(instruction)) { |
| DCHECK(!ContainsElement(throwing_blocks_, block)); |
| is_throwing_block = true; |
| throwing_blocks_.push_back(block); |
| } |
| |
| if (instruction.IsBranch()) { |
| uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset(); |
| block->AddSuccessor(GetBlockAt(target_dex_pc)); |
| } else if (instruction.IsReturn() || (instruction.Opcode() == Instruction::THROW)) { |
| block->AddSuccessor(graph_->GetExitBlock()); |
| } else if (instruction.IsSwitch()) { |
| DexSwitchTable table(instruction, dex_pc); |
| for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) { |
| uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset(); |
| block->AddSuccessor(GetBlockAt(target_dex_pc)); |
| |
| if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) { |
| uint32_t next_case_dex_pc = s_it.GetDexPcForCurrentIndex(); |
| HBasicBlock* next_case_block = GetBlockAt(next_case_dex_pc); |
| block->AddSuccessor(next_case_block); |
| block = next_case_block; |
| graph_->AddBlock(block); |
| } |
| } |
| } else { |
| // Remaining code only applies to instructions which end their basic block. |
| continue; |
| } |
| |
| // Go to the next instruction in case we read dex PC below. |
| if (instruction.CanFlowThrough()) { |
| block->AddSuccessor(GetBlockAt(std::next(DexInstructionIterator(pair)).DexPc())); |
| } |
| |
| // The basic block ends here. Do not add any more instructions. |
| block = nullptr; |
| } |
| |
| graph_->AddBlock(graph_->GetExitBlock()); |
| } |
| |
| // Returns the TryItem stored for `block` or nullptr if there is no info for it. |
| static const dex::TryItem* GetTryItem( |
| HBasicBlock* block, |
| const ScopedArenaSafeMap<uint32_t, const dex::TryItem*>& try_block_info) { |
| auto iterator = try_block_info.find(block->GetBlockId()); |
| return (iterator == try_block_info.end()) ? nullptr : iterator->second; |
| } |
| |
| // Iterates over the exception handlers of `try_item`, finds the corresponding |
| // catch blocks and makes them successors of `try_boundary`. The order of |
| // successors matches the order in which runtime exception delivery searches |
| // for a handler. |
| static void LinkToCatchBlocks(HTryBoundary* try_boundary, |
| const CodeItemDataAccessor& accessor, |
| const dex::TryItem* try_item, |
| const ScopedArenaSafeMap<uint32_t, HBasicBlock*>& catch_blocks) { |
| for (CatchHandlerIterator it(accessor.GetCatchHandlerData(try_item->handler_off_)); |
| it.HasNext(); |
| it.Next()) { |
| try_boundary->AddExceptionHandler(catch_blocks.Get(it.GetHandlerAddress())); |
| } |
| } |
| |
| bool HBasicBlockBuilder::MightHaveLiveNormalPredecessors(HBasicBlock* catch_block) { |
| if (kIsDebugBuild) { |
| DCHECK_NE(catch_block->GetDexPc(), kNoDexPc) << "Should not be called on synthetic blocks"; |
| DCHECK(!graph_->GetEntryBlock()->GetSuccessors().empty()) |
| << "Basic blocks must have been created and connected"; |
| for (HBasicBlock* predecessor : catch_block->GetPredecessors()) { |
| DCHECK(!predecessor->IsSingleTryBoundary()) |
| << "TryBoundary blocks must not have not been created yet"; |
| } |
| } |
| |
| const Instruction& first = code_item_accessor_.InstructionAt(catch_block->GetDexPc()); |
| if (first.Opcode() == Instruction::MOVE_EXCEPTION) { |
| // Verifier guarantees that if a catch block begins with MOVE_EXCEPTION then |
| // it has no live normal predecessors. |
| return false; |
| } else if (catch_block->GetPredecessors().empty()) { |
| // Normal control-flow edges have already been created. Since block's list of |
| // predecessors is empty, it cannot have any live or dead normal predecessors. |
| return false; |
| } |
| |
| // The catch block has normal predecessors but we do not know which are live |
| // and which will be removed during the initial DCE. Return `true` to signal |
| // that it may have live normal predecessors. |
| return true; |
| } |
| |
| void HBasicBlockBuilder::InsertTryBoundaryBlocks() { |
| if (code_item_accessor_.TriesSize() == 0) { |
| return; |
| } |
| |
| // Keep a map of all try blocks and their respective TryItems. We do not use |
| // the block's pointer but rather its id to ensure deterministic iteration. |
| ScopedArenaSafeMap<uint32_t, const dex::TryItem*> try_block_info( |
| std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder)); |
| |
| // Obtain TryItem information for blocks with throwing instructions, and split |
| // blocks which are both try & catch to simplify the graph. |
| for (HBasicBlock* block : graph_->GetBlocks()) { |
| if (block->GetDexPc() == kNoDexPc) { |
| continue; |
| } |
| |
| // Do not bother creating exceptional edges for try blocks which have no |
| // throwing instructions. In that case we simply assume that the block is |
| // not covered by a TryItem. This prevents us from creating a throw-catch |
| // loop for synchronized blocks. |
| if (ContainsElement(throwing_blocks_, block)) { |
| // Try to find a TryItem covering the block. |
| const dex::TryItem* try_item = code_item_accessor_.FindTryItem(block->GetDexPc()); |
| if (try_item != nullptr) { |
| // Block throwing and in a TryItem. Store the try block information. |
| try_block_info.Put(block->GetBlockId(), try_item); |
| } |
| } |
| } |
| |
| // Map from a handler dex_pc to the corresponding catch block. |
| ScopedArenaSafeMap<uint32_t, HBasicBlock*> catch_blocks( |
| std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder)); |
| |
| // Iterate over catch blocks, create artifical landing pads if necessary to |
| // simplify the CFG, and set metadata. |
| const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData(); |
| uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| for (uint32_t idx = 0; idx < handlers_size; ++idx) { |
| CatchHandlerIterator iterator(handlers_ptr); |
| for (; iterator.HasNext(); iterator.Next()) { |
| uint32_t address = iterator.GetHandlerAddress(); |
| auto existing = catch_blocks.find(address); |
| if (existing != catch_blocks.end()) { |
| // Catch block already processed. |
| TryCatchInformation* info = existing->second->GetTryCatchInformation(); |
| if (iterator.GetHandlerTypeIndex() != info->GetCatchTypeIndex()) { |
| // The handler is for multiple types. We could record all the types, but |
| // doing class resolution here isn't ideal, and it's unclear whether wasting |
| // the space in TryCatchInformation is worth it. |
| info->SetInvalidTypeIndex(); |
| } |
| continue; |
| } |
| |
| // Check if we should create an artifical landing pad for the catch block. |
| // We create one if the catch block is also a try block because we do not |
| // have a strategy for inserting TryBoundaries on exceptional edges. |
| // We also create one if the block might have normal predecessors so as to |
| // simplify register allocation. |
| HBasicBlock* catch_block = GetBlockAt(address); |
| bool is_try_block = (try_block_info.find(catch_block->GetBlockId()) != try_block_info.end()); |
| if (is_try_block || MightHaveLiveNormalPredecessors(catch_block)) { |
| HBasicBlock* new_catch_block = new (allocator_) HBasicBlock(graph_, address); |
| new_catch_block->AddInstruction(new (allocator_) HGoto(address)); |
| new_catch_block->AddSuccessor(catch_block); |
| graph_->AddBlock(new_catch_block); |
| catch_block = new_catch_block; |
| } |
| |
| catch_blocks.Put(address, catch_block); |
| catch_block->SetTryCatchInformation( |
| new (allocator_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_)); |
| } |
| handlers_ptr = iterator.EndDataPointer(); |
| } |
| |
| // Do a pass over the try blocks and insert entering TryBoundaries where at |
| // least one predecessor is not covered by the same TryItem as the try block. |
| // We do not split each edge separately, but rather create one boundary block |
| // that all predecessors are relinked to. This preserves loop headers (b/23895756). |
| for (const auto& entry : try_block_info) { |
| uint32_t block_id = entry.first; |
| const dex::TryItem* try_item = entry.second; |
| HBasicBlock* try_block = graph_->GetBlocks()[block_id]; |
| for (HBasicBlock* predecessor : try_block->GetPredecessors()) { |
| if (GetTryItem(predecessor, try_block_info) != try_item) { |
| // Found a predecessor not covered by the same TryItem. Insert entering |
| // boundary block. |
| HTryBoundary* try_entry = new (allocator_) HTryBoundary( |
| HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc()); |
| try_block->CreateImmediateDominator()->AddInstruction(try_entry); |
| LinkToCatchBlocks(try_entry, code_item_accessor_, try_item, catch_blocks); |
| break; |
| } |
| } |
| } |
| |
| // Do a second pass over the try blocks and insert exit TryBoundaries where |
| // the successor is not in the same TryItem. |
| for (const auto& entry : try_block_info) { |
| uint32_t block_id = entry.first; |
| const dex::TryItem* try_item = entry.second; |
| HBasicBlock* try_block = graph_->GetBlocks()[block_id]; |
| // NOTE: Do not use iterators because SplitEdge would invalidate them. |
| for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) { |
| HBasicBlock* successor = try_block->GetSuccessors()[i]; |
| |
| // If the successor is a try block, all of its predecessors must be |
| // covered by the same TryItem. Otherwise the previous pass would have |
| // created a non-throwing boundary block. |
| if (GetTryItem(successor, try_block_info) != nullptr) { |
| DCHECK_EQ(try_item, GetTryItem(successor, try_block_info)); |
| continue; |
| } |
| |
| // Insert TryBoundary and link to catch blocks. |
| HTryBoundary* try_exit = |
| new (allocator_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc()); |
| graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit); |
| LinkToCatchBlocks(try_exit, code_item_accessor_, try_item, catch_blocks); |
| } |
| } |
| } |
| |
| void HBasicBlockBuilder::InsertSynthesizedLoopsForOsr() { |
| ArenaSet<uint32_t> targets(allocator_->Adapter(kArenaAllocGraphBuilder)); |
| // Collect basic blocks that are targets of a negative branch. |
| for (const DexInstructionPcPair& pair : code_item_accessor_) { |
| const uint32_t dex_pc = pair.DexPc(); |
| const Instruction& instruction = pair.Inst(); |
| if (instruction.IsBranch()) { |
| uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset(); |
| if (target_dex_pc < dex_pc) { |
| HBasicBlock* block = GetBlockAt(target_dex_pc); |
| CHECK_NE(kNoDexPc, block->GetDexPc()); |
| targets.insert(block->GetBlockId()); |
| } |
| } else if (instruction.IsSwitch()) { |
| DexSwitchTable table(instruction, dex_pc); |
| for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) { |
| uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset(); |
| if (target_dex_pc < dex_pc) { |
| HBasicBlock* block = GetBlockAt(target_dex_pc); |
| CHECK_NE(kNoDexPc, block->GetDexPc()); |
| targets.insert(block->GetBlockId()); |
| } |
| } |
| } |
| } |
| |
| // Insert synthesized loops before the collected blocks. |
| for (uint32_t block_id : targets) { |
| HBasicBlock* block = graph_->GetBlocks()[block_id]; |
| HBasicBlock* loop_block = new (allocator_) HBasicBlock(graph_, block->GetDexPc()); |
| graph_->AddBlock(loop_block); |
| while (!block->GetPredecessors().empty()) { |
| block->GetPredecessors()[0]->ReplaceSuccessor(block, loop_block); |
| } |
| loop_block->AddSuccessor(loop_block); |
| loop_block->AddSuccessor(block); |
| // We loop on false - we know this won't be optimized later on as the loop |
| // is marked irreducible, which disables loop optimizations. |
| loop_block->AddInstruction(new (allocator_) HIf(graph_->GetIntConstant(0), kNoDexPc)); |
| } |
| } |
| |
| bool HBasicBlockBuilder::Build() { |
| DCHECK(code_item_accessor_.HasCodeItem()); |
| DCHECK(graph_->GetBlocks().empty()); |
| |
| graph_->SetEntryBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc)); |
| graph_->SetExitBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc)); |
| |
| // TODO(dbrazdil): Do CreateBranchTargets and ConnectBasicBlocks in one pass. |
| if (!CreateBranchTargets()) { |
| return false; |
| } |
| |
| ConnectBasicBlocks(); |
| InsertTryBoundaryBlocks(); |
| |
| if (graph_->IsCompilingOsr()) { |
| InsertSynthesizedLoopsForOsr(); |
| } |
| |
| return true; |
| } |
| |
| void HBasicBlockBuilder::BuildIntrinsic() { |
| DCHECK(!code_item_accessor_.HasCodeItem()); |
| DCHECK(graph_->GetBlocks().empty()); |
| |
| // Create blocks. |
| HBasicBlock* entry_block = new (allocator_) HBasicBlock(graph_, kNoDexPc); |
| HBasicBlock* exit_block = new (allocator_) HBasicBlock(graph_, kNoDexPc); |
| HBasicBlock* body = MaybeCreateBlockAt(/* semantic_dex_pc= */ kNoDexPc, /* store_dex_pc= */ 0u); |
| |
| // Add blocks to the graph. |
| graph_->AddBlock(entry_block); |
| graph_->AddBlock(body); |
| graph_->AddBlock(exit_block); |
| graph_->SetEntryBlock(entry_block); |
| graph_->SetExitBlock(exit_block); |
| |
| // Connect blocks. |
| entry_block->AddSuccessor(body); |
| body->AddSuccessor(exit_block); |
| } |
| |
| size_t HBasicBlockBuilder::GetQuickenIndex(uint32_t dex_pc) const { |
| return quicken_index_for_dex_pc_.Get(dex_pc); |
| } |
| |
| } // namespace art |