blob: 9cdbce93cfdcb0f91879ff52e8175f06939af640 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "method_verifier-inl.h"
#include <ostream>
#include "android-base/stringprintf.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/aborting.h"
#include "base/enums.h"
#include "base/leb128.h"
#include "base/indenter.h"
#include "base/logging.h" // For VLOG.
#include "base/mutex-inl.h"
#include "base/sdk_version.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "class_linker.h"
#include "class_root-inl.h"
#include "dex/class_accessor-inl.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_exception_helpers.h"
#include "dex/dex_instruction-inl.h"
#include "dex/dex_instruction_utils.h"
#include "experimental_flags.h"
#include "gc/accounting/card_table-inl.h"
#include "handle_scope-inl.h"
#include "intern_table.h"
#include "mirror/class-inl.h"
#include "mirror/class.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/method_handle_impl.h"
#include "mirror/method_type.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/var_handle.h"
#include "obj_ptr-inl.h"
#include "reg_type-inl.h"
#include "register_line-inl.h"
#include "runtime.h"
#include "scoped_newline.h"
#include "scoped_thread_state_change-inl.h"
#include "stack.h"
#include "vdex_file.h"
#include "verifier/method_verifier.h"
#include "verifier_deps.h"
namespace art {
namespace verifier {
using android::base::StringPrintf;
static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator)
: register_lines_(allocator.Adapter(kArenaAllocVerifier)) {}
void PcToRegisterLineTable::Init(InstructionFlags* flags,
uint32_t insns_size,
uint16_t registers_size,
ScopedArenaAllocator& allocator,
RegTypeCache* reg_types,
uint32_t interesting_dex_pc) {
DCHECK_GT(insns_size, 0U);
register_lines_.resize(insns_size);
for (uint32_t i = 0; i < insns_size; i++) {
if ((i == interesting_dex_pc) || flags[i].IsBranchTarget()) {
register_lines_[i].reset(RegisterLine::Create(registers_size, allocator, reg_types));
}
}
}
PcToRegisterLineTable::~PcToRegisterLineTable() {}
namespace impl {
namespace {
enum class CheckAccess {
kNo,
kOnResolvedClass,
kYes,
};
enum class FieldAccessType {
kAccGet,
kAccPut
};
// Instruction types that are not marked as throwing (because they normally would not), but for
// historical reasons may do so. These instructions cannot be marked kThrow as that would introduce
// a general flow that is unwanted.
//
// Note: Not implemented as Instruction::Flags value as that set is full and we'd need to increase
// the struct size (making it a non-power-of-two) for a single element.
//
// Note: This should eventually be removed.
constexpr bool IsCompatThrow(Instruction::Code opcode) {
return opcode == Instruction::Code::RETURN_OBJECT || opcode == Instruction::Code::MOVE_EXCEPTION;
}
template <bool kVerifierDebug>
class MethodVerifier final : public ::art::verifier::MethodVerifier {
public:
bool IsInstanceConstructor() const {
return IsConstructor() && !IsStatic();
}
const RegType& ResolveCheckedClass(dex::TypeIndex class_idx) override
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!HasFailures());
const RegType& result = ResolveClass<CheckAccess::kYes>(class_idx);
DCHECK(!HasFailures());
return result;
}
void FindLocksAtDexPc() REQUIRES_SHARED(Locks::mutator_lock_);
private:
MethodVerifier(Thread* self,
ClassLinker* class_linker,
ArenaPool* arena_pool,
VerifierDeps* verifier_deps,
const DexFile* dex_file,
const dex::CodeItem* code_item,
uint32_t method_idx,
bool can_load_classes,
bool allow_thread_suspension,
bool aot_mode,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader,
const dex::ClassDef& class_def,
uint32_t access_flags,
bool verify_to_dump,
uint32_t api_level) REQUIRES_SHARED(Locks::mutator_lock_)
: art::verifier::MethodVerifier(self,
class_linker,
arena_pool,
verifier_deps,
dex_file,
class_def,
code_item,
method_idx,
can_load_classes,
allow_thread_suspension,
aot_mode),
method_access_flags_(access_flags),
return_type_(nullptr),
dex_cache_(dex_cache),
class_loader_(class_loader),
declaring_class_(nullptr),
interesting_dex_pc_(-1),
monitor_enter_dex_pcs_(nullptr),
verify_to_dump_(verify_to_dump),
allow_thread_suspension_(allow_thread_suspension),
is_constructor_(false),
api_level_(api_level == 0 ? std::numeric_limits<uint32_t>::max() : api_level) {
}
void UninstantiableError(const char* descriptor) {
Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
<< "non-instantiable klass " << descriptor;
}
static bool IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
return klass->IsInstantiable() || klass->IsPrimitive();
}
// Is the method being verified a constructor? See the comment on the field.
bool IsConstructor() const {
return is_constructor_;
}
// Is the method verified static?
bool IsStatic() const {
return (method_access_flags_ & kAccStatic) != 0;
}
// Adds the given string to the beginning of the last failure message.
void PrependToLastFailMessage(std::string prepend) {
size_t failure_num = failure_messages_.size();
DCHECK_NE(failure_num, 0U);
std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
prepend += last_fail_message->str();
failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
delete last_fail_message;
}
// Adds the given string to the end of the last failure message.
void AppendToLastFailMessage(const std::string& append) {
size_t failure_num = failure_messages_.size();
DCHECK_NE(failure_num, 0U);
std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
(*last_fail_message) << append;
}
/*
* Compute the width of the instruction at each address in the instruction stream, and store it in
* insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch
* table data, are not touched (so the caller should probably initialize "insn_flags" to zero).
*
* The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set.
*
* Performs some static checks, notably:
* - opcode of first instruction begins at index 0
* - only documented instructions may appear
* - each instruction follows the last
* - last byte of last instruction is at (code_length-1)
*
* Logs an error and returns "false" on failure.
*/
bool ComputeWidthsAndCountOps();
/*
* Set the "in try" flags for all instructions protected by "try" statements. Also sets the
* "branch target" flags for exception handlers.
*
* Call this after widths have been set in "insn_flags".
*
* Returns "false" if something in the exception table looks fishy, but we're expecting the
* exception table to be valid.
*/
bool ScanTryCatchBlocks() REQUIRES_SHARED(Locks::mutator_lock_);
/*
* Perform static verification on all instructions in a method.
*
* Walks through instructions in a method calling VerifyInstruction on each.
*/
template <bool kAllowRuntimeOnlyInstructions>
bool VerifyInstructions();
/*
* Perform static verification on an instruction.
*
* As a side effect, this sets the "branch target" flags in InsnFlags.
*
* "(CF)" items are handled during code-flow analysis.
*
* v3 4.10.1
* - target of each jump and branch instruction must be valid
* - targets of switch statements must be valid
* - operands referencing constant pool entries must be valid
* - (CF) operands of getfield, putfield, getstatic, putstatic must be valid
* - (CF) operands of method invocation instructions must be valid
* - (CF) only invoke-direct can call a method starting with '<'
* - (CF) <clinit> must never be called explicitly
* - operands of instanceof, checkcast, new (and variants) must be valid
* - new-array[-type] limited to 255 dimensions
* - can't use "new" on an array class
* - (?) limit dimensions in multi-array creation
* - local variable load/store register values must be in valid range
*
* v3 4.11.1.2
* - branches must be within the bounds of the code array
* - targets of all control-flow instructions are the start of an instruction
* - register accesses fall within range of allocated registers
* - (N/A) access to constant pool must be of appropriate type
* - code does not end in the middle of an instruction
* - execution cannot fall off the end of the code
* - (earlier) for each exception handler, the "try" area must begin and
* end at the start of an instruction (end can be at the end of the code)
* - (earlier) for each exception handler, the handler must start at a valid
* instruction
*/
template <bool kAllowRuntimeOnlyInstructions>
bool VerifyInstruction(const Instruction* inst, uint32_t code_offset);
/* Ensure that the register index is valid for this code item. */
bool CheckRegisterIndex(uint32_t idx) {
if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
<< code_item_accessor_.RegistersSize() << ")";
return false;
}
return true;
}
/* Ensure that the wide register index is valid for this code item. */
bool CheckWideRegisterIndex(uint32_t idx) {
if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
<< "+1 >= " << code_item_accessor_.RegistersSize() << ")";
return false;
}
return true;
}
// Perform static checks on an instruction referencing a CallSite. All we do here is ensure that
// the call site index is in the valid range.
bool CheckCallSiteIndex(uint32_t idx) {
uint32_t limit = dex_file_->NumCallSiteIds();
if (UNLIKELY(idx >= limit)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max "
<< limit << ")";
return false;
}
return true;
}
// Perform static checks on a field Get or set instruction. All we do here is ensure that the
// field index is in the valid range.
bool CheckFieldIndex(uint32_t idx) {
if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
<< dex_file_->GetHeader().field_ids_size_ << ")";
return false;
}
return true;
}
// Perform static checks on a method invocation instruction. All we do here is ensure that the
// method index is in the valid range.
bool CheckMethodIndex(uint32_t idx) {
if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
<< dex_file_->GetHeader().method_ids_size_ << ")";
return false;
}
return true;
}
// Perform static checks on an instruction referencing a constant method handle. All we do here
// is ensure that the method index is in the valid range.
bool CheckMethodHandleIndex(uint32_t idx) {
uint32_t limit = dex_file_->NumMethodHandles();
if (UNLIKELY(idx >= limit)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max "
<< limit << ")";
return false;
}
return true;
}
// Perform static checks on a "new-instance" instruction. Specifically, make sure the class
// reference isn't for an array class.
bool CheckNewInstance(dex::TypeIndex idx);
// Perform static checks on a prototype indexing instruction. All we do here is ensure that the
// prototype index is in the valid range.
bool CheckPrototypeIndex(uint32_t idx) {
if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
<< dex_file_->GetHeader().proto_ids_size_ << ")";
return false;
}
return true;
}
/* Ensure that the string index is in the valid range. */
bool CheckStringIndex(uint32_t idx) {
if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
<< dex_file_->GetHeader().string_ids_size_ << ")";
return false;
}
return true;
}
// Perform static checks on an instruction that takes a class constant. Ensure that the class
// index is in the valid range.
bool CheckTypeIndex(dex::TypeIndex idx) {
if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
<< dex_file_->GetHeader().type_ids_size_ << ")";
return false;
}
return true;
}
// Perform static checks on a "new-array" instruction. Specifically, make sure they aren't
// creating an array of arrays that causes the number of dimensions to exceed 255.
bool CheckNewArray(dex::TypeIndex idx);
// Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction.
bool CheckArrayData(uint32_t cur_offset);
// Verify that the target of a branch instruction is valid. We don't expect code to jump directly
// into an exception handler, but it's valid to do so as long as the target isn't a
// "move-exception" instruction. We verify that in a later stage.
// The dex format forbids certain instructions from branching to themselves.
// Updates "insn_flags_", setting the "branch target" flag.
bool CheckBranchTarget(uint32_t cur_offset);
// Verify a switch table. "cur_offset" is the offset of the switch instruction.
// Updates "insn_flags_", setting the "branch target" flag.
bool CheckSwitchTargets(uint32_t cur_offset);
// Check the register indices used in a "vararg" instruction, such as invoke-virtual or
// filled-new-array.
// - vA holds word count (0-5), args[] have values.
// There are some tests we don't do here, e.g. we don't try to verify that invoking a method that
// takes a double is done with consecutive registers. This requires parsing the target method
// signature, which we will be doing later on during the code flow analysis.
bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
uint16_t registers_size = code_item_accessor_.RegistersSize();
for (uint32_t idx = 0; idx < vA; idx++) {
if (UNLIKELY(arg[idx] >= registers_size)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
<< ") in non-range invoke (>= " << registers_size << ")";
return false;
}
}
return true;
}
// Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range
// or filled-new-array/range.
// - vA holds word count, vC holds index of first reg.
bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
uint16_t registers_size = code_item_accessor_.RegistersSize();
// vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
// integer overflow when adding them here.
if (UNLIKELY(vA + vC > registers_size)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
<< " in range invoke (> " << registers_size << ")";
return false;
}
return true;
}
// Checks the method matches the expectations required to be signature polymorphic.
bool CheckSignaturePolymorphicMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
// Checks the invoked receiver matches the expectations for signature polymorphic methods.
bool CheckSignaturePolymorphicReceiver(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
// Extract the relative offset from a branch instruction.
// Returns "false" on failure (e.g. this isn't a branch instruction).
bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
bool* selfOkay);
/* Perform detailed code-flow analysis on a single method. */
bool VerifyCodeFlow() REQUIRES_SHARED(Locks::mutator_lock_);
// Set the register types for the first instruction in the method based on the method signature.
// This has the side-effect of validating the signature.
bool SetTypesFromSignature() REQUIRES_SHARED(Locks::mutator_lock_);
/*
* Perform code flow on a method.
*
* The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first
* instruction, process it (setting additional "changed" bits), and repeat until there are no
* more.
*
* v3 4.11.1.1
* - (N/A) operand stack is always the same size
* - operand stack [registers] contain the correct types of values
* - local variables [registers] contain the correct types of values
* - methods are invoked with the appropriate arguments
* - fields are assigned using values of appropriate types
* - opcodes have the correct type values in operand registers
* - there is never an uninitialized class instance in a local variable in code protected by an
* exception handler (operand stack is okay, because the operand stack is discarded when an
* exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of
* register typing]
*
* v3 4.11.1.2
* - execution cannot fall off the end of the code
*
* (We also do many of the items described in the "static checks" sections, because it's easier to
* do them here.)
*
* We need an array of RegType values, one per register, for every instruction. If the method uses
* monitor-enter, we need extra data for every register, and a stack for every "interesting"
* instruction. In theory this could become quite large -- up to several megabytes for a monster
* function.
*
* NOTE:
* The spec forbids backward branches when there's an uninitialized reference in a register. The
* idea is to prevent something like this:
* loop:
* move r1, r0
* new-instance r0, MyClass
* ...
* if-eq rN, loop // once
* initialize r0
*
* This leaves us with two different instances, both allocated by the same instruction, but only
* one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around
* it by preventing backward branches. We achieve identical results without restricting code
* reordering by specifying that you can't execute the new-instance instruction if a register
* contains an uninitialized instance created by that same instruction.
*/
template <bool kMonitorDexPCs>
bool CodeFlowVerifyMethod() REQUIRES_SHARED(Locks::mutator_lock_);
/*
* Perform verification for a single instruction.
*
* This requires fully decoding the instruction to determine the effect it has on registers.
*
* Finds zero or more following instructions and sets the "changed" flag if execution at that
* point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target
* addresses. Does not set or clear any other flags in "insn_flags_".
*/
bool CodeFlowVerifyInstruction(uint32_t* start_guess)
REQUIRES_SHARED(Locks::mutator_lock_);
// Perform verification of a new array instruction
void VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range)
REQUIRES_SHARED(Locks::mutator_lock_);
// Helper to perform verification on puts of primitive type.
void VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
const uint32_t vregA) REQUIRES_SHARED(Locks::mutator_lock_);
// Perform verification of an aget instruction. The destination register's type will be set to
// be that of component type of the array unless the array type is unknown, in which case a
// bottom type inferred from the type of instruction is used. is_primitive is false for an
// aget-object.
void VerifyAGet(const Instruction* inst, const RegType& insn_type,
bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
// Perform verification of an aput instruction.
void VerifyAPut(const Instruction* inst, const RegType& insn_type,
bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
// Lookup instance field and fail for resolution violations
ArtField* GetInstanceField(const RegType& obj_type, int field_idx)
REQUIRES_SHARED(Locks::mutator_lock_);
// Lookup static field and fail for resolution violations
ArtField* GetStaticField(int field_idx) REQUIRES_SHARED(Locks::mutator_lock_);
// Perform verification of an iget/sget/iput/sput instruction.
template <FieldAccessType kAccType>
void VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
bool is_primitive, bool is_static)
REQUIRES_SHARED(Locks::mutator_lock_);
// Resolves a class based on an index and, if C is kYes, performs access checks to ensure
// the referrer can access the resolved class.
template <CheckAccess C>
const RegType& ResolveClass(dex::TypeIndex class_idx)
REQUIRES_SHARED(Locks::mutator_lock_);
/*
* For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler
* address, determine the Join of all exceptions that can land here. Fails if no matching
* exception handler can be found or if the Join of exception types fails.
*/
const RegType& GetCaughtExceptionType()
REQUIRES_SHARED(Locks::mutator_lock_);
/*
* Resolves a method based on an index and performs access checks to ensure
* the referrer can access the resolved method.
* Does not throw exceptions.
*/
ArtMethod* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type)
REQUIRES_SHARED(Locks::mutator_lock_);
/*
* Verify the arguments to a method. We're executing in "method", making
* a call to the method reference in vB.
*
* If this is a "direct" invoke, we allow calls to <init>. For calls to
* <init>, the first argument may be an uninitialized reference. Otherwise,
* calls to anything starting with '<' will be rejected, as will any
* uninitialized reference arguments.
*
* For non-static method calls, this will verify that the method call is
* appropriate for the "this" argument.
*
* The method reference is in vBBBB. The "is_range" parameter determines
* whether we use 0-4 "args" values or a range of registers defined by
* vAA and vCCCC.
*
* Widening conversions on integers and references are allowed, but
* narrowing conversions are not.
*
* Returns the resolved method on success, null on failure (with *failure
* set appropriately).
*/
ArtMethod* VerifyInvocationArgs(const Instruction* inst, MethodType method_type, bool is_range)
REQUIRES_SHARED(Locks::mutator_lock_);
// Similar checks to the above, but on the proto. Will be used when the method cannot be
// resolved.
void VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, MethodType method_type,
bool is_range)
REQUIRES_SHARED(Locks::mutator_lock_);
template <class T>
ArtMethod* VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
MethodType method_type, bool is_range,
ArtMethod* res_method)
REQUIRES_SHARED(Locks::mutator_lock_);
/*
* Verify the arguments present for a call site. Returns "true" if all is well, "false" otherwise.
*/
bool CheckCallSite(uint32_t call_site_idx);
/*
* Verify that the target instruction is not "move-exception". It's important that the only way
* to execute a move-exception is as the first instruction of an exception handler.
* Returns "true" if all is well, "false" if the target instruction is move-exception.
*/
bool CheckNotMoveException(const uint16_t* insns, int insn_idx) {
if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
return false;
}
return true;
}
/*
* Verify that the target instruction is not "move-result". It is important that we cannot
* branch to move-result instructions, but we have to make this a distinct check instead of
* adding it to CheckNotMoveException, because it is legal to continue into "move-result"
* instructions - as long as the previous instruction was an invoke, which is checked elsewhere.
*/
bool CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
return false;
}
return true;
}
/*
* Verify that the target instruction is not "move-result" or "move-exception". This is to
* be used when checking branch and switch instructions, but not instructions that can
* continue.
*/
bool CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
}
/*
* Control can transfer to "next_insn". Merge the registers from merge_line into the table at
* next_insn, and set the changed flag on the target address if any of the registers were changed.
* In the case of fall-through, update the merge line on a change as its the working line for the
* next instruction.
* Returns "false" if an error is encountered.
*/
bool UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, bool update_merge_line)
REQUIRES_SHARED(Locks::mutator_lock_);
// Return the register type for the method.
const RegType& GetMethodReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
// Get a type representing the declaring class of the method.
const RegType& GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
if (declaring_class_ == nullptr) {
const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
const char* descriptor
= dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
declaring_class_ = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
}
return *declaring_class_;
}
InstructionFlags* CurrentInsnFlags() {
return &GetModifiableInstructionFlags(work_insn_idx_);
}
const RegType& DetermineCat1Constant(int32_t value)
REQUIRES_SHARED(Locks::mutator_lock_);
// Try to create a register type from the given class. In case a precise type is requested, but
// the class is not instantiable, a soft error (of type NO_CLASS) will be enqueued and a
// non-precise reference will be returned.
// Note: we reuse NO_CLASS as this will throw an exception at runtime, when the failing class is
// actually touched.
const RegType& FromClass(const char* descriptor, ObjPtr<mirror::Class> klass, bool precise)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(klass != nullptr);
if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
<< "non-instantiable klass " << descriptor;
precise = false;
}
return reg_types_.FromClass(descriptor, klass, precise);
}
ALWAYS_INLINE bool FailOrAbort(bool condition, const char* error_msg, uint32_t work_insn_idx);
ALWAYS_INLINE InstructionFlags& GetModifiableInstructionFlags(size_t index) {
return insn_flags_[index];
}
// Returns the method index of an invoke instruction.
uint16_t GetMethodIdxOfInvoke(const Instruction* inst)
REQUIRES_SHARED(Locks::mutator_lock_) {
return inst->VRegB();
}
// Returns the field index of a field access instruction.
uint16_t GetFieldIdxOfFieldAccess(const Instruction* inst, bool is_static)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (is_static) {
return inst->VRegB_21c();
} else {
return inst->VRegC_22c();
}
}
// Run verification on the method. Returns true if verification completes and false if the input
// has an irrecoverable corruption.
bool Verify() override REQUIRES_SHARED(Locks::mutator_lock_);
// For app-compatibility, code after a runtime throw is treated as dead code
// for apps targeting <= S.
// Returns whether the current instruction was marked as throwing.
bool PotentiallyMarkRuntimeThrow() override;
// Dump the failures encountered by the verifier.
std::ostream& DumpFailures(std::ostream& os) {
DCHECK_EQ(failures_.size(), failure_messages_.size());
for (const auto* stream : failure_messages_) {
os << stream->str() << "\n";
}
return os;
}
// Dump the state of the verifier, namely each instruction, what flags are set on it, register
// information
void Dump(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) {
VariableIndentationOutputStream vios(&os);
Dump(&vios);
}
void Dump(VariableIndentationOutputStream* vios) REQUIRES_SHARED(Locks::mutator_lock_);
bool HandleMoveException(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
const uint32_t method_access_flags_; // Method's access flags.
const RegType* return_type_; // Lazily computed return type of the method.
// The dex_cache for the declaring class of the method.
Handle<mirror::DexCache> dex_cache_ GUARDED_BY(Locks::mutator_lock_);
// The class loader for the declaring class of the method.
Handle<mirror::ClassLoader> class_loader_ GUARDED_BY(Locks::mutator_lock_);
const RegType* declaring_class_; // Lazily computed reg type of the method's declaring class.
// The dex PC of a FindLocksAtDexPc request, -1 otherwise.
uint32_t interesting_dex_pc_;
// The container into which FindLocksAtDexPc should write the registers containing held locks,
// null if we're not doing FindLocksAtDexPc.
std::vector<DexLockInfo>* monitor_enter_dex_pcs_;
// Indicates whether we verify to dump the info. In that case we accept quickened instructions
// even though we might detect to be a compiler. Should only be set when running
// VerifyMethodAndDump.
const bool verify_to_dump_;
// Whether or not we call AllowThreadSuspension periodically, we want a way to disable this for
// thread dumping checkpoints since we may get thread suspension at an inopportune time due to
// FindLocksAtDexPC, resulting in deadlocks.
const bool allow_thread_suspension_;
// Whether the method seems to be a constructor. Note that this field exists as we can't trust
// the flags in the dex file. Some older code does not mark methods named "<init>" and "<clinit>"
// correctly.
//
// Note: this flag is only valid once Verify() has started.
bool is_constructor_;
// API level, for dependent checks. Note: we do not use '0' for unset here, to simplify checks.
// Instead, unset level should correspond to max().
const uint32_t api_level_;
friend class ::art::verifier::MethodVerifier;
DISALLOW_COPY_AND_ASSIGN(MethodVerifier);
};
// Note: returns true on failure.
template <bool kVerifierDebug>
inline bool MethodVerifier<kVerifierDebug>::FailOrAbort(bool condition,
const char* error_msg,
uint32_t work_insn_idx) {
if (kIsDebugBuild) {
// In a debug build, abort if the error condition is wrong. Only warn if
// we are already aborting (as this verification is likely run to print
// lock information).
if (LIKELY(gAborting == 0)) {
DCHECK(condition) << error_msg << work_insn_idx << " "
<< dex_file_->PrettyMethod(dex_method_idx_);
} else {
if (!condition) {
LOG(ERROR) << error_msg << work_insn_idx;
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
return true;
}
}
} else {
// In a non-debug build, just fail the class.
if (!condition) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
return true;
}
}
return false;
}
static bool IsLargeMethod(const CodeItemDataAccessor& accessor) {
if (!accessor.HasCodeItem()) {
return false;
}
uint16_t registers_size = accessor.RegistersSize();
uint32_t insns_size = accessor.InsnsSizeInCodeUnits();
return registers_size * insns_size > 4*1024*1024;
}
template <bool kVerifierDebug>
void MethodVerifier<kVerifierDebug>::FindLocksAtDexPc() {
CHECK(monitor_enter_dex_pcs_ != nullptr);
CHECK(code_item_accessor_.HasCodeItem()); // This only makes sense for methods with code.
// Quick check whether there are any monitor_enter instructions before verifying.
for (const DexInstructionPcPair& inst : code_item_accessor_) {
if (inst->Opcode() == Instruction::MONITOR_ENTER) {
// Strictly speaking, we ought to be able to get away with doing a subset of the full method
// verification. In practice, the phase we want relies on data structures set up by all the
// earlier passes, so we just run the full method verification and bail out early when we've
// got what we wanted.
Verify();
return;
}
}
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::Verify() {
// Some older code doesn't correctly mark constructors as such. Test for this case by looking at
// the name.
const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
// Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
if ((method_access_flags_ & kAccConstructor) != 0) {
if (!constructor_by_name) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "method is marked as constructor, but not named accordingly";
return false;
}
is_constructor_ = true;
} else if (constructor_by_name) {
LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
<< " not marked as constructor.";
is_constructor_ = true;
}
// If it's a constructor, check whether IsStatic() matches the name.
// This should have been rejected by the dex file verifier. Only do in debug build.
if (kIsDebugBuild) {
if (IsConstructor()) {
if (IsStatic() ^ static_constructor_by_name) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "constructor name doesn't match static flag";
return false;
}
}
}
// Methods may only have one of public/protected/private.
// This should have been rejected by the dex file verifier. Only do in debug build.
if (kIsDebugBuild) {
size_t access_mod_count =
(((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
(((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
(((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
if (access_mod_count > 1) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
return false;
}
}
// If there aren't any instructions, make sure that's expected, then exit successfully.
if (!code_item_accessor_.HasCodeItem()) {
// Only native or abstract methods may not have code.
if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
return false;
}
// Test FastNative and CriticalNative annotations. We do this in the
// verifier for convenience.
if ((method_access_flags_ & kAccNative) != 0) {
// Fetch the flags from the annotations: the class linker hasn't processed
// them yet.
uint32_t native_access_flags = annotations::GetNativeMethodAnnotationAccessFlags(
*dex_file_, class_def_, dex_method_idx_);
if ((native_access_flags & kAccFastNative) != 0) {
if ((method_access_flags_ & kAccSynchronized) != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "fast native methods cannot be synchronized";
return false;
}
}
if ((native_access_flags & kAccCriticalNative) != 0) {
if ((method_access_flags_ & kAccSynchronized) != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "critical native methods cannot be synchronized";
return false;
}
if ((method_access_flags_ & kAccStatic) == 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "critical native methods must be static";
return false;
}
const char* shorty = dex_file_->GetMethodShorty(method_id);
for (size_t i = 0, len = strlen(shorty); i < len; ++i) {
if (Primitive::GetType(shorty[i]) == Primitive::kPrimNot) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) <<
"critical native methods must not have references as arguments or return type";
return false;
}
}
}
}
// This should have been rejected by the dex file verifier. Only do in debug build.
// Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
if (kIsDebugBuild) {
if ((method_access_flags_ & kAccAbstract) != 0) {
// Abstract methods are not allowed to have the following flags.
static constexpr uint32_t kForbidden =
kAccPrivate |
kAccStatic |
kAccFinal |
kAccNative |
kAccStrict |
kAccSynchronized;
if ((method_access_flags_ & kForbidden) != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "method can't be abstract and private/static/final/native/strict/synchronized";
return false;
}
}
if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
// Interface methods must be public and abstract (if default methods are disabled).
uint32_t kRequired = kAccPublic;
if ((method_access_flags_ & kRequired) != kRequired) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
return false;
}
// In addition to the above, interface methods must not be protected.
static constexpr uint32_t kForbidden = kAccProtected;
if ((method_access_flags_ & kForbidden) != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
return false;
}
}
// We also don't allow constructors to be abstract or native.
if (IsConstructor()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
return false;
}
}
return true;
}
// This should have been rejected by the dex file verifier. Only do in debug build.
if (kIsDebugBuild) {
// When there's code, the method must not be native or abstract.
if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
return false;
}
if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
// Interfaces may always have static initializers for their fields. If we are running with
// default methods enabled we also allow other public, static, non-final methods to have code.
// Otherwise that is the only type of method allowed.
if (!(IsConstructor() && IsStatic())) {
if (IsInstanceConstructor()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
return false;
} else if (method_access_flags_ & kAccFinal) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
return false;
} else {
uint32_t access_flag_options = kAccPublic;
if (dex_file_->SupportsDefaultMethods()) {
access_flag_options |= kAccPrivate;
}
if (!(method_access_flags_ & access_flag_options)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "interfaces may not have protected or package-private members";
return false;
}
}
}
}
// Instance constructors must not be synchronized.
if (IsInstanceConstructor()) {
static constexpr uint32_t kForbidden = kAccSynchronized;
if ((method_access_flags_ & kForbidden) != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
return false;
}
}
}
// Consistency-check of the register counts.
// ins + locals = registers, so make sure that ins <= registers.
if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins="
<< code_item_accessor_.InsSize()
<< " regs=" << code_item_accessor_.RegistersSize();
return false;
}
// Allocate and initialize an array to hold instruction data.
insn_flags_.reset(allocator_.AllocArray<InstructionFlags>(
code_item_accessor_.InsnsSizeInCodeUnits()));
DCHECK(insn_flags_ != nullptr);
std::uninitialized_fill_n(insn_flags_.get(),
code_item_accessor_.InsnsSizeInCodeUnits(),
InstructionFlags());
// Run through the instructions and see if the width checks out.
bool result = ComputeWidthsAndCountOps();
bool allow_runtime_only_instructions = !IsAotMode() || verify_to_dump_;
// Flag instructions guarded by a "try" block and check exception handlers.
result = result && ScanTryCatchBlocks();
// Perform static instruction verification.
result = result && (allow_runtime_only_instructions
? VerifyInstructions<true>()
: VerifyInstructions<false>());
// Perform code-flow analysis and return.
result = result && VerifyCodeFlow();
return result;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::ComputeWidthsAndCountOps() {
// We can't assume the instruction is well formed, handle the case where calculating the size
// goes past the end of the code item.
SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end());
if (it == code_item_accessor_.end()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code item has no opcode";
return false;
}
for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) {
// In case the instruction goes past the end of the code item, make sure to not process it.
SafeDexInstructionIterator next = it;
++next;
if (next.IsErrorState()) {
break;
}
GetModifiableInstructionFlags(it.DexPc()).SetIsOpcode();
}
if (it != code_item_accessor_.end()) {
const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
<< it.DexPc() << " vs. " << insns_size << ")";
return false;
}
DCHECK(GetInstructionFlags(0).IsOpcode());
return true;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::ScanTryCatchBlocks() {
const uint32_t tries_size = code_item_accessor_.TriesSize();
if (tries_size == 0) {
return true;
}
const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
const uint32_t start = try_item.start_addr_;
const uint32_t end = start + try_item.insn_count_;
if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
<< " endAddr=" << end << " (size=" << insns_size << ")";
return false;
}
if (!GetInstructionFlags(start).IsOpcode()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "'try' block starts inside an instruction (" << start << ")";
return false;
}
DexInstructionIterator end_it(code_item_accessor_.Insns(), end);
for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) {
GetModifiableInstructionFlags(it.DexPc()).SetInTry();
}
}
// Iterate over each of the handlers to verify target addresses.
const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
ClassLinker* linker = GetClassLinker();
for (uint32_t idx = 0; idx < handlers_size; idx++) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
uint32_t dex_pc = iterator.GetHandlerAddress();
if (!GetInstructionFlags(dex_pc).IsOpcode()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "exception handler starts at bad address (" << dex_pc << ")";
return false;
}
if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "exception handler begins with move-result* (" << dex_pc << ")";
return false;
}
GetModifiableInstructionFlags(dex_pc).SetBranchTarget();
// Ensure exception types are resolved so that they don't need resolution to be delivered,
// unresolved exception types will be ignored by exception delivery
if (iterator.GetHandlerTypeIndex().IsValid()) {
ObjPtr<mirror::Class> exception_type =
linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_);
if (exception_type == nullptr) {
DCHECK(self_->IsExceptionPending());
self_->ClearException();
}
}
}
handlers_ptr = iterator.EndDataPointer();
}
return true;
}
template <bool kVerifierDebug>
template <bool kAllowRuntimeOnlyInstructions>
bool MethodVerifier<kVerifierDebug>::VerifyInstructions() {
// Flag the start of the method as a branch target.
GetModifiableInstructionFlags(0).SetBranchTarget();
for (const DexInstructionPcPair& inst : code_item_accessor_) {
const uint32_t dex_pc = inst.DexPc();
if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) {
DCHECK_NE(failures_.size(), 0U);
return false;
}
// Flag some interesting instructions.
if (inst->IsReturn()) {
GetModifiableInstructionFlags(dex_pc).SetReturn();
} else if (inst->Opcode() == Instruction::CHECK_CAST) {
// The dex-to-dex compiler wants type information to elide check-casts.
GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
}
}
return true;
}
template <bool kVerifierDebug>
template <bool kAllowRuntimeOnlyInstructions>
bool MethodVerifier<kVerifierDebug>::VerifyInstruction(const Instruction* inst,
uint32_t code_offset) {
bool result = true;
switch (inst->GetVerifyTypeArgumentA()) {
case Instruction::kVerifyRegA:
result = result && CheckRegisterIndex(inst->VRegA());
break;
case Instruction::kVerifyRegAWide:
result = result && CheckWideRegisterIndex(inst->VRegA());
break;
}
switch (inst->GetVerifyTypeArgumentB()) {
case Instruction::kVerifyRegB:
result = result && CheckRegisterIndex(inst->VRegB());
break;
case Instruction::kVerifyRegBField:
result = result && CheckFieldIndex(inst->VRegB());
break;
case Instruction::kVerifyRegBMethod:
result = result && CheckMethodIndex(inst->VRegB());
break;
case Instruction::kVerifyRegBNewInstance:
result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
break;
case Instruction::kVerifyRegBString:
result = result && CheckStringIndex(inst->VRegB());
break;
case Instruction::kVerifyRegBType:
result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
break;
case Instruction::kVerifyRegBWide:
result = result && CheckWideRegisterIndex(inst->VRegB());
break;
case Instruction::kVerifyRegBCallSite:
result = result && CheckCallSiteIndex(inst->VRegB());
break;
case Instruction::kVerifyRegBMethodHandle:
result = result && CheckMethodHandleIndex(inst->VRegB());
break;
case Instruction::kVerifyRegBPrototype:
result = result && CheckPrototypeIndex(inst->VRegB());
break;
}
switch (inst->GetVerifyTypeArgumentC()) {
case Instruction::kVerifyRegC:
result = result && CheckRegisterIndex(inst->VRegC());
break;
case Instruction::kVerifyRegCField:
result = result && CheckFieldIndex(inst->VRegC());
break;
case Instruction::kVerifyRegCNewArray:
result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
break;
case Instruction::kVerifyRegCType:
result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
break;
case Instruction::kVerifyRegCWide:
result = result && CheckWideRegisterIndex(inst->VRegC());
break;
}
switch (inst->GetVerifyTypeArgumentH()) {
case Instruction::kVerifyRegHPrototype:
result = result && CheckPrototypeIndex(inst->VRegH());
break;
}
switch (inst->GetVerifyExtraFlags()) {
case Instruction::kVerifyArrayData:
result = result && CheckArrayData(code_offset);
break;
case Instruction::kVerifyBranchTarget:
result = result && CheckBranchTarget(code_offset);
break;
case Instruction::kVerifySwitchTargets:
result = result && CheckSwitchTargets(code_offset);
break;
case Instruction::kVerifyVarArgNonZero:
// Fall-through.
case Instruction::kVerifyVarArg: {
// Instructions that can actually return a negative value shouldn't have this flag.
uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
v_a > Instruction::kMaxVarArgRegs) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
"non-range invoke";
return false;
}
uint32_t args[Instruction::kMaxVarArgRegs];
inst->GetVarArgs(args);
result = result && CheckVarArgRegs(v_a, args);
break;
}
case Instruction::kVerifyVarArgRangeNonZero:
// Fall-through.
case Instruction::kVerifyVarArgRange:
if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
inst->VRegA() <= 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
"range invoke";
return false;
}
result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
break;
case Instruction::kVerifyError:
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
result = false;
break;
}
if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
result = false;
}
return result;
}
template <bool kVerifierDebug>
inline bool MethodVerifier<kVerifierDebug>::CheckNewInstance(dex::TypeIndex idx) {
if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
<< dex_file_->GetHeader().type_ids_size_ << ")";
return false;
}
// We don't need the actual class, just a pointer to the class name.
const char* descriptor = dex_file_->StringByTypeIdx(idx);
if (UNLIKELY(descriptor[0] != 'L')) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
return false;
} else if (UNLIKELY(strcmp(descriptor, "Ljava/lang/Class;") == 0)) {
// An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
// exception is thrown when this statement is executed (compiled code would not do that).
Fail(VERIFY_ERROR_INSTANTIATION);
}
return true;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::CheckNewArray(dex::TypeIndex idx) {
if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
<< dex_file_->GetHeader().type_ids_size_ << ")";
return false;
}
int bracket_count = 0;
const char* descriptor = dex_file_->StringByTypeIdx(idx);
const char* cp = descriptor;
while (*cp++ == '[') {
bracket_count++;
}
if (UNLIKELY(bracket_count == 0)) {
/* The given class must be an array type. */
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "can't new-array class '" << descriptor << "' (not an array)";
return false;
} else if (UNLIKELY(bracket_count > 255)) {
/* It is illegal to create an array of more than 255 dimensions. */
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "can't new-array class '" << descriptor << "' (exceeds limit)";
return false;
}
return true;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::CheckArrayData(uint32_t cur_offset) {
const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
const uint16_t* array_data;
int32_t array_data_offset;
DCHECK_LT(cur_offset, insn_count);
/* make sure the start of the array data table is in range */
array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
cur_offset + array_data_offset + 2 >= insn_count)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
<< ", data offset " << array_data_offset
<< ", count " << insn_count;
return false;
}
/* offset to array data table is a relative branch-style offset */
array_data = insns + array_data_offset;
// Make sure the table is at an even dex pc, that is, 32-bit aligned.
if (UNLIKELY(!IsAligned<4>(array_data))) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
<< ", data offset " << array_data_offset;
return false;
}
// Make sure the array-data is marked as an opcode. This ensures that it was reached when
// traversing the code item linearly. It is an approximation for a by-spec padding value.
if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
<< ", data offset " << array_data_offset
<< " not correctly visited, probably bad padding.";
return false;
}
uint32_t value_width = array_data[1];
uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
/* make sure the end of the switch is in range */
if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
<< ", data offset " << array_data_offset << ", end "
<< cur_offset + array_data_offset + table_size
<< ", count " << insn_count;
return false;
}
return true;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::CheckBranchTarget(uint32_t cur_offset) {
int32_t offset;
bool isConditional, selfOkay;
if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
return false;
}
if (UNLIKELY(!selfOkay && offset == 0)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
<< reinterpret_cast<void*>(cur_offset);
return false;
}
// Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
// to have identical "wrap-around" behavior, but it's unwise to depend on that.
if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
<< reinterpret_cast<void*>(cur_offset) << " +" << offset;
return false;
}
int32_t abs_offset = cur_offset + offset;
if (UNLIKELY(abs_offset < 0 ||
(uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits() ||
!GetInstructionFlags(abs_offset).IsOpcode())) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
<< reinterpret_cast<void*>(abs_offset) << ") at "
<< reinterpret_cast<void*>(cur_offset);
return false;
}
GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
return true;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::GetBranchOffset(uint32_t cur_offset,
int32_t* pOffset,
bool* pConditional,
bool* selfOkay) {
const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
*pConditional = false;
*selfOkay = false;
switch (*insns & 0xff) {
case Instruction::GOTO:
*pOffset = ((int16_t) *insns) >> 8;
break;
case Instruction::GOTO_32:
*pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
*selfOkay = true;
break;
case Instruction::GOTO_16:
*pOffset = (int16_t) insns[1];
break;
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE:
case Instruction::IF_EQZ:
case Instruction::IF_NEZ:
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ:
*pOffset = (int16_t) insns[1];
*pConditional = true;
break;
default:
return false;
}
return true;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::CheckSwitchTargets(uint32_t cur_offset) {
const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
DCHECK_LT(cur_offset, insn_count);
const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
/* make sure the start of the switch is in range */
int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
cur_offset + switch_offset + 2 > insn_count)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
<< ", switch offset " << switch_offset
<< ", count " << insn_count;
return false;
}
/* offset to switch table is a relative branch-style offset */
const uint16_t* switch_insns = insns + switch_offset;
// Make sure the table is at an even dex pc, that is, 32-bit aligned.
if (UNLIKELY(!IsAligned<4>(switch_insns))) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
<< ", switch offset " << switch_offset;
return false;
}
// Make sure the switch data is marked as an opcode. This ensures that it was reached when
// traversing the code item linearly. It is an approximation for a by-spec padding value.
if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
<< ", switch offset " << switch_offset
<< " not correctly visited, probably bad padding.";
return false;
}
bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
uint32_t switch_count = switch_insns[1];
int32_t targets_offset;
uint16_t expected_signature;
if (is_packed_switch) {
/* 0=sig, 1=count, 2/3=firstKey */
targets_offset = 4;
expected_signature = Instruction::kPackedSwitchSignature;
} else {
/* 0=sig, 1=count, 2..count*2 = keys */
targets_offset = 2 + 2 * switch_count;
expected_signature = Instruction::kSparseSwitchSignature;
}
uint32_t table_size = targets_offset + switch_count * 2;
if (UNLIKELY(switch_insns[0] != expected_signature)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< StringPrintf("wrong signature for switch table (%x, wanted %x)",
switch_insns[0], expected_signature);
return false;
}
/* make sure the end of the switch is in range */
if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
<< ", switch offset " << switch_offset
<< ", end " << (cur_offset + switch_offset + table_size)
<< ", count " << insn_count;
return false;
}
constexpr int32_t keys_offset = 2;
if (switch_count > 1) {
if (is_packed_switch) {
/* for a packed switch, verify that keys do not overflow int32 */
int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
int32_t max_first_key =
std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
if (UNLIKELY(first_key > max_first_key)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
<< ", switch_count=" << switch_count;
return false;
}
} else {
/* for a sparse switch, verify the keys are in ascending order */
int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
for (uint32_t targ = 1; targ < switch_count; targ++) {
int32_t key =
static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
if (UNLIKELY(key <= last_key)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
<< ", this=" << key;
return false;
}
last_key = key;
}
}
}
/* verify each switch target */
for (uint32_t targ = 0; targ < switch_count; targ++) {
int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
int32_t abs_offset = cur_offset + offset;
if (UNLIKELY(abs_offset < 0 ||
abs_offset >= static_cast<int32_t>(insn_count) ||
!GetInstructionFlags(abs_offset).IsOpcode())) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
<< " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
<< reinterpret_cast<void*>(cur_offset)
<< "[" << targ << "]";
return false;
}
GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
}
return true;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::VerifyCodeFlow() {
const uint16_t registers_size = code_item_accessor_.RegistersSize();
/* Create and initialize table holding register status */
reg_table_.Init(insn_flags_.get(),
code_item_accessor_.InsnsSizeInCodeUnits(),
registers_size,
allocator_,
GetRegTypeCache(),
interesting_dex_pc_);
work_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
saved_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
/* Initialize register types of method arguments. */
if (!SetTypesFromSignature()) {
DCHECK_NE(failures_.size(), 0U);
std::string prepend("Bad signature in ");
prepend += dex_file_->PrettyMethod(dex_method_idx_);
PrependToLastFailMessage(prepend);
return false;
}
// We may have a runtime failure here, clear.
flags_.have_pending_runtime_throw_failure_ = false;
/* Perform code flow verification. */
bool res = LIKELY(monitor_enter_dex_pcs_ == nullptr)
? CodeFlowVerifyMethod</*kMonitorDexPCs=*/ false>()
: CodeFlowVerifyMethod</*kMonitorDexPCs=*/ true>();
if (UNLIKELY(!res)) {
DCHECK_NE(failures_.size(), 0U);
return false;
}
return true;
}
template <bool kVerifierDebug>
void MethodVerifier<kVerifierDebug>::Dump(VariableIndentationOutputStream* vios) {
if (!code_item_accessor_.HasCodeItem()) {
vios->Stream() << "Native method\n";
return;
}
{
vios->Stream() << "Register Types:\n";
ScopedIndentation indent1(vios);
reg_types_.Dump(vios->Stream());
}
vios->Stream() << "Dumping instructions and register lines:\n";
ScopedIndentation indent1(vios);
for (const DexInstructionPcPair& inst : code_item_accessor_) {
const size_t dex_pc = inst.DexPc();
// Might be asked to dump before the table is initialized.
if (reg_table_.IsInitialized()) {
RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
if (reg_line != nullptr) {
vios->Stream() << reg_line->Dump(this) << "\n";
}
}
vios->Stream()
<< StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
const bool kDumpHexOfInstruction = false;
if (kDumpHexOfInstruction) {
vios->Stream() << inst->DumpHex(5) << " ";
}
vios->Stream() << inst->DumpString(dex_file_) << "\n";
}
}
static bool IsPrimitiveDescriptor(char descriptor) {
switch (descriptor) {
case 'I':
case 'C':
case 'S':
case 'B':
case 'Z':
case 'F':
case 'D':
case 'J':
return true;
default:
return false;
}
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::SetTypesFromSignature() {
RegisterLine* reg_line = reg_table_.GetLine(0);
// Should have been verified earlier.
DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize());
uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize();
size_t expected_args = code_item_accessor_.InsSize(); /* long/double count as two */
// Include the "this" pointer.
size_t cur_arg = 0;
if (!IsStatic()) {
if (expected_args == 0) {
// Expect at least a receiver.
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
return false;
}
// If this is a constructor for a class other than java.lang.Object, mark the first ("this")
// argument as uninitialized. This restricts field access until the superclass constructor is
// called.
const RegType& declaring_class = GetDeclaringClass();
if (IsConstructor()) {
if (declaring_class.IsJavaLangObject()) {
// "this" is implicitly initialized.
reg_line->SetThisInitialized();
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, declaring_class);
} else {
reg_line->SetRegisterType<LockOp::kClear>(
arg_start + cur_arg,
reg_types_.UninitializedThisArgument(declaring_class));
}
} else {
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, declaring_class);
}
cur_arg++;
}
const dex::ProtoId& proto_id =
dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
DexFileParameterIterator iterator(*dex_file_, proto_id);
for (; iterator.HasNext(); iterator.Next()) {
const char* descriptor = iterator.GetDescriptor();
if (descriptor == nullptr) {
LOG(FATAL) << "Null descriptor";
}
if (cur_arg >= expected_args) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
<< " args, found more (" << descriptor << ")";
return false;
}
switch (descriptor[0]) {
case 'L':
case '[':
// We assume that reference arguments are initialized. The only way it could be otherwise
// (assuming the caller was verified) is if the current method is <init>, but in that case
// it's effectively considered initialized the instant we reach here (in the sense that we
// can return without doing anything or call virtual methods).
{
// Note: don't check access. No error would be thrown for declaring or passing an
// inaccessible class. Only actual accesses to fields or methods will.
const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx());
if (!reg_type.IsNonZeroReferenceTypes()) {
DCHECK(HasFailures());
return false;
}
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_type);
}
break;
case 'Z':
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Boolean());
break;
case 'C':
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Char());
break;
case 'B':
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Byte());
break;
case 'I':
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Integer());
break;
case 'S':
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Short());
break;
case 'F':
reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Float());
break;
case 'J':
case 'D': {
if (cur_arg + 1 >= expected_args) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
<< " args, found more (" << descriptor << ")";
return false;
}
const RegType* lo_half;
const RegType* hi_half;
if (descriptor[0] == 'J') {
lo_half = &reg_types_.LongLo();
hi_half = &reg_types_.LongHi();
} else {
lo_half = &reg_types_.DoubleLo();
hi_half = &reg_types_.DoubleHi();
}
reg_line->SetRegisterTypeWide(arg_start + cur_arg, *lo_half, *hi_half);
cur_arg++;
break;
}
default:
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
<< descriptor << "'";
return false;
}
cur_arg++;
}
if (cur_arg != expected_args) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
<< " arguments, found " << cur_arg;
return false;
}
const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
// Validate return type. We don't do the type lookup; just want to make sure that it has the right
// format. Only major difference from the method argument format is that 'V' is supported.
bool result;
if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
result = descriptor[1] == '\0';
} else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive
size_t i = 0;
do {
i++;
} while (descriptor[i] == '['); // process leading [
if (descriptor[i] == 'L') { // object array
do {
i++; // find closing ;
} while (descriptor[i] != ';' && descriptor[i] != '\0');
result = descriptor[i] == ';';
} else { // primitive array
result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
}
} else if (descriptor[0] == 'L') {
// could be more thorough here, but shouldn't be required
size_t i = 0;
do {
i++;
} while (descriptor[i] != ';' && descriptor[i] != '\0');
result = descriptor[i] == ';';
} else {
result = false;
}
if (!result) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
<< descriptor << "'";
}
return result;
}
COLD_ATTR
void HandleMonitorDexPcsWorkLine(
std::vector<::art::verifier::MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
RegisterLine* work_line) {
monitor_enter_dex_pcs->clear(); // The new work line is more accurate than the previous one.
std::map<uint32_t, ::art::verifier::MethodVerifier::DexLockInfo> depth_to_lock_info;
auto collector = [&](uint32_t dex_reg, uint32_t depth) {
auto insert_pair = depth_to_lock_info.emplace(
depth, ::art::verifier::MethodVerifier::DexLockInfo(depth));
auto it = insert_pair.first;
auto set_insert_pair = it->second.dex_registers.insert(dex_reg);
DCHECK(set_insert_pair.second);
};
work_line->IterateRegToLockDepths(collector);
for (auto& pair : depth_to_lock_info) {
monitor_enter_dex_pcs->push_back(pair.second);
// Map depth to dex PC.
monitor_enter_dex_pcs->back().dex_pc = work_line->GetMonitorEnterDexPc(pair.second.dex_pc);
}
}
template <bool kVerifierDebug>
template <bool kMonitorDexPCs>
bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyMethod() {
const uint16_t* insns = code_item_accessor_.Insns();
const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
/* Begin by marking the first instruction as "changed". */
GetModifiableInstructionFlags(0).SetChanged();
uint32_t start_guess = 0;
/* Continue until no instructions are marked "changed". */
while (true) {
if (allow_thread_suspension_) {
self_->AllowThreadSuspension();
}
// Find the first marked one. Use "start_guess" as a way to find one quickly.
uint32_t insn_idx = start_guess;
for (; insn_idx < insns_size; insn_idx++) {
if (GetInstructionFlags(insn_idx).IsChanged())
break;
}
if (insn_idx == insns_size) {
if (start_guess != 0) {
/* try again, starting from the top */
start_guess = 0;
continue;
} else {
/* all flags are clear */
break;
}
}
// We carry the working set of registers from instruction to instruction. If this address can
// be the target of a branch (or throw) instruction, or if we're skipping around chasing
// "changed" flags, we need to load the set of registers from the table.
// Because we always prefer to continue on to the next instruction, we should never have a
// situation where we have a stray "changed" flag set on an instruction that isn't a branch
// target.
work_insn_idx_ = insn_idx;
if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
} else if (kIsDebugBuild) {
/*
* Consistency check: retrieve the stored register line (assuming
* a full table) and make sure it actually matches.
*/
RegisterLine* register_line = reg_table_.GetLine(insn_idx);
if (register_line != nullptr) {
if (work_line_->CompareLine(register_line) != 0) {
Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
LOG(FATAL_WITHOUT_ABORT) << info_messages_.str();
LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
<< "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
<< " work_line=" << work_line_->Dump(this) << "\n"
<< " expected=" << register_line->Dump(this);
}
}
}
// If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
// We want the state _before_ the instruction, for the case where the dex pc we're
// interested in is itself a monitor-enter instruction (which is a likely place
// for a thread to be suspended).
if (kMonitorDexPCs && UNLIKELY(work_insn_idx_ == interesting_dex_pc_)) {
HandleMonitorDexPcsWorkLine(monitor_enter_dex_pcs_, work_line_.get());
}
if (!CodeFlowVerifyInstruction(&start_guess)) {
std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
prepend += " failed to verify: ";
PrependToLastFailMessage(prepend);
return false;
}
/* Clear "changed" and mark as visited. */
GetModifiableInstructionFlags(insn_idx).SetVisited();
GetModifiableInstructionFlags(insn_idx).ClearChanged();
}
if (kVerifierDebug) {
/*
* Scan for dead code. There's nothing "evil" about dead code
* (besides the wasted space), but it indicates a flaw somewhere
* down the line, possibly in the verifier.
*
* If we've substituted "always throw" instructions into the stream,
* we are almost certainly going to have some dead code.
*/
int dead_start = -1;
for (const DexInstructionPcPair& inst : code_item_accessor_) {
const uint32_t insn_idx = inst.DexPc();
/*
* Switch-statement data doesn't get "visited" by scanner. It
* may or may not be preceded by a padding NOP (for alignment).
*/
if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
insns[insn_idx] == Instruction::kSparseSwitchSignature ||
insns[insn_idx] == Instruction::kArrayDataSignature ||
(insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
(insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
GetModifiableInstructionFlags(insn_idx).SetVisited();
}
if (!GetInstructionFlags(insn_idx).IsVisited()) {
if (dead_start < 0) {
dead_start = insn_idx;
}
} else if (dead_start >= 0) {
LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
<< "-" << reinterpret_cast<void*>(insn_idx - 1);
dead_start = -1;
}
}
if (dead_start >= 0) {
LogVerifyInfo()
<< "dead code " << reinterpret_cast<void*>(dead_start)
<< "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1);
}
// To dump the state of the verify after a method, do something like:
// if (dex_file_->PrettyMethod(dex_method_idx_) ==
// "boolean java.lang.String.equals(java.lang.Object)") {
// LOG(INFO) << info_messages_.str();
// }
}
return true;
}
// Setup a register line for the given return instruction.
template <bool kVerifierDebug>
static void AdjustReturnLine(MethodVerifier<kVerifierDebug>* verifier,
const Instruction* ret_inst,
RegisterLine* line) {
Instruction::Code opcode = ret_inst->Opcode();
switch (opcode) {
case Instruction::RETURN_VOID:
if (verifier->IsInstanceConstructor()) {
// Before we mark all regs as conflicts, check that we don't have an uninitialized this.
line->CheckConstructorReturn(verifier);
}
line->MarkAllRegistersAsConflicts(verifier);
break;
case Instruction::RETURN:
case Instruction::RETURN_OBJECT:
line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
break;
case Instruction::RETURN_WIDE:
line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
break;
default:
LOG(FATAL) << "Unknown return opcode " << opcode;
UNREACHABLE();
}
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyInstruction(uint32_t* start_guess) {
/*
* Once we finish decoding the instruction, we need to figure out where
* we can go from here. There are three possible ways to transfer
* control to another statement:
*
* (1) Continue to the next instruction. Applies to all but
* unconditional branches, method returns, and exception throws.
* (2) Branch to one or more possible locations. Applies to branches
* and switch statements.
* (3) Exception handlers. Applies to any instruction that can
* throw an exception that is handled by an encompassing "try"
* block.
*
* We can also return, in which case there is no successor instruction
* from this point.
*
* The behavior can be determined from the opcode flags.
*/
const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_;
const Instruction* inst = Instruction::At(insns);
int opcode_flags = Instruction::FlagsOf(inst->Opcode());
int32_t branch_target = 0;
bool just_set_result = false;
if (kVerifierDebug) {
// Generate processing back trace to debug verifier
LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << std::endl
<< work_line_->Dump(this);
}
/*
* Make a copy of the previous register state. If the instruction
* can throw an exception, we will copy/merge this into the "catch"
* address rather than work_line, because we don't want the result
* from the "successful" code path (e.g. a check-cast that "improves"
* a type) to be visible to the exception handler.
*/
if (((opcode_flags & Instruction::kThrow) != 0 || IsCompatThrow(inst->Opcode())) &&
CurrentInsnFlags()->IsInTry()) {
saved_line_->CopyFromLine(work_line_.get());
} else if (kIsDebugBuild) {
saved_line_->FillWithGarbage();
}
// Per-instruction flag, should not be set here.
DCHECK(!flags_.have_pending_runtime_throw_failure_);
bool exc_handler_unreachable = false;
// We need to ensure the work line is consistent while performing validation. When we spot a
// peephole pattern we compute a new line for either the fallthrough instruction or the
// branch target.
RegisterLineArenaUniquePtr branch_line;
RegisterLineArenaUniquePtr fallthrough_line;
switch (inst->Opcode()) {
case Instruction::NOP:
/*
* A "pure" NOP has no effect on anything. Data tables start with
* a signature that looks like a NOP; if we see one of these in
* the course of executing code then we have a problem.
*/
if (inst->VRegA_10x() != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
}
break;
case Instruction::MOVE:
work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
break;
case Instruction::MOVE_FROM16:
work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
break;
case Instruction::MOVE_16:
work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
break;
case Instruction::MOVE_WIDE:
work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
break;
case Instruction::MOVE_WIDE_FROM16:
work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
break;
case Instruction::MOVE_WIDE_16:
work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
break;
case Instruction::MOVE_OBJECT:
work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
break;
case Instruction::MOVE_OBJECT_FROM16:
work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
break;
case Instruction::MOVE_OBJECT_16:
work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
break;
/*
* The move-result instructions copy data out of a "pseudo-register"
* with the results from the last method invocation. In practice we
* might want to hold the result in an actual CPU register, so the
* Dalvik spec requires that these only appear immediately after an
* invoke or filled-new-array.
*
* These calls invalidate the "result" register. (This is now
* redundant with the reset done below, but it can make the debug info
* easier to read in some cases.)
*/
case Instruction::MOVE_RESULT:
work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
break;
case Instruction::MOVE_RESULT_WIDE:
work_line_->CopyResultRegister2(this, inst->VRegA_11x());
break;
case Instruction::MOVE_RESULT_OBJECT:
work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
break;
case Instruction::MOVE_EXCEPTION:
if (!HandleMoveException(inst)) {
exc_handler_unreachable = true;
}
break;
case Instruction::RETURN_VOID:
if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
if (!GetMethodReturnType().IsConflict()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
}
}
break;
case Instruction::RETURN:
if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
/* check the method signature */
const RegType& return_type = GetMethodReturnType();
if (!return_type.IsCategory1Types()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
<< return_type;
} else {
// Compilers may generate synthetic functions that write byte values into boolean fields.
// Also, it may use integer values for boolean, byte, short, and character return types.
const uint32_t vregA = inst->VRegA_11x();
const RegType& src_type = work_line_->GetRegisterType(this, vregA);
bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
((return_type.IsBoolean() || return_type.IsByte() ||
return_type.IsShort() || return_type.IsChar()) &&
src_type.IsInteger()));
/* check the register contents */
bool success =
work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
if (!success) {
AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
}
}
}
break;
case Instruction::RETURN_WIDE:
if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
/* check the method signature */
const RegType& return_type = GetMethodReturnType();
if (!return_type.IsCategory2Types()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
} else {
/* check the register contents */
const uint32_t vregA = inst->VRegA_11x();
bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
if (!success) {
AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
}
}
}
break;
case Instruction::RETURN_OBJECT:
if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
const RegType& return_type = GetMethodReturnType();
if (!return_type.IsReferenceTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
} else {
/* return_type is the *expected* return type, not register value */
DCHECK(!return_type.IsZeroOrNull());
DCHECK(!return_type.IsUninitializedReference());
const uint32_t vregA = inst->VRegA_11x();
const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
// Disallow returning undefined, conflict & uninitialized values and verify that the
// reference in vAA is an instance of the "return_type."
if (reg_type.IsUndefined()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
} else if (reg_type.IsConflict()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
} else if (reg_type.IsUninitializedTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
<< reg_type << "'";
} else if (!reg_type.IsReferenceTypes()) {
// We really do expect a reference here.
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
<< reg_type;
} else if (!return_type.IsAssignableFrom(reg_type, this)) {
if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
Fail(VERIFY_ERROR_UNRESOLVED_TYPE_CHECK)
<< " can't resolve returned type '" << return_type << "' or '" << reg_type << "'";
} else {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
<< "', but expected from declaration '" << return_type << "'";
}
}
}
}
break;
/* could be boolean, int, float, or a null reference */
case Instruction::CONST_4: {
int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_11n(), DetermineCat1Constant(val));
break;
}
case Instruction::CONST_16: {
int16_t val = static_cast<int16_t>(inst->VRegB_21s());
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21s(), DetermineCat1Constant(val));
break;
}
case Instruction::CONST: {
int32_t val = inst->VRegB_31i();
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_31i(), DetermineCat1Constant(val));
break;
}
case Instruction::CONST_HIGH16: {
int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21h(), DetermineCat1Constant(val));
break;
}
/* could be long or double; resolved upon use */
case Instruction::CONST_WIDE_16: {
int64_t val = static_cast<int16_t>(inst->VRegB_21s());
const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
break;
}
case Instruction::CONST_WIDE_32: {
int64_t val = static_cast<int32_t>(inst->VRegB_31i());
const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
break;
}
case Instruction::CONST_WIDE: {
int64_t val = inst->VRegB_51l();
const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
break;
}
case Instruction::CONST_WIDE_HIGH16: {
int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
break;
}
case Instruction::CONST_STRING:
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21c(), reg_types_.JavaLangString());
break;
case Instruction::CONST_STRING_JUMBO:
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_31c(), reg_types_.JavaLangString());
break;
case Instruction::CONST_CLASS: {
// Get type from instruction if unresolved then we need an access check
// TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
// Register holds class, ie its type is class, on error it will hold Conflict.
work_line_->SetRegisterType<LockOp::kClear>(
inst->VRegA_21c(),
res_type.IsConflict() ? res_type : reg_types_.JavaLangClass());
break;
}
case Instruction::CONST_METHOD_HANDLE:
work_line_->SetRegisterType<LockOp::kClear>(
inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle());
break;
case Instruction::CONST_METHOD_TYPE:
work_line_->SetRegisterType<LockOp::kClear>(
inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType());
break;
case Instruction::MONITOR_ENTER:
work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
// Check whether the previous instruction is a move-object with vAA as a source, creating
// untracked lock aliasing.
if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
uint32_t prev_idx = work_insn_idx_ - 1;
while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
prev_idx--;
}
const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx);
switch (prev_inst.Opcode()) {
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_OBJECT_FROM16:
if (prev_inst.VRegB() == inst->VRegA_11x()) {
// Redo the copy. This won't change the register types, but update the lock status
// for the aliased register.
work_line_->CopyRegister1(this,
prev_inst.VRegA(),
prev_inst.VRegB(),
kTypeCategoryRef);
}
break;
// Catch a case of register aliasing when two registers are linked to the same
// java.lang.Class object via two consequent const-class instructions immediately
// preceding monitor-enter called on one of those registers.
case Instruction::CONST_CLASS: {
// Get the second previous instruction.
if (prev_idx == 0 || GetInstructionFlags(prev_idx).IsBranchTarget()) {
break;
}
prev_idx--;
while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
prev_idx--;
}
const Instruction& prev2_inst = code_item_accessor_.InstructionAt(prev_idx);
// Match the pattern "const-class; const-class; monitor-enter;"
if (prev2_inst.Opcode() != Instruction::CONST_CLASS) {
break;
}
// Ensure both const-classes are called for the same type_idx.
if (prev_inst.VRegB_21c() != prev2_inst.VRegB_21c()) {
break;
}
// Update the lock status for the aliased register.
if (prev_inst.VRegA() == inst->VRegA_11x()) {
work_line_->CopyRegister1(this,
prev2_inst.VRegA(),
inst->VRegA_11x(),
kTypeCategoryRef);
} else if (prev2_inst.VRegA() == inst->VRegA_11x()) {
work_line_->CopyRegister1(this,
prev_inst.VRegA(),
inst->VRegA_11x(),
kTypeCategoryRef);
}
break;
}
default: // Other instruction types ignored.
break;
}
}
break;
case Instruction::MONITOR_EXIT:
/*
* monitor-exit instructions are odd. They can throw exceptions,
* but when they do they act as if they succeeded and the PC is
* pointing to the following instruction. (This behavior goes back
* to the need to handle asynchronous exceptions, a now-deprecated
* feature that Dalvik doesn't support.)
*
* In practice we don't need to worry about this. The only
* exceptions that can be thrown from monitor-exit are for a
* null reference and -exit without a matching -enter. If the
* structured locking checks are working, the former would have
* failed on the -enter instruction, and the latter is impossible.
*
* This is fortunate, because issue 3221411 prevents us from
* chasing the "can throw" path when monitor verification is
* enabled. If we can fully verify the locking we can ignore
* some catch blocks (which will show up as "dead" code when
* we skip them here); if we can't, then the code path could be
* "live" so we still need to check it.
*/
opcode_flags &= ~Instruction::kThrow;
work_line_->PopMonitor(this, inst->VRegA_11x());
break;
case Instruction::CHECK_CAST:
case Instruction::INSTANCE_OF: {
/*
* If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
* could be a "upcast" -- not expected, so we don't try to address it.)
*
* If it fails, an exception is thrown, which we deal with later by ignoring the update to
* dec_insn.vA when branching to a handler.
*/
const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
if (res_type.IsConflict()) {
// If this is a primitive type, fail HARD.
ObjPtr<mirror::Class> klass = GetClassLinker()->LookupResolvedType(
type_idx, dex_cache_.Get(), class_loader_.Get());
if (klass != nullptr && klass->IsPrimitive()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
<< dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
<< GetDeclaringClass();
break;
}
DCHECK_NE(failures_.size(), 0U);
if (!is_checkcast) {
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), reg_types_.Boolean());
}
break; // bad class
}
// TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
if (!res_type.IsNonZeroReferenceTypes()) {
if (is_checkcast) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
} else {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
}
} else if (!orig_type.IsReferenceTypes()) {
if (is_checkcast) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
} else {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
}
} else if (orig_type.IsUninitializedTypes()) {
if (is_checkcast) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
<< orig_type_reg;
} else {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
<< orig_type_reg;
}
} else {
if (is_checkcast) {
work_line_->SetRegisterType<LockOp::kKeep>(inst->VRegA_21c(), res_type);
} else {
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), reg_types_.Boolean());
}
}
break;
}
case Instruction::ARRAY_LENGTH: {
const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
if (res_type.IsReferenceTypes()) {
if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) {
// ie not an array or null
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
} else {
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_12x(), reg_types_.Integer());
}
} else {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
}
break;
}
case Instruction::NEW_INSTANCE: {
const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
if (res_type.IsConflict()) {
DCHECK_NE(failures_.size(), 0U);
break; // bad class
}
// TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
// can't create an instance of an interface or abstract class */
if (!res_type.IsInstantiableTypes()) {
Fail(VERIFY_ERROR_INSTANTIATION)
<< "new-instance on primitive, interface or abstract class" << res_type;
// Soft failure so carry on to set register type.
}
const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
// Any registers holding previous allocations from this address that have not yet been
// initialized must be marked invalid.
work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
// add the new uninitialized reference to the register state
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21c(), uninit_type);
break;
}
case Instruction::NEW_ARRAY:
VerifyNewArray(inst, false, false);
break;
case Instruction::FILLED_NEW_ARRAY:
VerifyNewArray(inst, true, false);
just_set_result = true; // Filled new array sets result register
break;
case Instruction::FILLED_NEW_ARRAY_RANGE:
VerifyNewArray(inst, true, true);
just_set_result = true; // Filled new array range sets result register
break;
case Instruction::CMPL_FLOAT:
case Instruction::CMPG_FLOAT:
if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
break;
}
if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
break;
}
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
break;
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_DOUBLE:
if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
reg_types_.DoubleHi())) {
break;
}
if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
reg_types_.DoubleHi())) {
break;
}
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
break;
case Instruction::CMP_LONG:
if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
reg_types_.LongHi())) {
break;
}
if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
reg_types_.LongHi())) {
break;
}
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
break;
case Instruction::THROW: {
const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) {
if (res_type.IsUninitializedTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
} else if (!res_type.IsReferenceTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
} else {
Fail(res_type.IsUnresolvedTypes()
? VERIFY_ERROR_UNRESOLVED_TYPE_CHECK : VERIFY_ERROR_BAD_CLASS_HARD)
<< "thrown class " << res_type << " not instanceof Throwable";
}
}
break;
}
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
/* no effect on or use of registers */
break;
case Instruction::PACKED_SWITCH:
case Instruction::SPARSE_SWITCH:
/* verify that vAA is an integer, or can be converted to one */
work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
break;
case Instruction::FILL_ARRAY_DATA: {
/* Similar to the verification done for APUT */
const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
/* array_type can be null if the reg type is Zero */
if (!array_type.IsZeroOrNull()) {
if (!array_type.IsArrayTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
<< array_type;
} else if (array_type.IsUnresolvedTypes()) {
// If it's an unresolved array type, it must be non-primitive.
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
<< array_type;
} else {
const RegType& component_type = reg_types_.GetComponentType(array_type,
class_loader_.Get());
DCHECK(!component_type.IsConflict());
if (component_type.IsNonZeroReferenceTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
<< component_type;
} else {
// Now verify if the element width in the table matches the element width declared in
// the array
const uint16_t* array_data =
insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
if (array_data[0] != Instruction::kArrayDataSignature) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
} else {
size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
// Since we don't compress the data in Dex, expect to see equal width of data stored
// in the table and expected from the array class.
if (array_data[1] != elem_width) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
<< " vs " << elem_width << ")";
}
}
}
}
}
break;
}
case Instruction::IF_EQ:
case Instruction::IF_NE: {
const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
bool mismatch = false;
if (reg_type1.IsZeroOrNull()) { // zero then integral or reference expected
mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
} else if (reg_type1.IsReferenceTypes()) { // both references?
mismatch = !reg_type2.IsReferenceTypes();
} else { // both integral?
mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
}
if (mismatch) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
<< reg_type2 << ") must both be references or integral";
}
break;
}
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE: {
const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
<< reg_type2 << ") must be integral";
}
break;
}
case Instruction::IF_EQZ:
case Instruction::IF_NEZ: {
const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
<< " unexpected as arg to if-eqz/if-nez";
}
// Find previous instruction - its existence is a precondition to peephole optimization.
if (UNLIKELY(0 == work_insn_idx_)) {
break;
}
uint32_t instance_of_idx = work_insn_idx_ - 1;
while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
instance_of_idx--;
}
// Dex index 0 must be an opcode.
DCHECK(GetInstructionFlags(instance_of_idx).IsOpcode());
const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx);
/* Check for peep-hole pattern of:
* ...;
* instance-of vX, vY, T;
* ifXXX vX, label ;
* ...;
* label:
* ...;
* and sharpen the type of vY to be type T.
* Note, this pattern can't be if:
* - if there are other branches to this branch,
* - when vX == vY.
*/
if (!CurrentInsnFlags()->IsBranchTarget() &&
(Instruction::INSTANCE_OF == instance_of_inst.Opcode()) &&
(inst->VRegA_21t() == instance_of_inst.VRegA_22c()) &&
(instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) {
// Check the type of the instance-of is different than that of registers type, as if they
// are the same there is no work to be done here. Check that the conversion is not to or
// from an unresolved type as type information is imprecise. If the instance-of is to an
// interface then ignore the type information as interfaces can only be treated as Objects
// and we don't want to disallow field and other operations on the object. If the value
// being instance-of checked against is known null (zero) then allow the optimization as
// we didn't have type information. If the merge of the instance-of type with the original
// type is assignable to the original then allow optimization. This check is performed to
// ensure that subsequent merges don't lose type information - such as becoming an
// interface from a class that would lose information relevant to field checks.
//
// Note: do not do an access check. This may mark this with a runtime throw that actually
// happens at the instanceof, not the branch (and branches aren't flagged to throw).
const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c());
const RegType& cast_type = ResolveClass<CheckAccess::kNo>(
dex::TypeIndex(instance_of_inst.VRegC_22c()));
if (!orig_type.Equals(cast_type) &&
!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
cast_type.HasClass() && // Could be conflict type, make sure it has a class.
!cast_type.GetClass()->IsInterface() &&
(orig_type.IsZeroOrNull() ||
orig_type.IsStrictlyAssignableFrom(
cast_type.Merge(orig_type, &reg_types_, this), this))) {
RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(),
allocator_,
GetRegTypeCache());
if (inst->Opcode() == Instruction::IF_EQZ) {
fallthrough_line.reset(update_line);
} else {
branch_line.reset(update_line);
}
update_line->CopyFromLine(work_line_.get());
update_line->SetRegisterType<LockOp::kKeep>(instance_of_inst.VRegB_22c(), cast_type);
if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
// See if instance-of was preceded by a move-object operation, common due to the small
// register encoding space of instance-of, and propagate type information to the source
// of the move-object.
// Note: this is only valid if the move source was not clobbered.
uint32_t move_idx = instance_of_idx - 1;
while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
move_idx--;
}
DCHECK(GetInstructionFlags(move_idx).IsOpcode());
auto maybe_update_fn = [&instance_of_inst, update_line, &cast_type](
uint16_t move_src,
uint16_t move_trg)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (move_trg == instance_of_inst.VRegB_22c() &&
move_src != instance_of_inst.VRegA_22c()) {
update_line->SetRegisterType<LockOp::kKeep>(move_src, cast_type);
}
};
const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx);
switch (move_inst.Opcode()) {
case Instruction::MOVE_OBJECT:
maybe_update_fn(move_inst.VRegB_12x(), move_inst.VRegA_12x());
break;
case Instruction::MOVE_OBJECT_FROM16:
maybe_update_fn(move_inst.VRegB_22x(), move_inst.VRegA_22x());
break;
case Instruction::MOVE_OBJECT_16:
maybe_update_fn(move_inst.VRegB_32x(), move_inst.VRegA_32x());
break;
default:
break;
}
}
}
}
break;
}
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ: {
const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
if (!reg_type.IsIntegralTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
<< " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
}
break;
}
case Instruction::AGET_BOOLEAN:
VerifyAGet(inst, reg_types_.Boolean(), true);
break;
case Instruction::AGET_BYTE:
VerifyAGet(inst, reg_types_.Byte(), true);
break;
case Instruction::AGET_CHAR:
VerifyAGet(inst, reg_types_.Char(), true);
break;
case Instruction::AGET_SHORT:
VerifyAGet(inst, reg_types_.Short(), true);
break;
case Instruction::AGET:
VerifyAGet(inst, reg_types_.Integer(), true);
break;
case Instruction::AGET_WIDE:
VerifyAGet(inst, reg_types_.LongLo(), true);
break;
case Instruction::AGET_OBJECT:
VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
break;
case Instruction::APUT_BOOLEAN:
VerifyAPut(inst, reg_types_.Boolean(), true);
break;
case Instruction::APUT_BYTE:
VerifyAPut(inst, reg_types_.Byte(), true);
break;
case Instruction::APUT_CHAR:
VerifyAPut(inst, reg_types_.Char(), true);
break;
case Instruction::APUT_SHORT:
VerifyAPut(inst, reg_types_.Short(), true);
break;
case Instruction::APUT:
VerifyAPut(inst, reg_types_.Integer(), true);
break;
case Instruction::APUT_WIDE:
VerifyAPut(inst, reg_types_.LongLo(), true);
break;
case Instruction::APUT_OBJECT:
VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
break;
case Instruction::IGET_BOOLEAN:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
break;
case Instruction::IGET_BYTE:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
break;
case Instruction::IGET_CHAR:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
break;
case Instruction::IGET_SHORT:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
break;
case Instruction::IGET:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
break;
case Instruction::IGET_WIDE:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
break;
case Instruction::IGET_OBJECT:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
false);
break;
case Instruction::IPUT_BOOLEAN:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
break;
case Instruction::IPUT_BYTE:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
break;
case Instruction::IPUT_CHAR:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
break;
case Instruction::IPUT_SHORT:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
break;
case Instruction::IPUT:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
break;
case Instruction::IPUT_WIDE:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
break;
case Instruction::IPUT_OBJECT:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
false);
break;
case Instruction::SGET_BOOLEAN:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
break;
case Instruction::SGET_BYTE:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
break;
case Instruction::SGET_CHAR:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
break;
case Instruction::SGET_SHORT:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
break;
case Instruction::SGET:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
break;
case Instruction::SGET_WIDE:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
break;
case Instruction::SGET_OBJECT:
VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
true);
break;
case Instruction::SPUT_BOOLEAN:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
break;
case Instruction::SPUT_BYTE:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
break;
case Instruction::SPUT_CHAR:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
break;
case Instruction::SPUT_SHORT:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
break;
case Instruction::SPUT:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
break;
case Instruction::SPUT_WIDE:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
break;
case Instruction::SPUT_OBJECT:
VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
true);
break;
case Instruction::INVOKE_VIRTUAL:
case Instruction::INVOKE_VIRTUAL_RANGE:
case Instruction::INVOKE_SUPER:
case Instruction::INVOKE_SUPER_RANGE: {
bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
const RegType* return_type = nullptr;
if (called_method != nullptr) {
ObjPtr<mirror::Class> return_type_class = can_load_classes_
? called_method->ResolveReturnType()
: called_method->LookupResolvedReturnType();
if (return_type_class != nullptr) {
return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
return_type_class,
return_type_class->CannotBeAssignedFromOtherTypes());
} else {
DCHECK_IMPLIES(can_load_classes_, self_->IsExceptionPending());
self_->ClearException();
}
}
if (return_type == nullptr) {
uint32_t method_idx = GetMethodIdxOfInvoke(inst);
const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
dex::TypeIndex return_type_idx =
dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
return_type = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
}
if (!return_type->IsLowHalf()) {
work_line_->SetResultRegisterType(this, *return_type);
} else {
work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
}
just_set_result = true;
break;
}
case Instruction::INVOKE_DIRECT:
case Instruction::INVOKE_DIRECT_RANGE: {
bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
const char* return_type_descriptor;
bool is_constructor;
const RegType* return_type = nullptr;
if (called_method == nullptr) {
uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
dex::TypeIndex return_type_idx =
dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
return_type_descriptor = dex_file_->StringByTypeIdx(return_type_idx);
} else {
is_constructor = called_method->IsConstructor();
return_type_descriptor = called_method->GetReturnTypeDescriptor();
ObjPtr<mirror::Class> return_type_class = can_load_classes_
? called_method->ResolveReturnType()
: called_method->LookupResolvedReturnType();
if (return_type_class != nullptr) {
return_type = &FromClass(return_type_descriptor,
return_type_class,
return_type_class->CannotBeAssignedFromOtherTypes());
} else {
DCHECK_IMPLIES(can_load_classes_, self_->IsExceptionPending());
self_->ClearException();
}
}
if (is_constructor) {
/*
* Some additional checks when calling a constructor. We know from the invocation arg check
* that the "this" argument is an instance of called_method->klass. Now we further restrict
* that to require that called_method->klass is the same as this->klass or this->super,
* allowing the latter only if the "this" argument is the same as the "this" argument to
* this method (which implies that we're in a constructor ourselves).
*/
const RegType& this_type = work_line_->GetInvocationThis(this, inst);
if (this_type.IsConflict()) // failure.
break;
/* no null refs allowed (?) */
if (this_type.IsZeroOrNull()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
break;
}
/* must be in same class or in superclass */
// const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
// TODO: re-enable constructor type verification
// if (this_super_klass.IsConflict()) {
// Unknown super class, fail so we re-check at runtime.
// Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
// break;
// }
/* arg must be an uninitialized reference */
if (!this_type.IsUninitializedTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
<< this_type;
break;
}
/*
* Replace the uninitialized reference with an initialized one. We need to do this for all
* registers that have the same object instance in them, not just the "this" register.
*/
work_line_->MarkRefsAsInitialized(this, this_type);
}
if (return_type == nullptr) {
return_type = &reg_types_.FromDescriptor(class_loader_.Get(),
return_type_descriptor,
false);
}
if (!return_type->IsLowHalf()) {
work_line_->SetResultRegisterType(this, *return_type);
} else {
work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
}
just_set_result = true;
break;
}
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_STATIC_RANGE: {
bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
const char* descriptor;
if (called_method == nullptr) {
uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
dex::TypeIndex return_type_idx =
dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
descriptor = dex_file_->StringByTypeIdx(return_type_idx);
} else {
descriptor = called_method->GetReturnTypeDescriptor();
}
const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
descriptor,
false);
if (!return_type.IsLowHalf()) {
work_line_->SetResultRegisterType(this, return_type);
} else {
work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
}
just_set_result = true;
}
break;
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_INTERFACE_RANGE: {
bool is_range = (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
if (abs_method != nullptr) {
ObjPtr<mirror::Class> called_interface = abs_method->GetDeclaringClass();
if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
<< abs_method->PrettyMethod() << "'";
break;
}
}
/* Get the type of the "this" arg, which should either be a sub-interface of called
* interface or Object (see comments in RegType::JoinClass).
*/
const RegType& this_type = work_line_->GetInvocationThis(this, inst);
if (this_type.IsZeroOrNull()) {
/* null pointer always passes (and always fails at runtime) */
} else {
if (this_type.IsUninitializedTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
<< this_type;
break;
}
// In the past we have tried to assert that "called_interface" is assignable
// from "this_type.GetClass()", however, as we do an imprecise Join
// (RegType::JoinClass) we don't have full information on what interfaces are
// implemented by "this_type". For example, two classes may implement the same
// interfaces and have a common parent that doesn't implement the interface. The
// join will set "this_type" to the parent class and a test that this implements
// the interface will incorrectly fail.
}
/*
* We don't have an object instance, so we can't find the concrete method. However, all of
* the type information is in the abstract method, so we're good.
*/
const char* descriptor;
if (abs_method == nullptr) {
uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
dex::TypeIndex return_type_idx =
dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
descriptor = dex_file_->StringByTypeIdx(return_type_idx);
} else {
descriptor = abs_method->GetReturnTypeDescriptor();
}
const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
descriptor,
false);
if (!return_type.IsLowHalf()) {
work_line_->SetResultRegisterType(this, return_type);
} else {
work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
}
just_set_result = true;
break;
}
case Instruction::INVOKE_POLYMORPHIC:
case Instruction::INVOKE_POLYMORPHIC_RANGE: {
bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
if (called_method == nullptr) {
// Convert potential soft failures in VerifyInvocationArgs() to hard errors.
if (failure_messages_.size() > 0) {
std::string message = failure_messages_.back()->str();
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
} else {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
}
break;
}
if (!CheckSignaturePolymorphicMethod(called_method) ||
!CheckSignaturePolymorphicReceiver(inst)) {
DCHECK(HasFailures());
break;
}
const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
const dex::ProtoIndex proto_idx(vRegH);
const char* return_descriptor =
dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
const RegType& return_type =
reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
if (!return_type.IsLowHalf()) {
work_line_->SetResultRegisterType(this, return_type);
} else {
work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
}
just_set_result = true;
break;
}
case Instruction::INVOKE_CUSTOM:
case Instruction::INVOKE_CUSTOM_RANGE: {
// Verify registers based on method_type in the call site.
bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);
// Step 1. Check the call site that produces the method handle for invocation
const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
if (!CheckCallSite(call_site_idx)) {
DCHECK(HasFailures());
break;
}
// Step 2. Check the register arguments correspond to the expected arguments for the
// method handle produced by step 1. The dex file verifier has checked ranges for
// the first three arguments and CheckCallSite has checked the method handle type.
const dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
const dex::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
DexFileParameterIterator param_it(*dex_file_, proto_id);
// Treat method as static as it has yet to be determined.
VerifyInvocationArgsFromIterator(&param_it, inst, METHOD_STATIC, is_range, nullptr);
const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
// Step 3. Propagate return type information
const RegType& return_type =
reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
if (!return_type.IsLowHalf()) {
work_line_->SetResultRegisterType(this, return_type);
} else {
work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
}
just_set_result = true;
break;
}
case Instruction::NEG_INT:
case Instruction::NOT_INT:
work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
break;
case Instruction::NEG_LONG:
case Instruction::NOT_LONG:
work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.LongLo(), reg_types_.LongHi());
break;
case Instruction::NEG_FLOAT:
work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
break;
case Instruction::NEG_DOUBLE:
work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
reg_types_.DoubleLo(), reg_types_.DoubleHi());
break;
case Instruction::INT_TO_LONG:
work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.Integer());
break;
case Instruction::INT_TO_FLOAT:
work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
break;
case Instruction::INT_TO_DOUBLE:
work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
reg_types_.Integer());
break;
case Instruction::LONG_TO_INT:
work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
reg_types_.LongLo(), reg_types_.LongHi());
break;
case Instruction::LONG_TO_FLOAT:
work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
reg_types_.LongLo(), reg_types_.LongHi());
break;
case Instruction::LONG_TO_DOUBLE:
work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
reg_types_.LongLo(), reg_types_.LongHi());
break;
case Instruction::FLOAT_TO_INT:
work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
break;
case Instruction::FLOAT_TO_LONG:
work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.Float());
break;
case Instruction::FLOAT_TO_DOUBLE:
work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
reg_types_.Float());
break;
case Instruction::DOUBLE_TO_INT:
work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
reg_types_.DoubleLo(), reg_types_.DoubleHi());
break;
case Instruction::DOUBLE_TO_LONG:
work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.DoubleLo(), reg_types_.DoubleHi());
break;
case Instruction::DOUBLE_TO_FLOAT:
work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
reg_types_.DoubleLo(), reg_types_.DoubleHi());
break;
case Instruction::INT_TO_BYTE:
work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
break;
case Instruction::INT_TO_CHAR:
work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
break;
case Instruction::INT_TO_SHORT:
work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
break;
case Instruction::ADD_INT:
case Instruction::SUB_INT:
case Instruction::MUL_INT:
case Instruction::REM_INT:
case Instruction::DIV_INT:
case Instruction::SHL_INT:
case Instruction::SHR_INT:
case Instruction::USHR_INT:
work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
reg_types_.Integer(), false);
break;
case Instruction::AND_INT:
case Instruction::OR_INT:
case Instruction::XOR_INT:
work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
reg_types_.Integer(), true);
break;
case Instruction::ADD_LONG:
case Instruction::SUB_LONG:
case Instruction::MUL_LONG:
case Instruction::DIV_LONG:
case Instruction::REM_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.LongLo(), reg_types_.LongHi());
break;
case Instruction::SHL_LONG:
case Instruction::SHR_LONG:
case Instruction::USHR_LONG:
/* shift distance is Int, making these different from other binary operations */
work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.Integer());
break;
case Instruction::ADD_FLOAT:
case Instruction::SUB_FLOAT:
case Instruction::MUL_FLOAT:
case Instruction::DIV_FLOAT:
case Instruction::REM_FLOAT:
work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
reg_types_.Float(), false);
break;
case Instruction::ADD_DOUBLE:
case Instruction::SUB_DOUBLE:
case Instruction::MUL_DOUBLE:
case Instruction::DIV_DOUBLE:
case Instruction::REM_DOUBLE:
work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
reg_types_.DoubleLo(), reg_types_.DoubleHi(),
reg_types_.DoubleLo(), reg_types_.DoubleHi());
break;
case Instruction::ADD_INT_2ADDR:
case Instruction::SUB_INT_2ADDR:
case Instruction::MUL_INT_2ADDR:
case Instruction::REM_INT_2ADDR:
case Instruction::SHL_INT_2ADDR:
case Instruction::SHR_INT_2ADDR:
case Instruction::USHR_INT_2ADDR:
work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
reg_types_.Integer(), false);
break;
case Instruction::AND_INT_2ADDR:
case Instruction::OR_INT_2ADDR:
case Instruction::XOR_INT_2ADDR:
work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
reg_types_.Integer(), true);
break;
case Instruction::DIV_INT_2ADDR:
work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
reg_types_.Integer(), false);
break;
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::MUL_LONG_2ADDR:
case Instruction::DIV_LONG_2ADDR:
case Instruction::REM_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.LongLo(), reg_types_.LongHi());
break;
case Instruction::SHL_LONG_2ADDR:
case Instruction::SHR_LONG_2ADDR:
case Instruction::USHR_LONG_2ADDR:
work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
reg_types_.Integer());
break;
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::REM_FLOAT_2ADDR:
work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
reg_types_.Float(), false);
break;
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE_2ADDR:
work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
reg_types_.DoubleLo(), reg_types_.DoubleHi(),
reg_types_.DoubleLo(), reg_types_.DoubleHi());
break;
case Instruction::ADD_INT_LIT16:
case Instruction::RSUB_INT_LIT16:
case Instruction::MUL_INT_LIT16:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT_LIT16:
work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
true);
break;
case Instruction::AND_INT_LIT16:
case Instruction::OR_INT_LIT16:
case Instruction::XOR_INT_LIT16:
work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
true);
break;
case Instruction::ADD_INT_LIT8:
case Instruction::RSUB_INT_LIT8:
case Instruction::MUL_INT_LIT8:
case Instruction::DIV_INT_LIT8:
case Instruction::REM_INT_LIT8:
case Instruction::SHL_INT_LIT8:
case Instruction::SHR_INT_LIT8:
case Instruction::USHR_INT_LIT8:
work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
false);
break;
case Instruction::AND_INT_LIT8:
case Instruction::OR_INT_LIT8:
case Instruction::XOR_INT_LIT8:
work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
false);
break;
/* These should never appear during verification. */
case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9:
case Instruction::UNUSED_73:
case Instruction::UNUSED_79:
case Instruction::UNUSED_7A:
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
break;
/*
* DO NOT add a "default" clause here. Without it the compiler will
* complain if an instruction is missing (which is desirable).
*/
} // end - switch (dec_insn.opcode)
if (flags_.have_pending_hard_failure_) {
if (IsAotMode()) {
/* When AOT compiling, check that the last failure is a hard failure */
if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
LOG(ERROR) << "Pending failures:";
for (auto& error : failures_) {
LOG(ERROR) << error;
}
for (auto& error_msg : failure_messages_) {
LOG(ERROR) << error_msg->str();
}
LOG(FATAL) << "Pending hard failure, but last failure not hard.";
}
}
/* immediate failure, reject class */
info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
return false;
} else if (flags_.have_pending_runtime_throw_failure_) {
LogVerifyInfo() << "Elevating opcode flags from " << opcode_flags << " to Throw";
/* checking interpreter will throw, mark following code as unreachable */
opcode_flags = Instruction::kThrow;
// Note: the flag must be reset as it is only global to decouple Fail and is semantically per
// instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
// very end.
}
/*
* If we didn't just set the result register, clear it out. This ensures that you can only use
* "move-result" immediately after the result is set. (We could check this statically, but it's
* not expensive and it makes our debugging output cleaner.)
*/
if (!just_set_result) {
work_line_->SetResultTypeToUnknown(GetRegTypeCache());
}
/*
* Handle "branch". Tag the branch target.
*
* NOTE: instructions like Instruction::EQZ provide information about the
* state of the register when the branch is taken or not taken. For example,
* somebody could get a reference field, check it for zero, and if the
* branch is taken immediately store that register in a boolean field
* since the value is known to be zero. We do not currently account for
* that, and will reject the code.
*
* TODO: avoid re-fetching the branch target
*/
if ((opcode_flags & Instruction::kBranch) != 0) {
bool isConditional, selfOkay;
if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
/* should never happen after static verification */
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
return false;
}
DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(),
work_insn_idx_ + branch_target)) {
return false;
}
/* update branch target, set "changed" if appropriate */
if (nullptr != branch_line) {
if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
return false;
}
} else {
if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
return false;
}
}
}
/*
* Handle "switch". Tag all possible branch targets.
*
* We've already verified that the table is structurally sound, so we
* just need to walk through and tag the targets.
*/
if ((opcode_flags & Instruction::kSwitch) != 0) {
int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
const uint16_t* switch_insns = insns + offset_to_switch;
int switch_count = switch_insns[1];
int offset_to_targets, targ;
if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
/* 0 = sig, 1 = count, 2/3 = first key */
offset_to_targets = 4;
} else {
/* 0 = sig, 1 = count, 2..count * 2 = keys */
DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
offset_to_targets = 2 + 2 * switch_count;
}
/* verify each switch target */
for (targ = 0; targ < switch_count; targ++) {
int offset;
uint32_t abs_offset;
/* offsets are 32-bit, and only partly endian-swapped */
offset = switch_insns[offset_to_targets + targ * 2] |
(static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
abs_offset = work_insn_idx_ + offset;
DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits());
if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) {
return false;
}
if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
return false;
}
}
}
/*
* Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
* "try" block when they throw, control transfers out of the method.)
*/
if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
bool has_catch_all_handler = false;
const dex::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_);
CHECK(try_item != nullptr);
CatchHandlerIterator iterator(code_item_accessor_, *try_item);
// Need the linker to try and resolve the handled class to check if it's Throwable.
ClassLinker* linker = GetClassLinker();
for (; iterator.HasNext(); iterator.Next()) {
dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
if (!handler_type_idx.IsValid()) {
has_catch_all_handler = true;
} else {
// It is also a catch-all if it is java.lang.Throwable.
ObjPtr<mirror::Class> klass =
linker->ResolveType(handler_type_idx, dex_cache_, class_loader_);
if (klass != nullptr) {
if (klass == GetClassRoot<mirror::Throwable>()) {
has_catch_all_handler = true;
}
} else {
// Clear exception.
DCHECK(self_->IsExceptionPending());
self_->ClearException();
}
}
/*
* Merge registers into the "catch" block. We want to use the "savedRegs" rather than
* "work_regs", because at runtime the exception will be thrown before the instruction
* modifies any registers.
*/
if (kVerifierDebug) {
LogVerifyInfo() << "Updating exception handler 0x"
<< std::hex << iterator.GetHandlerAddress();
}
if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
return false;
}
}
/*
* If the monitor stack depth is nonzero, there must be a "catch all" handler for this
* instruction. This does apply to monitor-exit because of async exception handling.
*/
if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
/*
* The state in work_line reflects the post-execution state. If the current instruction is a
* monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
* it will do so before grabbing the lock).
*/
if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "expected to be within a catch-all for an instruction where a monitor is held";
return false;
}
}
}
/* Handle "continue". Tag the next consecutive instruction.
* Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
* because it changes work_line_ when performing peephole optimization
* and this change should not be used in those cases.
*/
if ((opcode_flags & Instruction::kContinue) != 0 && !exc_handler_unreachable) {
DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
return false;
}
// The only way to get to a move-exception instruction is to get thrown there. Make sure the
// next instruction isn't one.
if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) {
return false;
}
if (nullptr != fallthrough_line) {
// Make workline consistent with fallthrough computed from peephole optimization.
work_line_->CopyFromLine(fallthrough_line.get());
}
if (GetInstructionFlags(next_insn_idx).IsReturn()) {
// For returns we only care about the operand to the return, all other registers are dead.
const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx);
AdjustReturnLine(this, ret_inst, work_line_.get());
}
RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
if (next_line != nullptr) {
// Merge registers into what we have for the next instruction, and set the "changed" flag if
// needed. If the merge changes the state of the registers then the work line will be
// updated.
if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
return false;
}
} else {
/*
* We're not recording register data for the next instruction, so we don't know what the
* prior state was. We have to assume that something has changed and re-evaluate it.
*/
GetModifiableInstructionFlags(next_insn_idx).SetChanged();
}
}
/* If we're returning from the method, make sure monitor stack is empty. */
if ((opcode_flags & Instruction::kReturn) != 0) {
work_line_->VerifyMonitorStackEmpty(this);
}
/*
* Update start_guess. Advance to the next instruction of that's
* possible, otherwise use the branch target if one was found. If
* neither of those exists we're in a return or throw; leave start_guess
* alone and let the caller sort it out.
*/
if ((opcode_flags & Instruction::kContinue) != 0) {
DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
*start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
} else if ((opcode_flags & Instruction::kBranch) != 0) {
/* we're still okay if branch_target is zero */
*start_guess = work_insn_idx_ + branch_target;
}
DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits());
DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
if (flags_.have_pending_runtime_throw_failure_) {
Fail(VERIFY_ERROR_RUNTIME_THROW, /* pending_exc= */ false);
// Reset the pending_runtime_throw flag now.
flags_.have_pending_runtime_throw_failure_ = false;
}
return true;
} // NOLINT(readability/fn_size)
template <bool kVerifierDebug>
template <CheckAccess C>
const RegType& MethodVerifier<kVerifierDebug>::ResolveClass(dex::TypeIndex class_idx) {
ClassLinker* linker = GetClassLinker();
ObjPtr<mirror::Class> klass = can_load_classes_
? linker->ResolveType(class_idx, dex_cache_, class_loader_)
: linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get());
if (can_load_classes_ && klass == nullptr) {
DCHECK(self_->IsExceptionPending());
self_->ClearException();
}
const RegType* result = nullptr;
if (klass != nullptr) {
bool precise = klass->CannotBeAssignedFromOtherTypes();
if (precise && !IsInstantiableOrPrimitive(klass)) {
const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
UninstantiableError(descriptor);
precise = false;
}
result = reg_types_.FindClass(klass, precise);
if (result == nullptr) {
const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
result = reg_types_.InsertClass(descriptor, klass, precise);
}
} else {
const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
result = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
}
DCHECK(result != nullptr);
if (result->IsConflict()) {
const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "accessing broken descriptor '" << descriptor
<< "' in " << GetDeclaringClass();
return *result;
}
// If requested, check if access is allowed. Unresolved types are included in this check, as the
// interpreter only tests whether access is allowed when a class is not pre-verified and runs in
// the access-checks interpreter. If result is primitive, skip the access check.
//
// Note: we do this for unresolved classes to trigger re-verification at runtime.
if (C != CheckAccess::kNo &&
result->IsNonZeroReferenceTypes() &&
((C == CheckAccess::kYes && IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP))
|| !result->IsUnresolvedTypes())) {
const RegType& referrer = GetDeclaringClass();
if ((IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP) || !referrer.IsUnresolvedTypes()) &&
!referrer.CanAccess(*result)) {
if (IsAotMode()) {
Fail(VERIFY_ERROR_ACCESS_CLASS);
VLOG(verifier)
<< "(possibly) illegal class access: '" << referrer << "' -> '" << *result << "'";
} else {
Fail(VERIFY_ERROR_ACCESS_CLASS)
<< "(possibly) illegal class access: '" << referrer << "' -> '" << *result << "'";
}
}
}
return *result;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::HandleMoveException(const Instruction* inst) {
// We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
// where one entrypoint to the catch block is not actually an exception path.
if (work_insn_idx_ == 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
return true;
}
/*
* This statement can only appear as the first instruction in an exception handler. We verify
* that as part of extracting the exception type from the catch block list.
*/
auto caught_exc_type_fn = [&]() REQUIRES_SHARED(Locks::mutator_lock_) ->
std::pair<bool, const RegType*> {
const RegType* common_super = nullptr;
if (code_item_accessor_.TriesSize() != 0) {
const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
const RegType* unresolved = nullptr;
for (uint32_t i = 0; i < handlers_size; i++) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
if (!iterator.GetHandlerTypeIndex().IsValid()) {
common_super = &reg_types_.JavaLangThrowable(false);
} else {
// Do access checks only on resolved exception classes.
const RegType& exception =
ResolveClass<CheckAccess::kOnResolvedClass>(iterator.GetHandlerTypeIndex());
if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) {
DCHECK(!exception.IsUninitializedTypes()); // Comes from dex, shouldn't be uninit.
if (exception.IsUnresolvedTypes()) {
if (unresolved == nullptr) {
unresolved = &exception;
} else {
unresolved = &unresolved->SafeMerge(exception, &reg_types_, this);
}
} else {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-throwable class "
<< exception;
return std::make_pair(true, &reg_types_.Conflict());
}
} else if (common_super == nullptr) {
common_super = &exception;
} else if (common_super->Equals(exception)) {
// odd case, but nothing to do
} else {
common_super = &common_super->Merge(exception, &reg_types_, this);
if (FailOrAbort(reg_types_.JavaLangThrowable(false).IsAssignableFrom(
*common_super, this),
"java.lang.Throwable is not assignable-from common_super at ",
work_insn_idx_)) {
break;
}
}
}
}
}
handlers_ptr = iterator.EndDataPointer();
}
if (unresolved != nullptr) {
// Soft-fail, but do not handle this with a synthetic throw.
Fail(VERIFY_ERROR_UNRESOLVED_TYPE_CHECK, /*pending_exc=*/ false)
<< "Unresolved catch handler";
bool should_continue = true;
if (common_super != nullptr) {
unresolved = &unresolved->Merge(*common_super, &reg_types_, this);
} else {
should_continue = !PotentiallyMarkRuntimeThrow();
}
return std::make_pair(should_continue, unresolved);
}
}
if (common_super == nullptr) {
/* No catch block */
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to find exception handler";
return std::make_pair(true, &reg_types_.Conflict());
}
return std::make_pair(true, common_super);
};
auto result = caught_exc_type_fn();
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_11x(), *result.second);
return result.first;
}
template <bool kVerifierDebug>
ArtMethod* MethodVerifier<kVerifierDebug>::ResolveMethodAndCheckAccess(
uint32_t dex_method_idx, MethodType method_type) {
const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_);
if (klass_type.IsConflict()) {
std::string append(" in attempt to access method ");
append += dex_file_->GetMethodName(method_id);
AppendToLastFailMessage(append);
return nullptr;
}
if (klass_type.IsUnresolvedTypes()) {
return nullptr; // Can't resolve Class so no more to do here
}
ObjPtr<mirror::Class> klass = klass_type.GetClass();
const RegType& referrer = GetDeclaringClass();
ClassLinker* class_linker = GetClassLinker();
ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
if (res_method == nullptr) {
res_method = class_linker->FindResolvedMethod(
klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
}
bool must_fail = false;
// This is traditional and helps with screwy bytecode. It will tell you that, yes, a method
// exists, but that it's called incorrectly. This significantly helps debugging, as locally it's
// hard to see the differences.
// If we don't have res_method here we must fail. Just use this bool to make sure of that with a
// DCHECK.
if (res_method == nullptr) {
must_fail = true;
// Try to find the method also with the other type for better error reporting below
// but do not store such bogus lookup result in the DexCache or VerifierDeps.
res_method = class_linker->FindIncompatibleMethod(
klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
}
if (res_method == nullptr) {
Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
<< klass->PrettyDescriptor() << "."
<< dex_file_->GetMethodName(method_id) << " "
<< dex_file_->GetMethodSignature(method_id);
return nullptr;
}
// Make sure calls to constructors are "direct". There are additional restrictions but we don't
// enforce them here.
if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
<< res_method->PrettyMethod();
return nullptr;
}
// Disallow any calls to class initializers.
if (res_method->IsClassInitializer()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
<< res_method->PrettyMethod();
return nullptr;
}
// Check that interface methods are static or match interface classes.
// We only allow statics if we don't have default methods enabled.
//
// Note: this check must be after the initializer check, as those are required to fail a class,
// while this check implies an IncompatibleClassChangeError.
if (klass->IsInterface()) {
// methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
// default methods are supported for the dex file), or invoke-static.
if (method_type != METHOD_INTERFACE &&
method_type != METHOD_STATIC &&
(!dex_file_->SupportsDefaultMethods() ||
method_type != METHOD_DIRECT) &&
method_type != METHOD_SUPER) {
Fail(VERIFY_ERROR_CLASS_CHANGE)
<< "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
<< " is in an interface class " << klass->PrettyClass();
return nullptr;
}
} else {
if (method_type == METHOD_INTERFACE) {
Fail(VERIFY_ERROR_CLASS_CHANGE)
<< "interface method " << dex_file_->PrettyMethod(dex_method_idx)
<< " is in a non-interface class " << klass->PrettyClass();
return nullptr;
}
}
// Check specifically for non-public object methods being provided for interface dispatch. This
// can occur if we failed to find a method with FindInterfaceMethod but later find one with
// FindClassMethod for error message use.
if (method_type == METHOD_INTERFACE &&
res_method->GetDeclaringClass()->IsObjectClass() &&
!res_method->IsPublic()) {
Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "."
<< dex_file_->GetMethodName(method_id) << " "
<< dex_file_->GetMethodSignature(method_id) << " resolved to "
<< "non-public object method " << res_method->PrettyMethod() << " "
<< "but non-public Object methods are excluded from interface "
<< "method resolution.";
return nullptr;
}
// Check if access is allowed.
if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
<< res_method->PrettyMethod()
<< " from " << referrer << ")";
return res_method;
}
// Check that invoke-virtual and invoke-super are not used on private methods of the same class.
if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
<< res_method->PrettyMethod();
return nullptr;
}
// See if the method type implied by the invoke instruction matches the access flags for the
// target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
// signature polymorphic methods supported by the run-time which are native methods with variable
// arguments.
if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
(method_type == METHOD_STATIC && !res_method->IsStatic()) ||
((method_type == METHOD_SUPER ||
method_type == METHOD_VIRTUAL ||
method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
((method_type == METHOD_POLYMORPHIC) &&
(!res_method->IsNative() || !res_method->IsVarargs()))) {
Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
"type of " << res_method->PrettyMethod();
return nullptr;
}
// Make sure we weren't expecting to fail.
DCHECK(!must_fail) << "invoke type (" << method_type << ")"
<< klass->PrettyDescriptor() << "."
<< dex_file_->GetMethodName(method_id) << " "
<< dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to "
<< res_method->PrettyMethod() << " without error. Initially this method was "
<< "not found so we were expecting to fail for some reason.";
return res_method;
}
template <bool kVerifierDebug>
template <class T>
ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgsFromIterator(
T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
DCHECK_EQ(!is_range, inst->HasVarArgs());
// We use vAA as our expected arg count, rather than res_method->insSize, because we need to
// match the call to the signature. Also, we might be calling through an abstract method
// definition (which doesn't have register count values).
const size_t expected_args = inst->VRegA();
/* caught by static verifier */
DCHECK(is_range || expected_args <= 5);
if (expected_args > code_item_accessor_.OutsSize()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
<< ") exceeds outsSize ("
<< code_item_accessor_.OutsSize() << ")";
return nullptr;
}
/*
* Check the "this" argument, which must be an instance of the class that declared the method.
* For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
* rigorous check here (which is okay since we have to do it at runtime).
*/
if (method_type != METHOD_STATIC) {
const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
if (actual_arg_type.IsConflict()) { // GetInvocationThis failed.
CHECK(flags_.have_pending_hard_failure_);
return nullptr;
}
bool is_init = false;
if (actual_arg_type.IsUninitializedTypes()) {
if (res_method != nullptr) {
if (!res_method->IsConstructor()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
return nullptr;
}
} else {
// Check whether the name of the called method is "<init>"
const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
return nullptr;
}
}
is_init = true;
}
const RegType& adjusted_type = is_init
? GetRegTypeCache()->FromUninitialized(actual_arg_type)
: actual_arg_type;
if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) {
const RegType* res_method_class;
// Miranda methods have the declaring interface as their declaring class, not the abstract
// class. It would be wrong to use this for the type check (interface type checks are
// postponed to runtime).
if (res_method != nullptr && !res_method->IsMiranda()) {
ObjPtr<mirror::Class> klass = res_method->GetDeclaringClass();
std::string temp;
res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
klass->CannotBeAssignedFromOtherTypes());
} else {
const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
res_method_class = &reg_types_.FromDescriptor(
class_loader_.Get(),
dex_file_->StringByTypeIdx(class_idx),
false);
}
if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
Fail(adjusted_type.IsUnresolvedTypes()
? VERIFY_ERROR_UNRESOLVED_TYPE_CHECK
: VERIFY_ERROR_BAD_CLASS_HARD)
<< "'this' argument '" << actual_arg_type << "' not instance of '"
<< *res_method_class << "'";
// Continue on soft failures. We need to find possible hard failures to avoid problems in
// the compiler.
if (flags_.have_pending_hard_failure_) {
return nullptr;
}
}
}
}
uint32_t arg[5];
if (!is_range) {
inst->GetVarArgs(arg);
}
uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
for ( ; it->HasNext(); it->Next()) {
if (sig_registers >= expected_args) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
" argument registers, method signature has " << sig_registers + 1 << " or more";
return nullptr;
}
const char* param_descriptor = it->GetDescriptor();
if (param_descriptor == nullptr) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
"component";
return nullptr;
}
const RegType& reg_type = reg_types_.FromDescriptor(class_loader_.Get(),
param_descriptor,
false);
uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
arg[sig_registers];
if (reg_type.IsIntegralTypes()) {
const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
if (!src_type.IsIntegralTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
<< " but expected " << reg_type;
return nullptr;
}
} else {
if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
// Continue on soft failures. We need to find possible hard failures to avoid problems in
// the compiler.
if (flags_.have_pending_hard_failure_) {
return nullptr;
}
} else if (reg_type.IsLongOrDoubleTypes()) {
// Check that registers are consecutive (for non-range invokes). Invokes are the only
// instructions not specifying register pairs by the first component, but require them
// nonetheless. Only check when there's an actual register in the parameters. If there's
// none, this will fail below.
if (!is_range && sig_registers + 1 < expected_args) {
uint32_t second_reg = arg[sig_registers + 1];
if (second_reg != get_reg + 1) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
"at index " << sig_registers << " is not a pair: " << get_reg << " + "
<< second_reg << ".";
return nullptr;
}
}
}
}
sig_registers += reg_type.IsLongOrDoubleTypes() ? 2 : 1;
}
if (expected_args != sig_registers) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
" argument registers, method signature has " << sig_registers;
return nullptr;
}
return res_method;
}
template <bool kVerifierDebug>
void MethodVerifier<kVerifierDebug>::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
MethodType method_type,
bool is_range) {
// As the method may not have been resolved, make this static check against what we expect.
// The main reason for this code block is to fail hard when we find an illegal use, e.g.,
// wrong number of arguments or wrong primitive types, even if the method could not be resolved.
const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
DexFileParameterIterator it(*dex_file_,
dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::CheckCallSite(uint32_t call_site_idx) {
if (call_site_idx >= dex_file_->NumCallSiteIds()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
<< " >= " << dex_file_->NumCallSiteIds();
return false;
}
CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
// Check essential arguments are provided. The dex file verifier has verified indices of the
// main values (method handle, name, method_type).
static const size_t kRequiredArguments = 3;
if (it.Size() < kRequiredArguments) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
<< " has too few arguments: "
<< it.Size() << " < " << kRequiredArguments;
return false;
}
std::pair<const EncodedArrayValueIterator::ValueType, size_t> type_and_max[kRequiredArguments] =
{ { EncodedArrayValueIterator::ValueType::kMethodHandle, dex_file_->NumMethodHandles() },
{ EncodedArrayValueIterator::ValueType::kString, dex_file_->NumStringIds() },
{ EncodedArrayValueIterator::ValueType::kMethodType, dex_file_->NumProtoIds() }
};
uint32_t index[kRequiredArguments];
// Check arguments have expected types and are within permitted ranges.
for (size_t i = 0; i < kRequiredArguments; ++i) {
if (it.GetValueType() != type_and_max[i].first) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
<< " argument " << i << " has wrong type "
<< it.GetValueType() << "!=" << type_and_max[i].first;
return false;
}
index[i] = static_cast<uint32_t>(it.GetJavaValue().i);
if (index[i] >= type_and_max[i].second) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
<< " argument " << i << " bad index "
<< index[i] << " >= " << type_and_max[i].second;
return false;
}
it.Next();
}
// Check method handle kind is valid.
const dex::MethodHandleItem& mh = dex_file_->GetMethodHandle(index[0]);
if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
<< " argument 0 method handle type is not InvokeStatic: "
<< mh.method_handle_type_;
return false;
}
return true;
}
class MethodParamListDescriptorIterator {
public:
explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
params_size_(params_ == nullptr ? 0 : params_->Size()) {
}
bool HasNext() {
return pos_ < params_size_;
}
void Next() {
++pos_;
}
const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
}
private:
ArtMethod* res_method_;
size_t pos_;
const dex::TypeList* params_;
const size_t params_size_;
};
template <bool kVerifierDebug>
ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgs(
const Instruction* inst, MethodType method_type, bool is_range) {
// Resolve the method. This could be an abstract or concrete method depending on what sort of call
// we're making.
const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
if (res_method == nullptr) { // error or class is unresolved
// Check what we can statically.
if (!flags_.have_pending_hard_failure_) {
VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
}
return nullptr;
}
// If we're using invoke-super(method), make sure that the executing method's class' superclass
// has a vtable entry for the target method. Or the target is on a interface.
if (method_type == METHOD_SUPER) {
dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
const RegType& reference_type = reg_types_.FromDescriptor(
class_loader_.Get(),
dex_file_->StringByTypeIdx(class_idx),
false);
if (reference_type.IsUnresolvedTypes()) {
// We cannot differentiate on whether this is a class change error or just
// a missing method. This will be handled at runtime.
Fail(VERIFY_ERROR_NO_METHOD) << "Unable to find referenced class from invoke-super";
return nullptr;
}
if (reference_type.GetClass()->IsInterface()) {
if (!GetDeclaringClass().HasClass()) {
Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
<< "interface invoke-super";
return nullptr;
} else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
Fail(VERIFY_ERROR_CLASS_CHANGE)
<< "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
<< " in method "
<< dex_file_->PrettyMethod(dex_method_idx_) << " to method "
<< dex_file_->PrettyMethod(method_idx) << " references "
<< "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
return nullptr;
}
} else {
const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
if (super.IsUnresolvedTypes()) {
Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
<< dex_file_->PrettyMethod(dex_method_idx_)
<< " to super " << res_method->PrettyMethod();
return nullptr;
}
if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
(res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
<< dex_file_->PrettyMethod(dex_method_idx_)
<< " to super " << super
<< "." << res_method->GetName()
<< res_method->GetSignature();
return nullptr;
}
}
}
if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) {
// Process the signature of the calling site that is invoking the method handle.
dex::ProtoIndex proto_idx(inst->VRegH());
DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(proto_idx));
return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
} else {
// Process the target method's signature.
MethodParamListDescriptorIterator it(res_method);
return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
}
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicMethod(ArtMethod* method) {
ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
const char* method_name = method->GetName();
const char* expected_return_descriptor;
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
if (klass == GetClassRoot<mirror::MethodHandle>(class_roots)) {
expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name);
} else if (klass == GetClassRoot<mirror::VarHandle>(class_roots)) {
expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name);
} else {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor();
return false;
}
if (expected_return_descriptor == nullptr) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "Signature polymorphic method name invalid: " << method_name;
return false;
}
const dex::TypeList* types = method->GetParameterTypeList();
if (types->Size() != 1) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
return false;
}
const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
return false;
}
const char* return_descriptor = method->GetReturnTypeDescriptor();
if (strcmp(return_descriptor, expected_return_descriptor) != 0) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "Signature polymorphic method has unexpected return type: " << return_descriptor
<< " != " << expected_return_descriptor;
return false;
}
return true;
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
const RegType& this_type = work_line_->GetInvocationThis(this, inst);
if (this_type.IsZeroOrNull()) {
/* null pointer always passes (and always fails at run time) */
return true;
} else if (!this_type.IsNonZeroReferenceTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "invoke-polymorphic receiver is not a reference: "
<< this_type;
return false;
} else if (this_type.IsUninitializedReference()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "invoke-polymorphic receiver is uninitialized: "
<< this_type;
return false;
} else if (!this_type.HasClass()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "invoke-polymorphic receiver has no class: "
<< this_type;
return false;
} else {
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
if (!this_type.GetClass()->IsSubClass(GetClassRoot<mirror::MethodHandle>(class_roots)) &&
!this_type.GetClass()->IsSubClass(GetClassRoot<mirror::VarHandle>(class_roots))) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: "
<< this_type;
return false;
}
}
return true;
}
template <bool kVerifierDebug>
void MethodVerifier<kVerifierDebug>::VerifyNewArray(const Instruction* inst,
bool is_filled,
bool is_range) {
dex::TypeIndex type_idx;
if (!is_filled) {
DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
type_idx = dex::TypeIndex(inst->VRegC_22c());
} else if (!is_range) {
DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
type_idx = dex::TypeIndex(inst->VRegB_35c());
} else {
DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
type_idx = dex::TypeIndex(inst->VRegB_3rc());
}
const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
if (res_type.IsConflict()) { // bad class
DCHECK_NE(failures_.size(), 0U);
} else {
// TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
if (!res_type.IsArrayTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
} else if (!is_filled) {
/* make sure "size" register is valid type */
work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
/* set register type to array class */
const RegType& precise_type = reg_types_.FromUninitialized(res_type);
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), precise_type);
} else {
DCHECK(!res_type.IsUnresolvedMergedReference());
// Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
// the list and fail. It's legal, if silly, for arg_count to be zero.
const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_.Get());
uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
uint32_t arg[5];
if (!is_range) {
inst->GetVarArgs(arg);
}
for (size_t ui = 0; ui < arg_count; ui++) {
uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
work_line_->VerifyRegisterType(this, get_reg, expected_type);
}
// filled-array result goes into "result" register
const RegType& precise_type = reg_types_.FromUninitialized(res_type);
work_line_->SetResultRegisterType(this, precise_type);
}
}
}
template <bool kVerifierDebug>
void MethodVerifier<kVerifierDebug>::VerifyAGet(const Instruction* inst,
const RegType& insn_type,
bool is_primitive) {
const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
if (!index_type.IsArrayIndexTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
} else {
const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
if (array_type.IsZeroOrNull()) {
// Null array class; this code path will fail at runtime. Infer a merge-able type from the
// instruction type.
if (!is_primitive) {
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Null());
} else if (insn_type.IsInteger()) {
// Pick a non-zero constant (to distinguish with null) that can fit in any primitive.
// We cannot use 'insn_type' as it could be a float array or an int array.
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), DetermineCat1Constant(1));
} else if (insn_type.IsCategory1Types()) {
// Category 1
// The 'insn_type' is exactly the type we need.
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), insn_type);
} else {
// Category 2
work_line_->SetRegisterTypeWide(inst->VRegA_23x(),
reg_types_.FromCat2ConstLo(0, false),
reg_types_.FromCat2ConstHi(0, false));
}
} else if (!array_type.IsArrayTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
} else if (array_type.IsUnresolvedMergedReference()) {
// Unresolved array types must be reference array types.
if (is_primitive) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
<< " source for category 1 aget";
} else {
Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
<< " because of missing class";
// Approximate with java.lang.Object[].
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(),
reg_types_.JavaLangObject(false));
}
} else {
/* verify the class */
const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
if (!component_type.IsReferenceTypes() && !is_primitive) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
<< " source for aget-object";
} else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
<< " source for category 1 aget";
} else if (is_primitive && !insn_type.Equals(component_type) &&
!((insn_type.IsInteger() && component_type.IsFloat()) ||
(insn_type.IsLong() && component_type.IsDouble()))) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
<< " incompatible with aget of type " << insn_type;
} else {
// Use knowledge of the field type which is stronger than the type inferred from the
// instruction, which can't differentiate object types and ints from floats, longs from
// doubles.
if (!component_type.IsLowHalf()) {
work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), component_type);
} else {
work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
component_type.HighHalf(&reg_types_));
}
}
}
}
}
template <bool kVerifierDebug>
void MethodVerifier<kVerifierDebug>::VerifyPrimitivePut(const RegType& target_type,
const RegType& insn_type,
const uint32_t vregA) {
// Primitive assignability rules are weaker than regular assignability rules.
bool instruction_compatible;
bool value_compatible;
const RegType& value_type = work_line_->GetRegisterType(this, vregA);
if (target_type.IsIntegralTypes()) {
instruction_compatible = target_type.Equals(insn_type);
value_compatible = value_type.IsIntegralTypes();
} else if (target_type.IsFloat()) {
instruction_compatible = insn_type.IsInteger(); // no put-float, so expect put-int
value_compatible = value_type.IsFloatTypes();
} else if (target_type.IsLong()) {
instruction_compatible = insn_type.IsLong();
// Additional register check: this is not checked statically (as part of VerifyInstructions),
// as target_type depends on the resolved type of the field.
if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
} else {
value_compatible = false;
}
} else if (target_type.IsDouble()) {
instruction_compatible = insn_type.IsLong(); // no put-double, so expect put-long
// Additional register check: this is not checked statically (as part of VerifyInstructions),
// as target_type depends on the resolved type of the field.
if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
} else {
value_compatible = false;
}
} else {
instruction_compatible = false; // reference with primitive store
value_compatible = false; // unused
}
if (!instruction_compatible) {
// This is a global failure rather than a class change failure as the instructions and
// the descriptors for the type should have been consistent within the same file at
// compile time.
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
<< "' but expected type '" << target_type << "'";
return;
}
if (!value_compatible) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
<< " of type " << value_type << " but expected " << target_type << " for put";
return;
}
}
template <bool kVerifierDebug>
void MethodVerifier<kVerifierDebug>::VerifyAPut(const Instruction* inst,
const RegType& insn_type,
bool is_primitive) {
const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
if (!index_type.IsArrayIndexTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
} else {
const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
if (array_type.IsZeroOrNull()) {
// Null array type; this code path will fail at runtime.
// Still check that the given value matches the instruction's type.
// Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
// and fits multiple register types.
const RegType* modified_reg_type = &insn_type;
if ((modified_reg_type == &reg_types_.Integer()) ||
(modified_reg_type == &reg_types_.LongLo())) {
// May be integer or float | long or double. Overwrite insn_type accordingly.
const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
if (modified_reg_type == &reg_types_.Integer()) {
if (&value_type == &reg_types_.Float()) {
modified_reg_type = &value_type;
}
} else {
if (&value_type == &reg_types_.DoubleLo()) {
modified_reg_type = &value_type;
}
}
}
work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
} else if (!array_type.IsArrayTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
} else if (array_type.IsUnresolvedMergedReference()) {
// Unresolved array types must be reference array types.
if (is_primitive) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
<< "' but unresolved type '" << array_type << "'";
} else {
Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
<< " because of missing class";
}
} else {
const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
const uint32_t vregA = inst->VRegA_23x();
if (is_primitive) {
VerifyPrimitivePut(component_type, insn_type, vregA);
} else {
if (!component_type.IsReferenceTypes()) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
<< " source for aput-object";
} else {
// The instruction agrees with the type of array, confirm the value to be stored does too
// Note: we use the instruction type (rather than the component type) for aput-object as
// incompatible classes will be caught at runtime as an array store exception
work_line_->VerifyRegisterType(this, vregA, insn_type);
}
}
}
}
}
template <bool kVerifierDebug>
ArtField* MethodVerifier<kVerifierDebug>::GetStaticField(int field_idx) {
const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
// Check access to class
const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
if (klass_type.IsConflict()) { // bad class
AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
field_idx, dex_file_->GetFieldName(field_id),
dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
return nullptr;
}
if (klass_type.IsUnresolvedTypes()) {
// Accessibility checks depend on resolved fields.
DCHECK(klass_type.Equals(GetDeclaringClass()) ||
!failures_.empty() ||
IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
return nullptr; // Can't resolve Class so no more to do here, will do checking at runtime.
}
ClassLinker* class_linker = GetClassLinker();
ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
if (field == nullptr) {
VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
<< dex_file_->GetFieldName(field_id) << ") in "
<< dex_file_->GetFieldDeclaringClassDescriptor(field_id);
DCHECK(self_->IsExceptionPending());
self_->ClearException();
return nullptr;
} else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
field->GetAccessFlags())) {
Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
<< " from " << GetDeclaringClass();
return nullptr;
} else if (!field->IsStatic()) {
Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
return nullptr;
}
return field;
}
template <bool kVerifierDebug>
ArtField* MethodVerifier<kVerifierDebug>::GetInstanceField(const RegType& obj_type, int field_idx) {
if (!obj_type.IsZeroOrNull() && !obj_type.IsReferenceTypes()) {
// Trying to read a field from something that isn't a reference.
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
<< "non-reference type " << obj_type;
return nullptr;
}
const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
// Check access to class.
const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
if (klass_type.IsConflict()) {
AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
field_idx, dex_file_->GetFieldName(field_id),
dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
return nullptr;
}
if (klass_type.IsUnresolvedTypes()) {
// Accessibility checks depend on resolved fields.
DCHECK(klass_type.Equals(GetDeclaringClass()) ||
!failures_.empty() ||
IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
return nullptr; // Can't resolve Class so no more to do here
}
ClassLinker* class_linker = GetClassLinker();
ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
if (field == nullptr) {
VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
<< dex_file_->GetFieldName(field_id) << ") in "
<< dex_file_->GetFieldDeclaringClassDescriptor(field_id);
DCHECK(self_->IsExceptionPending());
self_->ClearException();
return nullptr;
} else if (obj_type.IsZeroOrNull()) {
// Cannot infer and check type, however, access will cause null pointer exception.
// Fall through into a few last soft failure checks below.
} else {
std::string temp;
ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
const RegType& field_klass =
FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
if (obj_type.IsUninitializedTypes()) {
// Field accesses through uninitialized references are only allowable for constructors where
// the field is declared in this class.
// Note: this IsConstructor check is technically redundant, as UninitializedThis should only
// appear in constructors.
if (!obj_type.IsUninitializedThisReference() ||
!IsConstructor() ||
!field_klass.Equals(GetDeclaringClass())) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
<< " of a not fully initialized object within the context"
<< " of " << dex_file_->PrettyMethod(dex_method_idx_);
return nullptr;
}
} else if (!field_klass.IsAssignableFrom(obj_type, this)) {
// Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
// of C1. For resolution to occur the declared class of the field must be compatible with
// obj_type, we've discovered this wasn't so, so report the field didn't exist.
VerifyError type;
bool is_aot = IsAotMode();
if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
// Compiler & unresolved types involved, retry at runtime.
type = VerifyError::VERIFY_ERROR_UNRESOLVED_TYPE_CHECK;
} else {
// Classes known (resolved; and thus assignability check is precise), or we are at runtime
// and still missing classes. This is a hard failure.
type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
}
Fail(type) << "cannot access instance field " << field->PrettyField()
<< " from object of type " << obj_type;
return nullptr;
}
}
// Few last soft failure checks.
if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
field->GetAccessFlags())) {
Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
<< " from " << GetDeclaringClass();
return nullptr;
} else if (field->IsStatic()) {
Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
<< " to not be static";
return nullptr;
}
return field;
}
template <bool kVerifierDebug>
template <FieldAccessType kAccType>
void MethodVerifier<kVerifierDebug>::VerifyISFieldAccess(const Instruction* inst,
const RegType& insn_type,
bool is_primitive,
bool is_static) {
uint32_t field_idx = GetFieldIdxOfFieldAccess(inst, is_static);
ArtField* field;
if (is_static) {
field = GetStaticField(field_idx);
} else {
const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
// One is not allowed to access fields on uninitialized references, except to write to
// fields in the constructor (before calling another constructor).
// GetInstanceField does an assignability check which will fail for uninitialized types.
// We thus modify the type if the uninitialized reference is a "this" reference (this also
// checks at the same time that we're verifying a constructor).
bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
(object_type.IsUninitializedThisReference() ||
object_type.IsUnresolvedAndUninitializedThisReference());
const RegType& adjusted_type = should_adjust
? GetRegTypeCache()->FromUninitialized(object_type)
: object_type;
field = GetInstanceField(adjusted_type, field_idx);
if (UNLIKELY(flags_.have_pending_hard_failure_)) {
return;
}
if (should_adjust) {
bool illegal_field_access = false;
if (field == nullptr) {
const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
if (field_id.class_idx_ != GetClassDef().class_idx_) {
illegal_field_access = true;
} else {
ClassAccessor accessor(*dex_file_, GetClassDef());
illegal_field_access = (accessor.GetInstanceFields().end() ==
std::find_if(accessor.GetInstanceFields().begin(),
accessor.GetInstanceFields().end(),
[field_idx] (const ClassAccessor::Field& f) {
return f.GetIndex() == field_idx;
}));
}
} else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
illegal_field_access = true;
}
if (illegal_field_access) {
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field "
<< dex_file_->PrettyField(field_idx)
<< " of a not fully initialized "
<< "object within the context of "
<< dex_file_->PrettyMethod(dex_method_idx_);
return;
}
}
}
const RegType* field_type = nullptr;
if (field != nullptr) {
if (kAccType == FieldAccessType::kAccPut) {
if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
<< " from other class " << GetDeclaringClass();
// Keep hunting for possible hard fails.
}
}
ObjPtr<mirror::Class> field_type_class =
can_load_classes_ ? field->ResolveType() : field->LookupResolvedType();
if (field_type_class != nullptr) {
field_type = &FromClass(field->GetTypeDescriptor(),
field_type_class,
field_type_class->CannotBeAssignedFromOtherTypes());
} else {
DCHECK_IMPLIES(can_load_classes_, self_->IsExceptionPending());
self_->ClearException();
}
} else if (IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP)) {
// If we don't have the field (it seems we failed resolution) and this is a PUT, we need to
// redo verification at runtime as the field may be final, unless the field id shows it's in
// the same class.
//
// For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an
// ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class
// to the access-checks interpreter.
//
// Note: see b/34966607. This and above may be changed in the future.
if (kAccType == FieldAccessType::kAccPut) {
const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id);
const RegType* field_class_type = &reg_types_.FromDescriptor(class_loader_.Get(),
field_class_descriptor,
false);
if (!field_class_type->Equals(GetDeclaringClass())) {
Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of "
<< field_class_descriptor
<< "."
<< dex_file_->GetFieldName(field_id)
<< " from other class "
<< GetDeclaringClass();
}
}
}
if (field_type == nullptr) {
const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
field_type = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
}
DCHECK(field_type != nullptr);
const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
"Unexpected third access type");
if (kAccType == FieldAccessType::kAccPut) {
// sput or iput.
if (is_primitive) {
VerifyPrimitivePut(*field_type, insn_type, vregA);
} else {
DCHECK(insn_type.IsJavaLangObject());
if (!insn_type.IsAssignableFrom(*field_type, this)) {
DCHECK(!field_type->IsReferenceTypes());
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
<< " to be compatible with type '" << insn_type
<< "' but found type '" << *field_type
<< "' in put-object";
return;
}
work_line_->VerifyRegisterType(this, vregA, *field_type);
}
} else if (kAccType == FieldAccessType::kAccGet) {
// sget or iget.
if (is_primitive) {
if (field_type->Equals(insn_type) ||
(field_type->IsFloat() && insn_type.IsInteger()) ||
(field_type->IsDouble() && insn_type.IsLong())) {
// expected that read is of the correct primitive type or that int reads are reading
// floats or long reads are reading doubles
} else {
// This is a global failure rather than a class change failure as the instructions and
// the descriptors for the type should have been consistent within the same file at
// compile time
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
<< " to be of type '" << insn_type
<< "' but found type '" << *field_type << "' in get";
return;
}
} else {
DCHECK(insn_type.IsJavaLangObject());
if (!insn_type.IsAssignableFrom(*field_type, this)) {
DCHECK(!field_type->IsReferenceTypes());
Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
<< " to be compatible with type '" << insn_type
<< "' but found type '" << *field_type
<< "' in get-object";
return;
}
}
if (!field_type->IsLowHalf()) {
work_line_->SetRegisterType<LockOp::kClear>(vregA, *field_type);
} else {
work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
}
} else {
LOG(FATAL) << "Unexpected case.";
}
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::UpdateRegisters(uint32_t next_insn,
RegisterLine* merge_line,
bool update_merge_line) {
bool changed = true;
RegisterLine* target_line = reg_table_.GetLine(next_insn);
if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
/*
* We haven't processed this instruction before, and we haven't touched the registers here, so
* there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
* only way a register can transition out of "unknown", so this is not just an optimization.)
*/
target_line->CopyFromLine(merge_line);
if (GetInstructionFlags(next_insn).IsReturn()) {
// Verify that the monitor stack is empty on return.
merge_line->VerifyMonitorStackEmpty(this);
// For returns we only care about the operand to the return, all other registers are dead.
// Initialize them as conflicts so they don't add to GC and deoptimization information.
const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn);
AdjustReturnLine(this, ret_inst, target_line);
// Directly bail if a hard failure was found.
if (flags_.have_pending_hard_failure_) {
return false;
}
}
} else {
RegisterLineArenaUniquePtr copy;
if (kVerifierDebug) {
copy.reset(RegisterLine::Create(target_line->NumRegs(), allocator_, GetRegTypeCache()));
copy->CopyFromLine(target_line);
}
changed = target_line->MergeRegisters(this, merge_line);
if (flags_.have_pending_hard_failure_) {
return false;
}
if (kVerifierDebug && changed) {
LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
<< " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
<< copy->Dump(this) << " MERGE\n"
<< merge_line->Dump(this) << " ==\n"
<< target_line->Dump(this);
}
if (update_merge_line && changed) {
merge_line->CopyFromLine(target_line);
}
}
if (changed) {
GetModifiableInstructionFlags(next_insn).SetChanged();
}
return true;
}
template <bool kVerifierDebug>
const RegType& MethodVerifier<kVerifierDebug>::GetMethodReturnType() {
if (return_type_ == nullptr) {
const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
const dex::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
return_type_ = &reg_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
}
return *return_type_;
}
template <bool kVerifierDebug>
const RegType& MethodVerifier<kVerifierDebug>::DetermineCat1Constant(int32_t value) {
// Imprecise constant type.
if (value < -32768) {
return reg_types_.IntConstant();
} else if (value < -128) {
return reg_types_.ShortConstant();
} else if (value < 0) {
return reg_types_.ByteConstant();
} else if (value == 0) {
return reg_types_.Zero();
} else if (value == 1) {
return reg_types_.One();
} else if (value < 128) {
return reg_types_.PosByteConstant();
} else if (value < 32768) {
return reg_types_.PosShortConstant();
} else if (value < 65536) {
return reg_types_.CharConstant();
} else {
return reg_types_.IntConstant();
}
}
template <bool kVerifierDebug>
bool MethodVerifier<kVerifierDebug>::PotentiallyMarkRuntimeThrow() {
if (IsAotMode() || IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kS_V2)) {
return false;
}
// Compatibility mode: we treat the following code unreachable and the verifier
// will not analyze it.
// The verifier may fail before we touch any instruction, for the signature of a method. So
// add a check.
if (work_insn_idx_ < dex::kDexNoIndex) {
const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_);
Instruction::Code opcode = inst.Opcode();
if (opcode == Instruction::MOVE_EXCEPTION) {
// This is an unreachable handler. The instruction doesn't throw, but we
// mark the method as having a pending runtime throw failure so that
// the compiler does not try to compile it.
Fail(VERIFY_ERROR_RUNTIME_THROW, /* pending_exc= */ false);
return true;
}
// How to handle runtime failures for instructions that are not flagged kThrow.
if ((Instruction::FlagsOf(opcode) & Instruction::kThrow) == 0 &&
!impl::IsCompatThrow(opcode) &&
GetInstructionFlags(work_insn_idx_).IsInTry()) {
if (Runtime::Current()->IsVerifierMissingKThrowFatal()) {
LOG(FATAL) << "Unexpected throw: " << std::hex << work_insn_idx_ << " " << opcode;
UNREACHABLE();
}
// We need to save the work_line if the instruction wasn't throwing before. Otherwise
// we'll try to merge garbage.
// Note: this assumes that Fail is called before we do any work_line modifications.
saved_line_->CopyFromLine(work_line_.get());
}
}
flags_.have_pending_runtime_throw_failure_ = true;
return true;
}
} // namespace
} // namespace impl
MethodVerifier::MethodVerifier(Thread* self,
ClassLinker* class_linker,
ArenaPool* arena_pool,
VerifierDeps* verifier_deps,
const DexFile* dex_file,
const dex::ClassDef& class_def,
const dex::CodeItem* code_item,
uint32_t dex_method_idx,
bool can_load_classes,
bool allow_thread_suspension,
bool aot_mode)
: self_(self),
arena_stack_(arena_pool),
allocator_(&arena_stack_),
reg_types_(class_linker, can_load_classes, allocator_, allow_thread_suspension),
reg_table_(allocator_),
work_insn_idx_(dex::kDexNoIndex),
dex_method_idx_(dex_method_idx),
dex_file_(dex_file),
class_def_(class_def),
code_item_accessor_(*dex_file, code_item),
// TODO: make it designated initialization when we compile as C++20.
flags_({false, false, aot_mode}),
encountered_failure_types_(0),
can_load_classes_(can_load_classes),
class_linker_(class_linker),
verifier_deps_(verifier_deps),
link_(nullptr) {
self->PushVerifier(this);
}
MethodVerifier::~MethodVerifier() {
Thread::Current()->PopVerifier(this);
STLDeleteElements(&failure_messages_);
}
MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
ClassLinker* class_linker,
ArenaPool* arena_pool,
VerifierDeps* verifier_deps,
uint32_t method_idx,
const DexFile* dex_file,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader,
const dex::ClassDef& class_def,
const dex::CodeItem* code_item,
uint32_t method_access_flags,
HardFailLogMode log_level,
uint32_t api_level,
bool aot_mode,
std::string* hard_failure_msg) {
if (VLOG_IS_ON(verifier_debug)) {
return VerifyMethod<true>(self,
class_linker,
arena_pool,
verifier_deps,
method_idx,
dex_file,
dex_cache,
class_loader,
class_def,
code_item,
method_access_flags,
log_level,
api_level,
aot_mode,
hard_failure_msg);
} else {
return VerifyMethod<false>(self,
class_linker,
arena_pool,
verifier_deps,
method_idx,
dex_file,
dex_cache,
class_loader,
class_def,
code_item,
method_access_flags,
log_level,
api_level,
aot_mode,
hard_failure_msg);
}
}
// Return whether the runtime knows how to execute a method without needing to
// re-verify it at runtime (and therefore save on first use of the class).
// The AOT/JIT compiled code is not affected.
static inline bool CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types) {
constexpr uint32_t unresolved_mask =
verifier::VerifyError::VERIFY_ERROR_UNRESOLVED_TYPE_CHECK |
verifier::VerifyError::VERIFY_ERROR_NO_CLASS |
verifier::VerifyError::VERIFY_ERROR_CLASS_CHANGE |
verifier::VerifyError::VERIFY_ERROR_INSTANTIATION |
verifier::VerifyError::VERIFY_ERROR_ACCESS_CLASS |
verifier::VerifyError::VERIFY_ERROR_ACCESS_FIELD |
verifier::VerifyError::VERIFY_ERROR_NO_METHOD |
verifier::VerifyError::VERIFY_ERROR_ACCESS_METHOD |
verifier::VerifyError::VERIFY_ERROR_RUNTIME_THROW;
return (encountered_failure_types & (~unresolved_mask)) == 0;
}
template <bool kVerifierDebug>
MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
ClassLinker* class_linker,
ArenaPool* arena_pool,
VerifierDeps* verifier_deps,
uint32_t method_idx,
const DexFile* dex_file,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader,
const dex::ClassDef& class_def,
const dex::CodeItem* code_item,
uint32_t method_access_flags,
HardFailLogMode log_level,
uint32_t api_level,
bool aot_mode,
std::string* hard_failure_msg) {
MethodVerifier::FailureData result;
uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
impl::MethodVerifier<kVerifierDebug> verifier(self,
class_linker,
arena_pool,
verifier_deps,
dex_file,
code_item,
method_idx,
/* can_load_classes= */ true,
/* allow_thread_suspension= */ true,
aot_mode,
dex_cache,
class_loader,
class_def,
method_access_flags,
/* verify to dump */ false,
api_level);
if (verifier.Verify()) {
// Verification completed, however failures may be pending that didn't cause the verification
// to hard fail.
CHECK(!verifier.flags_.have_pending_hard_failure_);
if (verifier.failures_.size() != 0) {
if (VLOG_IS_ON(verifier)) {
verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
<< dex_file->PrettyMethod(method_idx) << "\n");
}
if (kVerifierDebug) {
LOG(INFO) << verifier.info_messages_.str();
verifier.Dump(LOG_STREAM(INFO));
}
if (CanRuntimeHandleVerificationFailure(verifier.encountered_failure_types_)) {
if (verifier.encountered_failure_types_ & VERIFY_ERROR_UNRESOLVED_TYPE_CHECK) {
result.kind = FailureKind::kTypeChecksFailure;
} else {
result.kind = FailureKind::kAccessChecksFailure;
}
} else {
result.kind = FailureKind::kSoftFailure;
}
}
} else {
// Bad method data.
CHECK_NE(verifier.failures_.size(), 0U);
CHECK(verifier.flags_.have_pending_hard_failure_);
if (VLOG_IS_ON(verifier)) {
log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
}
if (log_level >= HardFailLogMode::kLogVerbose) {
LogSeverity severity;
switch (log_level) {
case HardFailLogMode::kLogVerbose:
severity = LogSeverity::VERBOSE;
break;
case HardFailLogMode::kLogWarning:
severity = LogSeverity::WARNING;
break;
case HardFailLogMode::kLogInternalFatal:
severity = LogSeverity::FATAL_WITHOUT_ABORT;
break;
default:
LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
UNREACHABLE();
}
verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
<< dex_file->PrettyMethod(method_idx)
<< "\n");
}
if (hard_failure_msg != nullptr) {
CHECK(!verifier.failure_messages_.empty());
*hard_failure_msg =
verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
}
result.kind = FailureKind::kHardFailure;
if (kVerifierDebug || VLOG_IS_ON(verifier)) {
LOG(ERROR) << verifier.info_messages_.str();
verifier.Dump(LOG_STREAM(ERROR));
}
// Under verifier-debug, dump the complete log into the error message.
if (kVerifierDebug && hard_failure_msg != nullptr) {
hard_failure_msg->append("\n");
hard_failure_msg->append(verifier.info_messages_.str());
hard_failure_msg->append("\n");
std::ostringstream oss;
verifier.Dump(oss);
hard_failure_msg->append(oss.str());
}
}
if (kTimeVerifyMethod) {
uint64_t duration_ns = NanoTime() - start_ns;
if (duration_ns > MsToNs(Runtime::Current()->GetVerifierLoggingThresholdMs())) {
double bytecodes_per_second =
verifier.code_item_accessor_.InsnsSizeInCodeUnits() / (duration_ns * 1e-9);
LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
<< " took " << PrettyDuration(duration_ns)
<< (impl::IsLargeMethod(verifier.CodeItem()) ? " (large method)" : "")
<< " (" << StringPrintf("%.2f", bytecodes_per_second) << " bytecodes/s)"
<< " (" << verifier.allocator_.ApproximatePeakBytes()
<< "B approximate peak alloc)";
}
}
result.types = verifier.encountered_failure_types_;
return result;
}
MethodVerifier* MethodVerifier::CalculateVerificationInfo(
Thread* self,
ArtMethod* method,
uint32_t dex_pc) {
StackHandleScope<2> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method->GetClassLoader()));
std::unique_ptr<impl::MethodVerifier<false>> verifier(
new impl::MethodVerifier<false>(self,
Runtime::Current()->GetClassLinker(),
Runtime::Current()->GetArenaPool(),
/* verifier_deps= */ nullptr,
method->GetDexFile(),
method->GetCodeItem(),
method->GetDexMethodIndex(),
/* can_load_classes= */ false,
/* allow_thread_suspension= */ false,
Runtime::Current()->IsAotCompiler(),
dex_cache,
class_loader,
*method->GetDeclaringClass()->GetClassDef(),
method->GetAccessFlags(),
/* verify_to_dump= */ false,
// Just use the verifier at the current skd-version.
// This might affect what soft-verifier errors are reported.
// Callers can then filter out relevant errors if needed.
Runtime::Current()->GetTargetSdkVersion()));
verifier->interesting_dex_pc_ = dex_pc;
verifier->Verify();
if (VLOG_IS_ON(verifier)) {
verifier->DumpFailures(VLOG_STREAM(verifier));
VLOG(verifier) << verifier->info_messages_.str();
verifier->Dump(VLOG_STREAM(verifier));
}
if (verifier->flags_.have_pending_hard_failure_) {
return nullptr;
} else {
return verifier.release();
}
}
MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
VariableIndentationOutputStream* vios,
uint32_t dex_method_idx,
const DexFile* dex_file,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader,
const dex::ClassDef& class_def,
const dex::CodeItem* code_item,
uint32_t method_access_flags,
uint32_t api_level) {
impl::MethodVerifier<false>* verifier = new impl::MethodVerifier<false>(
self,
Runtime::Current()->GetClassLinker(),
Runtime::Current()->GetArenaPool(),
/* verifier_deps= */ nullptr,
dex_file,
code_item,
dex_method_idx,
/* can_load_classes= */ true,
/* allow_thread_suspension= */ true,
Runtime::Current()->IsAotCompiler(),
dex_cache,
class_loader,
class_def,
method_access_flags,
/* verify_to_dump= */ true,
api_level);
verifier->Verify();
verifier->DumpFailures(vios->Stream());
vios->Stream() << verifier->info_messages_.str();
// Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
// and querying any info is dangerous/can abort.
if (verifier->flags_.have_pending_hard_failure_) {
delete verifier;
return nullptr;
} else {
verifier->Dump(vios);
return verifier;
}
}
void MethodVerifier::FindLocksAtDexPc(
ArtMethod* m,
uint32_t dex_pc,
std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
uint32_t api_level) {
StackHandleScope<2> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
impl::MethodVerifier<false> verifier(hs.Self(),
Runtime::Current()->GetClassLinker(),
Runtime::Current()->GetArenaPool(),
/* verifier_deps= */ nullptr,
m->GetDexFile(),
m->GetCodeItem(),
m->GetDexMethodIndex(),
/* can_load_classes= */ false,
/* allow_thread_suspension= */ false,
Runtime::Current()->IsAotCompiler(),
dex_cache,
class_loader,
m->GetClassDef(),
m->GetAccessFlags(),
/* verify_to_dump= */ false,
api_level);
verifier.interesting_dex_pc_ = dex_pc;
verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
verifier.FindLocksAtDexPc();
}
MethodVerifier* MethodVerifier::CreateVerifier(Thread* self,
VerifierDeps* verifier_deps,
const DexFile* dex_file,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader,
const dex::ClassDef& class_def,
const dex::CodeItem* code_item,
uint32_t method_idx,
uint32_t access_flags,
bool can_load_classes,
bool verify_to_dump,
bool allow_thread_suspension,
uint32_t api_level) {
return new impl::MethodVerifier<false>(self,
Runtime::Current()->GetClassLinker(),
Runtime::Current()->GetArenaPool(),
verifier_deps,
dex_file,
code_item,
method_idx,
can_load_classes,
allow_thread_suspension,
Runtime::Current()->IsAotCompiler(),
dex_cache,
class_loader,
class_def,
access_flags,
verify_to_dump,
api_level);
}
void MethodVerifier::Init(ClassLinker* class_linker) {
art::verifier::RegTypeCache::Init(class_linker);
}
void MethodVerifier::Shutdown() {
verifier::RegTypeCache::ShutDown();
}
void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
RegTypeCache::VisitStaticRoots(visitor);
}
void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
reg_types_.VisitRoots(visitor, root_info);
}
std::ostream& MethodVerifier::Fail(VerifyError error, bool pending_exc) {
// Mark the error type as encountered.
encountered_failure_types_ |= static_cast<uint32_t>(error);
if (pending_exc) {
switch (error) {
case VERIFY_ERROR_NO_CLASS:
case VERIFY_ERROR_UNRESOLVED_TYPE_CHECK:
case VERIFY_ERROR_NO_METHOD:
case VERIFY_ERROR_ACCESS_CLASS:
case VERIFY_ERROR_ACCESS_FIELD:
case VERIFY_ERROR_ACCESS_METHOD:
case VERIFY_ERROR_INSTANTIATION:
case VERIFY_ERROR_CLASS_CHANGE: {
PotentiallyMarkRuntimeThrow();
break;
}
case VERIFY_ERROR_LOCKING:
PotentiallyMarkRuntimeThrow();
// This will be reported to the runtime as a soft failure.
break;
// Hard verification failures at compile time will still fail at runtime, so the class is
// marked as rejected to prevent it from being compiled.
case VERIFY_ERROR_BAD_CLASS_HARD: {
flags_.have_pending_hard_failure_ = true;
break;
}
case VERIFY_ERROR_RUNTIME_THROW: {
LOG(FATAL) << "UNREACHABLE";
}
}
} else if (kIsDebugBuild) {
CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_HARD);
}
failures_.push_back(error);
std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
work_insn_idx_));
std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
failure_messages_.push_back(failure_message);
return *failure_message;
}
ScopedNewLine MethodVerifier::LogVerifyInfo() {
ScopedNewLine ret{info_messages_};
ret << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
<< '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
return ret;
}
static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
&& FailureKind::kSoftFailure < FailureKind::kHardFailure,
"Unexpected FailureKind order");
return std::max(fk1, fk2);
}
void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
kind = FailureKindMax(kind, fd.kind);
types |= fd.types;
}
} // namespace verifier
} // namespace art