| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ |
| #define ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ |
| |
| #include "base/macros.h" |
| #include "base/mutex.h" |
| #include "space.h" |
| #include "thread.h" |
| |
| #include <functional> |
| #include <map> |
| |
| namespace art { |
| namespace gc { |
| |
| namespace accounting { |
| class ReadBarrierTable; |
| } // namespace accounting |
| |
| namespace space { |
| |
| // Cyclic region allocation strategy. If `true`, region allocation |
| // will not try to allocate a new region from the beginning of the |
| // region space, but from the last allocated region. This allocation |
| // strategy reduces region reuse and should help catch some GC bugs |
| // earlier. However, cyclic region allocation can also create memory |
| // fragmentation at the region level (see b/33795328); therefore, we |
| // only enable it in debug mode. |
| static constexpr bool kCyclicRegionAllocation = kIsDebugBuild; |
| |
| // A space that consists of equal-sized regions. |
| class RegionSpace final : public ContinuousMemMapAllocSpace { |
| public: |
| using WalkCallback = void (*)(void *start, void *end, size_t num_bytes, void* callback_arg); |
| |
| enum EvacMode { |
| kEvacModeNewlyAllocated, |
| kEvacModeLivePercentNewlyAllocated, |
| kEvacModeForceAll, |
| }; |
| |
| SpaceType GetType() const override { |
| return kSpaceTypeRegionSpace; |
| } |
| |
| // Create a region space mem map with the requested sizes. The requested base address is not |
| // guaranteed to be granted, if it is required, the caller should call Begin on the returned |
| // space to confirm the request was granted. |
| static MemMap CreateMemMap(const std::string& name, size_t capacity, uint8_t* requested_begin); |
| static RegionSpace* Create(const std::string& name, MemMap&& mem_map, bool use_generational_cc); |
| |
| // Allocate `num_bytes`, returns null if the space is full. |
| mirror::Object* Alloc(Thread* self, |
| size_t num_bytes, |
| /* out */ size_t* bytes_allocated, |
| /* out */ size_t* usable_size, |
| /* out */ size_t* bytes_tl_bulk_allocated) |
| override REQUIRES(!region_lock_); |
| // Thread-unsafe allocation for when mutators are suspended, used by the semispace collector. |
| mirror::Object* AllocThreadUnsafe(Thread* self, |
| size_t num_bytes, |
| /* out */ size_t* bytes_allocated, |
| /* out */ size_t* usable_size, |
| /* out */ size_t* bytes_tl_bulk_allocated) |
| override REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_); |
| // The main allocation routine. |
| template<bool kForEvac> |
| ALWAYS_INLINE mirror::Object* AllocNonvirtual(size_t num_bytes, |
| /* out */ size_t* bytes_allocated, |
| /* out */ size_t* usable_size, |
| /* out */ size_t* bytes_tl_bulk_allocated) |
| REQUIRES(!region_lock_); |
| // Allocate/free large objects (objects that are larger than the region size). |
| template<bool kForEvac> |
| mirror::Object* AllocLarge(size_t num_bytes, |
| /* out */ size_t* bytes_allocated, |
| /* out */ size_t* usable_size, |
| /* out */ size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_); |
| template<bool kForEvac> |
| void FreeLarge(mirror::Object* large_obj, size_t bytes_allocated) REQUIRES(!region_lock_); |
| |
| // Return the storage space required by obj. |
| size_t AllocationSize(mirror::Object* obj, size_t* usable_size) override |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_) { |
| return AllocationSizeNonvirtual(obj, usable_size); |
| } |
| size_t AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size) |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_); |
| |
| size_t Free(Thread*, mirror::Object*) override { |
| UNIMPLEMENTED(FATAL); |
| return 0; |
| } |
| size_t FreeList(Thread*, size_t, mirror::Object**) override { |
| UNIMPLEMENTED(FATAL); |
| return 0; |
| } |
| accounting::ContinuousSpaceBitmap* GetLiveBitmap() override { |
| return &mark_bitmap_; |
| } |
| accounting::ContinuousSpaceBitmap* GetMarkBitmap() override { |
| return &mark_bitmap_; |
| } |
| |
| void Clear() override REQUIRES(!region_lock_); |
| |
| // Remove read and write memory protection from the whole region space, |
| // i.e. make memory pages backing the region area not readable and not |
| // writable. |
| void Protect(); |
| |
| // Remove memory protection from the whole region space, i.e. make memory |
| // pages backing the region area readable and writable. This method is useful |
| // to avoid page protection faults when dumping information about an invalid |
| // reference. |
| void Unprotect(); |
| |
| // Change the non growth limit capacity to new capacity by shrinking or expanding the map. |
| // Currently, only shrinking is supported. |
| // Unlike implementations of this function in other spaces, we need to pass |
| // new capacity as argument here as region space doesn't have any notion of |
| // growth limit. |
| void ClampGrowthLimit(size_t new_capacity) REQUIRES(!region_lock_); |
| |
| void Dump(std::ostream& os) const override; |
| void DumpRegions(std::ostream& os) REQUIRES(!region_lock_); |
| // Dump region containing object `obj`. Precondition: `obj` is in the region space. |
| void DumpRegionForObject(std::ostream& os, mirror::Object* obj) REQUIRES(!region_lock_); |
| void DumpNonFreeRegions(std::ostream& os) REQUIRES(!region_lock_); |
| |
| size_t RevokeThreadLocalBuffers(Thread* thread) override REQUIRES(!region_lock_); |
| size_t RevokeThreadLocalBuffers(Thread* thread, const bool reuse) REQUIRES(!region_lock_); |
| size_t RevokeAllThreadLocalBuffers() override |
| REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_); |
| void AssertThreadLocalBuffersAreRevoked(Thread* thread) REQUIRES(!region_lock_); |
| void AssertAllThreadLocalBuffersAreRevoked() |
| REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_); |
| |
| enum class RegionType : uint8_t { |
| kRegionTypeAll, // All types. |
| kRegionTypeFromSpace, // From-space. To be evacuated. |
| kRegionTypeUnevacFromSpace, // Unevacuated from-space. Not to be evacuated. |
| kRegionTypeToSpace, // To-space. |
| kRegionTypeNone, // None. |
| }; |
| |
| enum class RegionState : uint8_t { |
| kRegionStateFree, // Free region. |
| kRegionStateAllocated, // Allocated region. |
| kRegionStateLarge, // Large allocated (allocation larger than the region size). |
| kRegionStateLargeTail, // Large tail (non-first regions of a large allocation). |
| }; |
| |
| template<RegionType kRegionType> uint64_t GetBytesAllocatedInternal() REQUIRES(!region_lock_); |
| template<RegionType kRegionType> uint64_t GetObjectsAllocatedInternal() REQUIRES(!region_lock_); |
| uint64_t GetBytesAllocated() override REQUIRES(!region_lock_) { |
| return GetBytesAllocatedInternal<RegionType::kRegionTypeAll>(); |
| } |
| uint64_t GetObjectsAllocated() override REQUIRES(!region_lock_) { |
| return GetObjectsAllocatedInternal<RegionType::kRegionTypeAll>(); |
| } |
| uint64_t GetBytesAllocatedInFromSpace() REQUIRES(!region_lock_) { |
| return GetBytesAllocatedInternal<RegionType::kRegionTypeFromSpace>(); |
| } |
| uint64_t GetObjectsAllocatedInFromSpace() REQUIRES(!region_lock_) { |
| return GetObjectsAllocatedInternal<RegionType::kRegionTypeFromSpace>(); |
| } |
| uint64_t GetBytesAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) { |
| return GetBytesAllocatedInternal<RegionType::kRegionTypeUnevacFromSpace>(); |
| } |
| uint64_t GetObjectsAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) { |
| return GetObjectsAllocatedInternal<RegionType::kRegionTypeUnevacFromSpace>(); |
| } |
| size_t GetMaxPeakNumNonFreeRegions() const { |
| return max_peak_num_non_free_regions_; |
| } |
| size_t GetNumRegions() const { |
| return num_regions_; |
| } |
| size_t GetNumNonFreeRegions() const NO_THREAD_SAFETY_ANALYSIS { |
| return num_non_free_regions_; |
| } |
| |
| bool CanMoveObjects() const override { |
| return true; |
| } |
| |
| bool Contains(const mirror::Object* obj) const override { |
| const uint8_t* byte_obj = reinterpret_cast<const uint8_t*>(obj); |
| return byte_obj >= Begin() && byte_obj < Limit(); |
| } |
| |
| RegionSpace* AsRegionSpace() override { |
| return this; |
| } |
| |
| // Go through all of the blocks and visit the continuous objects. |
| template <typename Visitor> |
| ALWAYS_INLINE void Walk(Visitor&& visitor) REQUIRES(Locks::mutator_lock_); |
| template <typename Visitor> |
| ALWAYS_INLINE void WalkToSpace(Visitor&& visitor) REQUIRES(Locks::mutator_lock_); |
| |
| // Scans regions and calls visitor for objects in unevac-space corresponding |
| // to the bits set in 'bitmap'. |
| // Cannot acquire region_lock_ as visitor may need to acquire it for allocation. |
| // Should not be called concurrently with functions (like SetFromSpace()) which |
| // change regions' type. |
| template <typename Visitor> |
| ALWAYS_INLINE void ScanUnevacFromSpace(accounting::ContinuousSpaceBitmap* bitmap, |
| Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS; |
| |
| accounting::ContinuousSpaceBitmap::SweepCallback* GetSweepCallback() override { |
| return nullptr; |
| } |
| bool LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) override |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_); |
| |
| // Object alignment within the space. |
| static constexpr size_t kAlignment = kObjectAlignment; |
| // The region size. |
| static constexpr size_t kRegionSize = 256 * KB; |
| |
| bool IsInFromSpace(mirror::Object* ref) { |
| if (HasAddress(ref)) { |
| Region* r = RefToRegionUnlocked(ref); |
| return r->IsInFromSpace(); |
| } |
| return false; |
| } |
| |
| bool IsRegionNewlyAllocated(size_t idx) const NO_THREAD_SAFETY_ANALYSIS { |
| DCHECK_LT(idx, num_regions_); |
| return regions_[idx].IsNewlyAllocated(); |
| } |
| |
| bool IsInNewlyAllocatedRegion(mirror::Object* ref) { |
| if (HasAddress(ref)) { |
| Region* r = RefToRegionUnlocked(ref); |
| return r->IsNewlyAllocated(); |
| } |
| return false; |
| } |
| |
| bool IsInUnevacFromSpace(mirror::Object* ref) { |
| if (HasAddress(ref)) { |
| Region* r = RefToRegionUnlocked(ref); |
| return r->IsInUnevacFromSpace(); |
| } |
| return false; |
| } |
| |
| bool IsLargeObject(mirror::Object* ref) { |
| if (HasAddress(ref)) { |
| Region* r = RefToRegionUnlocked(ref); |
| return r->IsLarge(); |
| } |
| return false; |
| } |
| |
| bool IsInToSpace(mirror::Object* ref) { |
| if (HasAddress(ref)) { |
| Region* r = RefToRegionUnlocked(ref); |
| return r->IsInToSpace(); |
| } |
| return false; |
| } |
| |
| // If `ref` is in the region space, return the type of its region; |
| // otherwise, return `RegionType::kRegionTypeNone`. |
| RegionType GetRegionType(mirror::Object* ref) { |
| if (HasAddress(ref)) { |
| return GetRegionTypeUnsafe(ref); |
| } |
| return RegionType::kRegionTypeNone; |
| } |
| |
| // Unsafe version of RegionSpace::GetRegionType. |
| // Precondition: `ref` is in the region space. |
| RegionType GetRegionTypeUnsafe(mirror::Object* ref) { |
| DCHECK(HasAddress(ref)) << ref; |
| Region* r = RefToRegionUnlocked(ref); |
| return r->Type(); |
| } |
| |
| // Zero live bytes for a large object, used by young gen CC for marking newly allocated large |
| // objects. |
| void ZeroLiveBytesForLargeObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| // Determine which regions to evacuate and tag them as |
| // from-space. Tag the rest as unevacuated from-space. |
| void SetFromSpace(accounting::ReadBarrierTable* rb_table, |
| EvacMode evac_mode, |
| bool clear_live_bytes) |
| REQUIRES(!region_lock_); |
| |
| size_t FromSpaceSize() REQUIRES(!region_lock_); |
| size_t UnevacFromSpaceSize() REQUIRES(!region_lock_); |
| size_t ToSpaceSize() REQUIRES(!region_lock_); |
| void ClearFromSpace(/* out */ uint64_t* cleared_bytes, |
| /* out */ uint64_t* cleared_objects, |
| const bool clear_bitmap) |
| REQUIRES(!region_lock_); |
| |
| void AddLiveBytes(mirror::Object* ref, size_t alloc_size) { |
| Region* reg = RefToRegionUnlocked(ref); |
| reg->AddLiveBytes(alloc_size); |
| } |
| |
| void AssertAllRegionLiveBytesZeroOrCleared() REQUIRES(!region_lock_) { |
| if (kIsDebugBuild) { |
| MutexLock mu(Thread::Current(), region_lock_); |
| for (size_t i = 0; i < num_regions_; ++i) { |
| Region* r = ®ions_[i]; |
| size_t live_bytes = r->LiveBytes(); |
| CHECK(live_bytes == 0U || live_bytes == static_cast<size_t>(-1)) << live_bytes; |
| } |
| } |
| } |
| |
| void SetAllRegionLiveBytesZero() REQUIRES(!region_lock_) { |
| MutexLock mu(Thread::Current(), region_lock_); |
| const size_t iter_limit = kUseTableLookupReadBarrier |
| ? num_regions_ |
| : std::min(num_regions_, non_free_region_index_limit_); |
| for (size_t i = 0; i < iter_limit; ++i) { |
| Region* r = ®ions_[i]; |
| // Newly allocated regions don't need up-to-date live_bytes_ for deciding |
| // whether to be evacuated or not. See Region::ShouldBeEvacuated(). |
| if (!r->IsFree() && !r->IsNewlyAllocated()) { |
| r->ZeroLiveBytes(); |
| } |
| } |
| } |
| |
| size_t RegionIdxForRefUnchecked(mirror::Object* ref) const NO_THREAD_SAFETY_ANALYSIS { |
| DCHECK(HasAddress(ref)); |
| uintptr_t offset = reinterpret_cast<uintptr_t>(ref) - reinterpret_cast<uintptr_t>(Begin()); |
| size_t reg_idx = offset / kRegionSize; |
| DCHECK_LT(reg_idx, num_regions_); |
| Region* reg = ®ions_[reg_idx]; |
| DCHECK_EQ(reg->Idx(), reg_idx); |
| DCHECK(reg->Contains(ref)); |
| return reg_idx; |
| } |
| // Return -1 as region index for references outside this region space. |
| size_t RegionIdxForRef(mirror::Object* ref) const NO_THREAD_SAFETY_ANALYSIS { |
| if (HasAddress(ref)) { |
| return RegionIdxForRefUnchecked(ref); |
| } else { |
| return static_cast<size_t>(-1); |
| } |
| } |
| |
| // Increment object allocation count for region containing ref. |
| void RecordAlloc(mirror::Object* ref) REQUIRES(!region_lock_); |
| |
| bool AllocNewTlab(Thread* self, const size_t tlab_size, size_t* bytes_tl_bulk_allocated) |
| REQUIRES(!region_lock_); |
| |
| uint32_t Time() { |
| return time_; |
| } |
| |
| size_t EvacBytes() const NO_THREAD_SAFETY_ANALYSIS { |
| return num_evac_regions_ * kRegionSize; |
| } |
| |
| uint64_t GetMadviseTime() const { |
| return madvise_time_; |
| } |
| |
| private: |
| RegionSpace(const std::string& name, MemMap&& mem_map, bool use_generational_cc); |
| |
| class Region { |
| public: |
| Region() |
| : idx_(static_cast<size_t>(-1)), |
| live_bytes_(static_cast<size_t>(-1)), |
| begin_(nullptr), |
| thread_(nullptr), |
| top_(nullptr), |
| end_(nullptr), |
| objects_allocated_(0), |
| alloc_time_(0), |
| is_newly_allocated_(false), |
| is_a_tlab_(false), |
| state_(RegionState::kRegionStateAllocated), |
| type_(RegionType::kRegionTypeToSpace) {} |
| |
| void Init(size_t idx, uint8_t* begin, uint8_t* end) { |
| idx_ = idx; |
| begin_ = begin; |
| top_.store(begin, std::memory_order_relaxed); |
| end_ = end; |
| state_ = RegionState::kRegionStateFree; |
| type_ = RegionType::kRegionTypeNone; |
| objects_allocated_.store(0, std::memory_order_relaxed); |
| alloc_time_ = 0; |
| live_bytes_ = static_cast<size_t>(-1); |
| is_newly_allocated_ = false; |
| is_a_tlab_ = false; |
| thread_ = nullptr; |
| DCHECK_LT(begin, end); |
| DCHECK_EQ(static_cast<size_t>(end - begin), kRegionSize); |
| } |
| |
| RegionState State() const { |
| return state_; |
| } |
| |
| RegionType Type() const { |
| return type_; |
| } |
| |
| void Clear(bool zero_and_release_pages); |
| |
| ALWAYS_INLINE mirror::Object* Alloc(size_t num_bytes, |
| /* out */ size_t* bytes_allocated, |
| /* out */ size_t* usable_size, |
| /* out */ size_t* bytes_tl_bulk_allocated); |
| |
| bool IsFree() const { |
| bool is_free = (state_ == RegionState::kRegionStateFree); |
| if (is_free) { |
| DCHECK(IsInNoSpace()); |
| DCHECK_EQ(begin_, Top()); |
| DCHECK_EQ(objects_allocated_.load(std::memory_order_relaxed), 0U); |
| } |
| return is_free; |
| } |
| |
| // Given a free region, declare it non-free (allocated). |
| void Unfree(RegionSpace* region_space, uint32_t alloc_time) |
| REQUIRES(region_space->region_lock_); |
| |
| // Given a free region, declare it non-free (allocated) and large. |
| void UnfreeLarge(RegionSpace* region_space, uint32_t alloc_time) |
| REQUIRES(region_space->region_lock_); |
| |
| // Given a free region, declare it non-free (allocated) and large tail. |
| void UnfreeLargeTail(RegionSpace* region_space, uint32_t alloc_time) |
| REQUIRES(region_space->region_lock_); |
| |
| void MarkAsAllocated(RegionSpace* region_space, uint32_t alloc_time) |
| REQUIRES(region_space->region_lock_); |
| |
| void SetNewlyAllocated() { |
| is_newly_allocated_ = true; |
| } |
| |
| // Non-large, non-large-tail allocated. |
| bool IsAllocated() const { |
| return state_ == RegionState::kRegionStateAllocated; |
| } |
| |
| // Large allocated. |
| bool IsLarge() const { |
| bool is_large = (state_ == RegionState::kRegionStateLarge); |
| if (is_large) { |
| DCHECK_LT(begin_ + kRegionSize, Top()); |
| } |
| return is_large; |
| } |
| |
| void ZeroLiveBytes() { |
| live_bytes_ = 0; |
| } |
| |
| // Large-tail allocated. |
| bool IsLargeTail() const { |
| bool is_large_tail = (state_ == RegionState::kRegionStateLargeTail); |
| if (is_large_tail) { |
| DCHECK_EQ(begin_, Top()); |
| } |
| return is_large_tail; |
| } |
| |
| size_t Idx() const { |
| return idx_; |
| } |
| |
| bool IsNewlyAllocated() const { |
| return is_newly_allocated_; |
| } |
| |
| bool IsTlab() const { |
| return is_a_tlab_; |
| } |
| |
| bool IsInFromSpace() const { |
| return type_ == RegionType::kRegionTypeFromSpace; |
| } |
| |
| bool IsInToSpace() const { |
| return type_ == RegionType::kRegionTypeToSpace; |
| } |
| |
| bool IsInUnevacFromSpace() const { |
| return type_ == RegionType::kRegionTypeUnevacFromSpace; |
| } |
| |
| bool IsInNoSpace() const { |
| return type_ == RegionType::kRegionTypeNone; |
| } |
| |
| // Set this region as evacuated from-space. At the end of the |
| // collection, RegionSpace::ClearFromSpace will clear and reclaim |
| // the space used by this region, and tag it as unallocated/free. |
| void SetAsFromSpace() { |
| DCHECK(!IsFree() && IsInToSpace()); |
| type_ = RegionType::kRegionTypeFromSpace; |
| if (IsNewlyAllocated()) { |
| // Clear the "newly allocated" status here, as we do not want the |
| // GC to see it when encountering references in the from-space. |
| // |
| // Invariant: There should be no newly-allocated region in the |
| // from-space (when the from-space exists, which is between the calls |
| // to RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace). |
| is_newly_allocated_ = false; |
| } |
| // Set live bytes to an invalid value, as we have made an |
| // evacuation decision (possibly based on the percentage of live |
| // bytes). |
| live_bytes_ = static_cast<size_t>(-1); |
| } |
| |
| // Set this region as unevacuated from-space. At the end of the |
| // collection, RegionSpace::ClearFromSpace will preserve the space |
| // used by this region, and tag it as to-space (see |
| // Region::SetUnevacFromSpaceAsToSpace below). |
| void SetAsUnevacFromSpace(bool clear_live_bytes); |
| |
| // Set this region as to-space. Used by RegionSpace::ClearFromSpace. |
| // This is only valid if it is currently an unevac from-space region. |
| void SetUnevacFromSpaceAsToSpace() { |
| DCHECK(!IsFree() && IsInUnevacFromSpace()); |
| type_ = RegionType::kRegionTypeToSpace; |
| } |
| |
| // Return whether this region should be evacuated. Used by RegionSpace::SetFromSpace. |
| ALWAYS_INLINE bool ShouldBeEvacuated(EvacMode evac_mode); |
| |
| void AddLiveBytes(size_t live_bytes) { |
| DCHECK(GetUseGenerationalCC() || IsInUnevacFromSpace()); |
| DCHECK(!IsLargeTail()); |
| DCHECK_NE(live_bytes_, static_cast<size_t>(-1)); |
| // For large allocations, we always consider all bytes in the regions live. |
| live_bytes_ += IsLarge() ? Top() - begin_ : live_bytes; |
| DCHECK_LE(live_bytes_, BytesAllocated()); |
| } |
| |
| bool AllAllocatedBytesAreLive() const { |
| return LiveBytes() == static_cast<size_t>(Top() - Begin()); |
| } |
| |
| size_t LiveBytes() const { |
| return live_bytes_; |
| } |
| |
| // Returns the number of allocated bytes. "Bulk allocated" bytes in active TLABs are excluded. |
| size_t BytesAllocated() const; |
| |
| size_t ObjectsAllocated() const; |
| |
| uint8_t* Begin() const { |
| return begin_; |
| } |
| |
| ALWAYS_INLINE uint8_t* Top() const { |
| return top_.load(std::memory_order_relaxed); |
| } |
| |
| void SetTop(uint8_t* new_top) { |
| top_.store(new_top, std::memory_order_relaxed); |
| } |
| |
| uint8_t* End() const { |
| return end_; |
| } |
| |
| bool Contains(mirror::Object* ref) const { |
| return begin_ <= reinterpret_cast<uint8_t*>(ref) && reinterpret_cast<uint8_t*>(ref) < end_; |
| } |
| |
| void Dump(std::ostream& os) const; |
| |
| void RecordThreadLocalAllocations(size_t num_objects, size_t num_bytes) { |
| DCHECK(IsAllocated()); |
| DCHECK_EQ(Top(), end_); |
| objects_allocated_.fetch_add(num_objects, std::memory_order_relaxed); |
| top_.store(begin_ + num_bytes, std::memory_order_relaxed); |
| DCHECK_LE(Top(), end_); |
| } |
| |
| uint64_t GetLongestConsecutiveFreeBytes() const; |
| |
| private: |
| static bool GetUseGenerationalCC(); |
| |
| size_t idx_; // The region's index in the region space. |
| // Number of bytes in live objects, or -1 for newly allocated regions. Used to compute |
| // percent live for region evacuation decisions, and to determine whether an unevacuated |
| // region is completely empty, and thus can be reclaimed. Reset to zero either at the |
| // beginning of MarkingPhase(), or during the flip for a nongenerational GC, where we |
| // don't have a separate mark phase. It is then incremented whenever a mark bit in that |
| // region is set. |
| size_t live_bytes_; // The live bytes. Used to compute the live percent. |
| uint8_t* begin_; // The begin address of the region. |
| Thread* thread_; // The owning thread if it's a tlab. |
| // Note that `top_` can be higher than `end_` in the case of a |
| // large region, where an allocated object spans multiple regions |
| // (large region + one or more large tail regions). |
| Atomic<uint8_t*> top_; // The current position of the allocation. |
| uint8_t* end_; // The end address of the region. |
| // objects_allocated_ is accessed using memory_order_relaxed. Treat as approximate when there |
| // are concurrent updates. |
| Atomic<size_t> objects_allocated_; // The number of objects allocated. |
| uint32_t alloc_time_; // The allocation time of the region. |
| // Note that newly allocated and evacuated regions use -1 as |
| // special value for `live_bytes_`. |
| bool is_newly_allocated_; // True if it's allocated after the last collection. |
| bool is_a_tlab_; // True if it's a tlab. |
| RegionState state_; // The region state (see RegionState). |
| RegionType type_; // The region type (see RegionType). |
| |
| friend class RegionSpace; |
| }; |
| |
| template<bool kToSpaceOnly, typename Visitor> |
| ALWAYS_INLINE void WalkInternal(Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS; |
| |
| // Visitor will be iterating on objects in increasing address order. |
| template<typename Visitor> |
| ALWAYS_INLINE void WalkNonLargeRegion(Visitor&& visitor, const Region* r) |
| NO_THREAD_SAFETY_ANALYSIS; |
| |
| Region* RefToRegion(mirror::Object* ref) REQUIRES(!region_lock_) { |
| MutexLock mu(Thread::Current(), region_lock_); |
| return RefToRegionLocked(ref); |
| } |
| |
| void TraceHeapSize() REQUIRES(region_lock_); |
| |
| Region* RefToRegionUnlocked(mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS { |
| // For a performance reason (this is frequently called via |
| // RegionSpace::IsInFromSpace, etc.) we avoid taking a lock here. |
| // Note that since we only change a region from to-space to (evac) |
| // from-space during a pause (in RegionSpace::SetFromSpace) and |
| // from (evac) from-space to free (after GC is done), as long as |
| // `ref` is a valid reference into an allocated region, it's safe |
| // to access the region state without the lock. |
| return RefToRegionLocked(ref); |
| } |
| |
| Region* RefToRegionLocked(mirror::Object* ref) REQUIRES(region_lock_) { |
| DCHECK(HasAddress(ref)); |
| uintptr_t offset = reinterpret_cast<uintptr_t>(ref) - reinterpret_cast<uintptr_t>(Begin()); |
| size_t reg_idx = offset / kRegionSize; |
| DCHECK_LT(reg_idx, num_regions_); |
| Region* reg = ®ions_[reg_idx]; |
| DCHECK_EQ(reg->Idx(), reg_idx); |
| DCHECK(reg->Contains(ref)); |
| return reg; |
| } |
| |
| // Return the object location following `obj` in the region space |
| // (i.e., the object location at `obj + obj->SizeOf()`). |
| // |
| // Note that unless |
| // - the region containing `obj` is fully used; and |
| // - `obj` is not the last object of that region; |
| // the returned location is not guaranteed to be a valid object. |
| static mirror::Object* GetNextObject(mirror::Object* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void AdjustNonFreeRegionLimit(size_t new_non_free_region_index) REQUIRES(region_lock_) { |
| DCHECK_LT(new_non_free_region_index, num_regions_); |
| non_free_region_index_limit_ = std::max(non_free_region_index_limit_, |
| new_non_free_region_index + 1); |
| VerifyNonFreeRegionLimit(); |
| } |
| |
| void SetNonFreeRegionLimit(size_t new_non_free_region_index_limit) REQUIRES(region_lock_) { |
| DCHECK_LE(new_non_free_region_index_limit, num_regions_); |
| non_free_region_index_limit_ = new_non_free_region_index_limit; |
| VerifyNonFreeRegionLimit(); |
| } |
| |
| // Implementation of this invariant: |
| // for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true. |
| void VerifyNonFreeRegionLimit() REQUIRES(region_lock_) { |
| if (kIsDebugBuild && non_free_region_index_limit_ < num_regions_) { |
| for (size_t i = non_free_region_index_limit_; i < num_regions_; ++i) { |
| CHECK(regions_[i].IsFree()); |
| } |
| } |
| } |
| |
| Region* AllocateRegion(bool for_evac) REQUIRES(region_lock_); |
| void RevokeThreadLocalBuffersLocked(Thread* thread, bool reuse) REQUIRES(region_lock_); |
| |
| // Scan region range [`begin`, `end`) in increasing order to try to |
| // allocate a large region having a size of `num_regs_in_large_region` |
| // regions. If there is no space in the region space to allocate this |
| // large region, return null. |
| // |
| // If argument `next_region` is not null, use `*next_region` to |
| // return the index to the region next to the allocated large region |
| // returned by this method. |
| template<bool kForEvac> |
| mirror::Object* AllocLargeInRange(size_t begin, |
| size_t end, |
| size_t num_regs_in_large_region, |
| /* out */ size_t* bytes_allocated, |
| /* out */ size_t* usable_size, |
| /* out */ size_t* bytes_tl_bulk_allocated, |
| /* out */ size_t* next_region = nullptr) REQUIRES(region_lock_); |
| |
| // Check that the value of `r->LiveBytes()` matches the number of |
| // (allocated) bytes used by live objects according to the live bits |
| // in the region space bitmap range corresponding to region `r`. |
| void CheckLiveBytesAgainstRegionBitmap(Region* r); |
| |
| // Poison memory areas used by dead objects within unevacuated |
| // region `r`. This is meant to detect dangling references to dead |
| // objects earlier in debug mode. |
| void PoisonDeadObjectsInUnevacuatedRegion(Region* r); |
| |
| Mutex region_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; |
| |
| // Cached version of Heap::use_generational_cc_. |
| const bool use_generational_cc_; |
| uint32_t time_; // The time as the number of collections since the startup. |
| size_t num_regions_; // The number of regions in this space. |
| uint64_t madvise_time_; // The amount of time spent in madvise for purging pages. |
| // The number of non-free regions in this space. |
| size_t num_non_free_regions_ GUARDED_BY(region_lock_); |
| |
| // The number of evac regions allocated during collection. 0 when GC not running. |
| size_t num_evac_regions_ GUARDED_BY(region_lock_); |
| |
| // Maintain the maximum of number of non-free regions collected just before |
| // reclaim in each GC cycle. At this moment in cycle, highest number of |
| // regions are in non-free. |
| size_t max_peak_num_non_free_regions_; |
| |
| // The pointer to the region array. |
| std::unique_ptr<Region[]> regions_ GUARDED_BY(region_lock_); |
| |
| // To hold partially used TLABs which can be reassigned to threads later for |
| // utilizing the un-used portion. |
| std::multimap<size_t, Region*, std::greater<size_t>> partial_tlabs_ GUARDED_BY(region_lock_); |
| // The upper-bound index of the non-free regions. Used to avoid scanning all regions in |
| // RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace. |
| // |
| // Invariant (verified by RegionSpace::VerifyNonFreeRegionLimit): |
| // for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true. |
| size_t non_free_region_index_limit_ GUARDED_BY(region_lock_); |
| |
| Region* current_region_; // The region currently used for allocation. |
| Region* evac_region_; // The region currently used for evacuation. |
| Region full_region_; // The fake/sentinel region that looks full. |
| |
| // Index into the region array pointing to the starting region when |
| // trying to allocate a new region. Only used when |
| // `kCyclicRegionAllocation` is true. |
| size_t cyclic_alloc_region_index_ GUARDED_BY(region_lock_); |
| |
| // Mark bitmap used by the GC. |
| accounting::ContinuousSpaceBitmap mark_bitmap_; |
| |
| DISALLOW_COPY_AND_ASSIGN(RegionSpace); |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, RegionSpace::RegionState value); |
| std::ostream& operator<<(std::ostream& os, RegionSpace::RegionType value); |
| |
| } // namespace space |
| } // namespace gc |
| } // namespace art |
| |
| #endif // ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ |