blob: 8b8eecc0cc673daa13df4c954d9ebc7a3db625e5 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_
#define ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_
#include "dex_cache.h"
#include <android-base/logging.h>
#include "art_field.h"
#include "art_method.h"
#include "base/atomic_pair.h"
#include "base/casts.h"
#include "base/enums.h"
#include "class_linker.h"
#include "dex/dex_file.h"
#include "gc_root-inl.h"
#include "linear_alloc-inl.h"
#include "mirror/call_site.h"
#include "mirror/class.h"
#include "mirror/method_type.h"
#include "obj_ptr.h"
#include "object-inl.h"
#include "runtime.h"
#include "write_barrier-inl.h"
#include <atomic>
namespace art {
namespace mirror {
template<typename DexCachePair>
static void InitializeArray(std::atomic<DexCachePair>* array) {
DexCachePair::Initialize(array);
}
template<typename T>
static void InitializeArray(T*) {
// Nothing to do.
}
template<typename T>
T* DexCache::AllocArray(MemberOffset obj_offset, size_t num, LinearAllocKind kind, bool startup) {
Thread* self = Thread::Current();
mirror::DexCache* dex_cache = this;
if (gUseReadBarrier && self->GetIsGcMarking()) {
// Several code paths use DexCache without read-barrier for performance.
// We have to check the "to-space" object here to avoid allocating twice.
dex_cache = reinterpret_cast<DexCache*>(ReadBarrier::Mark(this));
}
// DON'T USE 'this' from now on.
Runtime* runtime = Runtime::Current();
// Note: in the 1002-notify-startup test, the startup linear alloc can become null
// concurrently, even if the runtime is marked at startup. Therefore we should only
// fetch it once here.
LinearAlloc* startup_linear_alloc = runtime->GetStartupLinearAlloc();
LinearAlloc* alloc = (startup && startup_linear_alloc != nullptr)
? startup_linear_alloc
: runtime->GetClassLinker()->GetOrCreateAllocatorForClassLoader(GetClassLoader());
MutexLock mu(self, *Locks::dex_cache_lock_); // Avoid allocation by multiple threads.
T* array = dex_cache->GetFieldPtr64<T*>(obj_offset);
if (array != nullptr) {
DCHECK(alloc->Contains(array));
return array; // Other thread just allocated the array.
}
array = reinterpret_cast<T*>(alloc->AllocAlign16(self, RoundUp(num * sizeof(T), 16), kind));
InitializeArray(array); // Ensure other threads see the array initialized.
dex_cache->SetField64Volatile<false, false>(obj_offset, reinterpret_cast64<uint64_t>(array));
return array;
}
template <typename T>
inline DexCachePair<T>::DexCachePair(ObjPtr<T> object, uint32_t index)
: object(object), index(index) {}
template <typename T>
inline T* DexCachePair<T>::GetObjectForIndex(uint32_t idx) {
if (idx != index) {
return nullptr;
}
DCHECK(!object.IsNull());
return object.Read();
}
template <typename T>
inline void DexCachePair<T>::Initialize(std::atomic<DexCachePair<T>>* dex_cache) {
DexCachePair<T> first_elem;
first_elem.object = GcRoot<T>(nullptr);
first_elem.index = InvalidIndexForSlot(0);
dex_cache[0].store(first_elem, std::memory_order_relaxed);
}
template <typename T>
inline void NativeDexCachePair<T>::Initialize(std::atomic<NativeDexCachePair<T>>* dex_cache) {
NativeDexCachePair<T> first_elem;
first_elem.object = nullptr;
first_elem.index = InvalidIndexForSlot(0);
auto* array = reinterpret_cast<std::atomic<AtomicPair<uintptr_t>>*>(dex_cache);
AtomicPair<uintptr_t> v(reinterpret_cast<size_t>(first_elem.object), first_elem.index);
AtomicPairStoreRelease(&array[0], v);
}
template <typename T>
inline void GcRootArray<T>::Set(uint32_t index, T* value) {
GcRoot<T> root(value);
entries_[index].store(root, std::memory_order_relaxed);
}
template <typename T>
inline T* GcRootArray<T>::Get(uint32_t index) {
return entries_[index].load(std::memory_order_relaxed).Read();
}
inline uint32_t DexCache::ClassSize(PointerSize pointer_size) {
const uint32_t vtable_entries = Object::kVTableLength;
return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
}
inline String* DexCache::GetResolvedString(dex::StringIndex string_idx) {
return GetStringsEntry(string_idx.index_);
}
inline void DexCache::SetResolvedString(dex::StringIndex string_idx, ObjPtr<String> resolved) {
DCHECK(resolved != nullptr);
SetStringsEntry(string_idx.index_, resolved.Ptr());
Runtime* const runtime = Runtime::Current();
if (UNLIKELY(runtime->IsActiveTransaction())) {
DCHECK(runtime->IsAotCompiler());
runtime->RecordResolveString(this, string_idx);
}
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
WriteBarrier::ForEveryFieldWrite(this);
}
inline void DexCache::ClearString(dex::StringIndex string_idx) {
DCHECK(Runtime::Current()->IsAotCompiler());
auto* array = GetStringsArray();
if (array != nullptr) {
array->Set(string_idx.index_, nullptr);
}
auto* strings = GetStrings();
if (UNLIKELY(strings == nullptr)) {
return;
}
strings->Clear(string_idx.index_);
}
inline Class* DexCache::GetResolvedType(dex::TypeIndex type_idx) {
return GetResolvedTypesEntry(type_idx.index_);
}
inline void DexCache::ClearResolvedType(dex::TypeIndex type_idx) {
DCHECK(Runtime::Current()->IsAotCompiler());
auto* array = GetResolvedTypesArray();
if (array != nullptr) {
array->Set(type_idx.index_, nullptr);
}
auto* resolved_types = GetResolvedTypes();
if (UNLIKELY(resolved_types == nullptr)) {
return;
}
resolved_types->Clear(type_idx.index_);
}
inline MethodType* DexCache::GetResolvedMethodType(dex::ProtoIndex proto_idx) {
return GetResolvedMethodTypesEntry(proto_idx.index_);
}
inline void DexCache::SetResolvedMethodType(dex::ProtoIndex proto_idx, MethodType* resolved) {
DCHECK(resolved != nullptr);
SetResolvedMethodTypesEntry(proto_idx.index_, resolved);
Runtime* const runtime = Runtime::Current();
if (UNLIKELY(runtime->IsActiveTransaction())) {
DCHECK(runtime->IsAotCompiler());
runtime->RecordResolveMethodType(this, proto_idx);
}
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
WriteBarrier::ForEveryFieldWrite(this);
}
inline void DexCache::ClearMethodType(dex::ProtoIndex proto_idx) {
DCHECK(Runtime::Current()->IsAotCompiler());
auto* array = GetResolvedMethodTypesArray();
if (array != nullptr) {
array->Set(proto_idx.index_, nullptr);
}
auto* methods = GetResolvedMethodTypes();
if (methods == nullptr) {
return;
}
methods->Clear(proto_idx.index_);
}
inline CallSite* DexCache::GetResolvedCallSite(uint32_t call_site_idx) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(call_site_idx, GetDexFile()->NumCallSiteIds());
GcRootArray<CallSite>* call_sites = GetResolvedCallSites();
if (UNLIKELY(call_sites == nullptr)) {
return nullptr;
}
Atomic<GcRoot<mirror::CallSite>>* target = call_sites->GetGcRoot(call_site_idx);
return target->load(std::memory_order_seq_cst).Read();
}
inline ObjPtr<CallSite> DexCache::SetResolvedCallSite(uint32_t call_site_idx,
ObjPtr<CallSite> call_site) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(call_site_idx, GetDexFile()->NumCallSiteIds());
GcRoot<mirror::CallSite> null_call_site(nullptr);
GcRoot<mirror::CallSite> candidate(call_site);
GcRootArray<CallSite>* call_sites = GetResolvedCallSites();
if (UNLIKELY(call_sites == nullptr)) {
call_sites = AllocateResolvedCallSites();
}
Atomic<GcRoot<mirror::CallSite>>* target = call_sites->GetGcRoot(call_site_idx);
// The first assignment for a given call site wins.
if (target->CompareAndSetStrongSequentiallyConsistent(null_call_site, candidate)) {
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
WriteBarrier::ForEveryFieldWrite(this);
return call_site;
} else {
return target->load(std::memory_order_relaxed).Read();
}
}
inline ArtField* DexCache::GetResolvedField(uint32_t field_idx) {
return GetResolvedFieldsEntry(field_idx);
}
inline void DexCache::SetResolvedField(uint32_t field_idx, ArtField* field) {
SetResolvedFieldsEntry(field_idx, field);
}
inline ArtMethod* DexCache::GetResolvedMethod(uint32_t method_idx) {
return GetResolvedMethodsEntry(method_idx);
}
inline void DexCache::SetResolvedMethod(uint32_t method_idx, ArtMethod* method) {
SetResolvedMethodsEntry(method_idx, method);
}
template <ReadBarrierOption kReadBarrierOption,
typename Visitor,
typename T>
inline void VisitDexCachePairs(T* array,
size_t num_pairs,
const Visitor& visitor)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
// Check both the data pointer and count since the array might be initialized
// concurrently on other thread, and we might observe just one of the values.
for (size_t i = 0; array != nullptr && i < num_pairs; ++i) {
auto source = array->GetPair(i);
// NOTE: We need the "template" keyword here to avoid a compilation
// failure. GcRoot<T> is a template argument-dependent type and we need to
// tell the compiler to treat "Read" as a template rather than a field or
// function. Otherwise, on encountering the "<" token, the compiler would
// treat "Read" as a field.
auto const before = source.object.template Read<kReadBarrierOption>();
visitor.VisitRootIfNonNull(source.object.AddressWithoutBarrier());
if (source.object.template Read<kReadBarrierOption>() != before) {
array->SetPair(i, source);
}
}
}
template <typename Visitor>
void DexCache::VisitDexCachePairRoots(Visitor& visitor,
DexCachePair<Object>* pairs_begin,
DexCachePair<Object>* pairs_end) {
for (; pairs_begin < pairs_end; pairs_begin++) {
visitor.VisitRootIfNonNull(pairs_begin->object.AddressWithoutBarrier());
}
}
template <bool kVisitNativeRoots,
VerifyObjectFlags kVerifyFlags,
ReadBarrierOption kReadBarrierOption,
typename Visitor>
inline void DexCache::VisitReferences(ObjPtr<Class> klass, const Visitor& visitor) {
// Visit instance fields first.
VisitInstanceFieldsReferences<kVerifyFlags, kReadBarrierOption>(klass, visitor);
// Visit arrays after.
if (kVisitNativeRoots) {
VisitNativeRoots<kVerifyFlags, kReadBarrierOption>(visitor);
}
}
template <VerifyObjectFlags kVerifyFlags,
ReadBarrierOption kReadBarrierOption,
typename Visitor>
inline void DexCache::VisitNativeRoots(const Visitor& visitor) {
VisitDexCachePairs<kReadBarrierOption, Visitor>(
GetStrings<kVerifyFlags>(), NumStrings<kVerifyFlags>(), visitor);
VisitDexCachePairs<kReadBarrierOption, Visitor>(
GetResolvedTypes<kVerifyFlags>(), NumResolvedTypes<kVerifyFlags>(), visitor);
VisitDexCachePairs<kReadBarrierOption, Visitor>(
GetResolvedMethodTypes<kVerifyFlags>(), NumResolvedMethodTypes<kVerifyFlags>(), visitor);
GcRootArray<mirror::CallSite>* resolved_call_sites = GetResolvedCallSites<kVerifyFlags>();
size_t num_call_sites = NumResolvedCallSites<kVerifyFlags>();
for (size_t i = 0; resolved_call_sites != nullptr && i != num_call_sites; ++i) {
visitor.VisitRootIfNonNull(resolved_call_sites->GetGcRootAddress(i)->AddressWithoutBarrier());
}
// Dex cache arrays can be reset and cleared during app startup. Assert we do not get
// suspended to ensure the arrays are not deallocated.
ScopedAssertNoThreadSuspension soants("dex caches");
GcRootArray<mirror::Class>* resolved_types = GetResolvedTypesArray<kVerifyFlags>();
size_t num_resolved_types = NumResolvedTypesArray<kVerifyFlags>();
for (size_t i = 0; resolved_types != nullptr && i != num_resolved_types; ++i) {
visitor.VisitRootIfNonNull(resolved_types->GetGcRootAddress(i)->AddressWithoutBarrier());
}
GcRootArray<mirror::String>* resolved_strings = GetStringsArray<kVerifyFlags>();
size_t num_resolved_strings = NumStringsArray<kVerifyFlags>();
for (size_t i = 0; resolved_strings != nullptr && i != num_resolved_strings; ++i) {
visitor.VisitRootIfNonNull(resolved_strings->GetGcRootAddress(i)->AddressWithoutBarrier());
}
GcRootArray<mirror::MethodType>* resolved_method_types =
GetResolvedMethodTypesArray<kVerifyFlags>();
size_t num_resolved_method_types = NumResolvedMethodTypesArray<kVerifyFlags>();
for (size_t i = 0; resolved_method_types != nullptr && i != num_resolved_method_types; ++i) {
visitor.VisitRootIfNonNull(resolved_method_types->GetGcRootAddress(i)->AddressWithoutBarrier());
}
}
template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline ObjPtr<String> DexCache::GetLocation() {
return GetFieldObject<String, kVerifyFlags, kReadBarrierOption>(
OFFSET_OF_OBJECT_MEMBER(DexCache, location_));
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_