blob: 390da55c43f2e2323472ca69ced40d0a2d0a80c7 [file] [log] [blame]
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_BASE_GC_VISITED_ARENA_POOL_H_
#define ART_RUNTIME_BASE_GC_VISITED_ARENA_POOL_H_
#include <set>
#include "base/allocator.h"
#include "base/arena_allocator.h"
#include "base/casts.h"
#include "base/hash_set.h"
#include "base/locks.h"
#include "base/mem_map.h"
#include "read_barrier_config.h"
#include "runtime.h"
namespace art {
// GcVisitedArenaPool can be used for tracking allocations so that they can
// be visited during GC to update the GC-roots inside them.
// An Arena which tracks its allocations.
class TrackedArena final : public Arena {
public:
// Used for searching in maps. Only arena's starting address is relevant.
explicit TrackedArena(uint8_t* addr) : pre_zygote_fork_(false) { memory_ = addr; }
TrackedArena(uint8_t* start, size_t size, bool pre_zygote_fork, bool single_obj_arena);
template <typename PageVisitor>
void VisitRoots(PageVisitor& visitor) const REQUIRES_SHARED(Locks::mutator_lock_) {
uint8_t* page_begin = Begin();
if (first_obj_array_.get() != nullptr) {
DCHECK_ALIGNED(Size(), kPageSize);
DCHECK_ALIGNED(Begin(), kPageSize);
for (int i = 0, nr_pages = Size() / kPageSize; i < nr_pages; i++, page_begin += kPageSize) {
uint8_t* first = first_obj_array_[i];
if (first != nullptr) {
visitor(page_begin, first, kPageSize);
} else {
break;
}
}
} else {
size_t page_size = Size();
while (page_size > kPageSize) {
visitor(page_begin, nullptr, kPageSize);
page_begin += kPageSize;
page_size -= kPageSize;
}
visitor(page_begin, nullptr, page_size);
}
}
// Return the page addr of the first page with first_obj set to nullptr.
uint8_t* GetLastUsedByte() const REQUIRES_SHARED(Locks::mutator_lock_) {
// Jump past bytes-allocated for arenas which are not currently being used
// by arena-allocator. This helps in reducing loop iterations below.
uint8_t* last_byte = AlignUp(Begin() + GetBytesAllocated(), kPageSize);
if (first_obj_array_.get() != nullptr) {
DCHECK_ALIGNED(Begin(), kPageSize);
DCHECK_ALIGNED(End(), kPageSize);
DCHECK_LE(last_byte, End());
} else {
DCHECK_EQ(last_byte, End());
}
for (size_t i = (last_byte - Begin()) / kPageSize;
last_byte < End() && first_obj_array_[i] != nullptr;
last_byte += kPageSize, i++) {
// No body.
}
return last_byte;
}
uint8_t* GetFirstObject(uint8_t* addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_LE(Begin(), addr);
DCHECK_GT(End(), addr);
if (first_obj_array_.get() != nullptr) {
return first_obj_array_[(addr - Begin()) / kPageSize];
} else {
// The pages of this arena contain array of GC-roots. So we don't need
// first-object of any given page of the arena.
// Returning null helps distinguish which visitor is to be called.
return nullptr;
}
}
// Set 'obj_begin' in first_obj_array_ in every element for which it's the
// first object.
void SetFirstObject(uint8_t* obj_begin, uint8_t* obj_end);
// Setup the arena for deferred deletion.
void SetupForDeferredDeletion(TrackedArena* next_arena) {
DCHECK(next_arena == nullptr || next_arena->waiting_for_deletion_);
DCHECK(!waiting_for_deletion_);
waiting_for_deletion_ = true;
next_ = next_arena;
}
bool IsWaitingForDeletion() const { return waiting_for_deletion_; }
// Madvise the pages in the given range. 'begin' is expected to be page
// aligned.
// TODO: Remove this once we remove the shmem (minor-fault) code in
// userfaultfd GC and directly use ZeroAndReleaseMemory().
static void ReleasePages(uint8_t* begin, size_t size, bool pre_zygote_fork);
void Release() override;
bool IsPreZygoteForkArena() const { return pre_zygote_fork_; }
bool IsSingleObjectArena() const { return first_obj_array_.get() == nullptr; }
private:
// first_obj_array_[i] is the object that overlaps with the ith page's
// beginning, i.e. first_obj_array_[i] <= ith page_begin.
std::unique_ptr<uint8_t*[]> first_obj_array_;
const bool pre_zygote_fork_;
bool waiting_for_deletion_;
};
// An arena-pool wherein allocations can be tracked so that the GC can visit all
// the GC roots. All the arenas are allocated in one sufficiently large memory
// range to avoid multiple calls to mremapped/mprotected syscalls.
class GcVisitedArenaPool final : public ArenaPool {
public:
#if defined(__LP64__)
// Use a size in multiples of 1GB as that can utilize the optimized mremap
// page-table move.
static constexpr size_t kLinearAllocPoolSize = 1 * GB;
static constexpr size_t kLow4GBLinearAllocPoolSize = 32 * MB;
#else
static constexpr size_t kLinearAllocPoolSize = 32 * MB;
#endif
explicit GcVisitedArenaPool(bool low_4gb = false,
bool is_zygote = false,
const char* name = "LinearAlloc");
virtual ~GcVisitedArenaPool();
Arena* AllocArena(size_t size, bool need_first_obj_arr) REQUIRES(lock_);
// Use by arena allocator.
Arena* AllocArena(size_t size) override REQUIRES(!lock_) {
WriterMutexLock wmu(Thread::Current(), lock_);
return AllocArena(size, /*single_obj_arena=*/false);
}
void FreeArenaChain(Arena* first) override REQUIRES(!lock_);
size_t GetBytesAllocated() const override REQUIRES(!lock_);
void ReclaimMemory() override {}
void LockReclaimMemory() override {}
void TrimMaps() override {}
uint8_t* AllocSingleObjArena(size_t size) REQUIRES(!lock_);
void FreeSingleObjArena(uint8_t* addr) REQUIRES(!lock_);
bool Contains(void* ptr) REQUIRES(!lock_) {
ReaderMutexLock rmu(Thread::Current(), lock_);
for (auto& map : maps_) {
if (map.HasAddress(ptr)) {
return true;
}
}
return false;
}
template <typename PageVisitor>
void VisitRoots(PageVisitor& visitor) REQUIRES_SHARED(Locks::mutator_lock_, lock_) {
for (auto& arena : allocated_arenas_) {
arena->VisitRoots(visitor);
}
}
template <typename Callback>
void ForEachAllocatedArena(Callback cb) REQUIRES_SHARED(Locks::mutator_lock_, lock_) {
// We should not have any unused arenas when calling this function.
CHECK(unused_arenas_ == nullptr);
for (auto& arena : allocated_arenas_) {
cb(*arena);
}
}
// Called in Heap::PreZygoteFork(). All allocations after this are done in
// arena-pool which is visited by userfaultfd.
void SetupPostZygoteMode() REQUIRES(!lock_) {
WriterMutexLock wmu(Thread::Current(), lock_);
DCHECK(pre_zygote_fork_);
pre_zygote_fork_ = false;
}
// For userfaultfd GC to be able to acquire the lock to avoid concurrent
// release of arenas when it is visiting them.
ReaderWriterMutex& GetLock() const RETURN_CAPABILITY(lock_) { return lock_; }
// Called in the compaction pause to indicate that all arenas that will be
// freed until compaction is done shouldn't delete the TrackedArena object to
// avoid ABA problem. Called with lock_ acquired.
void DeferArenaFreeing() REQUIRES(lock_) {
CHECK(unused_arenas_ == nullptr);
defer_arena_freeing_ = true;
}
// Clear defer_arena_freeing_ and delete all unused arenas.
void DeleteUnusedArenas() REQUIRES(!lock_);
private:
void FreeRangeLocked(uint8_t* range_begin, size_t range_size) REQUIRES(lock_);
// Add a map (to be visited by userfaultfd) to the pool of at least min_size
// and return its address.
uint8_t* AddMap(size_t min_size) REQUIRES(lock_);
// Add a private anonymous map prior to zygote fork to the pool and return its
// address.
uint8_t* AddPreZygoteForkMap(size_t size) REQUIRES(lock_);
class Chunk {
public:
Chunk(uint8_t* addr, size_t size) : addr_(addr), size_(size) {}
uint8_t* addr_;
size_t size_;
};
class LessByChunkAddr {
public:
bool operator()(const Chunk* a, const Chunk* b) const {
return std::less<uint8_t*>{}(a->addr_, b->addr_);
}
};
class LessByChunkSize {
public:
// Since two chunks could have the same size, use addr when that happens.
bool operator()(const Chunk* a, const Chunk* b) const {
return a->size_ < b->size_ ||
(a->size_ == b->size_ && std::less<uint8_t*>{}(a->addr_, b->addr_));
}
};
class TrackedArenaEquals {
public:
bool operator()(const TrackedArena* a, const TrackedArena* b) const {
return std::equal_to<uint8_t*>{}(a->Begin(), b->Begin());
}
};
class TrackedArenaHash {
public:
size_t operator()(const TrackedArena* arena) const {
return std::hash<size_t>{}(reinterpret_cast<uintptr_t>(arena->Begin()) / kPageSize);
}
};
using AllocatedArenaSet =
HashSet<TrackedArena*, DefaultEmptyFn<TrackedArena*>, TrackedArenaHash, TrackedArenaEquals>;
mutable ReaderWriterMutex lock_;
std::vector<MemMap> maps_ GUARDED_BY(lock_);
std::set<Chunk*, LessByChunkSize> best_fit_allocs_ GUARDED_BY(lock_);
std::set<Chunk*, LessByChunkAddr> free_chunks_ GUARDED_BY(lock_);
// Set of allocated arenas. It's required to be able to find the arena
// corresponding to a given address.
AllocatedArenaSet allocated_arenas_ GUARDED_BY(lock_);
// Number of bytes allocated so far.
size_t bytes_allocated_ GUARDED_BY(lock_);
// To hold arenas that are freed while GC is happening. These are kept until
// the end of GC to avoid ABA problem.
TrackedArena* unused_arenas_ GUARDED_BY(lock_);
const char* name_;
// Flag to indicate that some arenas have been freed. This flag is used as an
// optimization by GC to know if it needs to find if the arena being visited
// has been freed or not. The flag is cleared in the compaction pause and read
// when linear-alloc space is concurrently visited updated to update GC roots.
bool defer_arena_freeing_ GUARDED_BY(lock_);
const bool low_4gb_;
// Set to true in zygote process so that all linear-alloc allocations are in
// private-anonymous mappings and not on userfaultfd visited pages. At
// first zygote fork, it's set to false, after which all allocations are done
// in userfaultfd visited space.
bool pre_zygote_fork_ GUARDED_BY(lock_);
DISALLOW_COPY_AND_ASSIGN(GcVisitedArenaPool);
};
// Allocator for class-table and intern-table hash-sets. It enables updating the
// roots concurrently page-by-page.
template <class T, AllocatorTag kTag>
class GcRootArenaAllocator : public TrackingAllocator<T, kTag> {
public:
using value_type = typename TrackingAllocator<T, kTag>::value_type;
using size_type = typename TrackingAllocator<T, kTag>::size_type;
using difference_type = typename TrackingAllocator<T, kTag>::difference_type;
using pointer = typename TrackingAllocator<T, kTag>::pointer;
using const_pointer = typename TrackingAllocator<T, kTag>::const_pointer;
using reference = typename TrackingAllocator<T, kTag>::reference;
using const_reference = typename TrackingAllocator<T, kTag>::const_reference;
// Used internally by STL data structures.
template <class U>
explicit GcRootArenaAllocator(
[[maybe_unused]] const GcRootArenaAllocator<U, kTag>& alloc) noexcept {}
// Used internally by STL data structures.
GcRootArenaAllocator() noexcept : TrackingAllocator<T, kTag>() {}
// Enables an allocator for objects of one type to allocate storage for objects of another type.
// Used internally by STL data structures.
template <class U>
struct rebind {
using other = GcRootArenaAllocator<U, kTag>;
};
pointer allocate(size_type n, [[maybe_unused]] const_pointer hint = 0) {
if (!gUseUserfaultfd) {
return TrackingAllocator<T, kTag>::allocate(n);
}
size_t size = n * sizeof(T);
GcVisitedArenaPool* pool =
down_cast<GcVisitedArenaPool*>(Runtime::Current()->GetLinearAllocArenaPool());
return reinterpret_cast<pointer>(pool->AllocSingleObjArena(size));
}
template <typename PT>
void deallocate(PT p, size_type n) {
if (!gUseUserfaultfd) {
TrackingAllocator<T, kTag>::deallocate(p, n);
return;
}
GcVisitedArenaPool* pool =
down_cast<GcVisitedArenaPool*>(Runtime::Current()->GetLinearAllocArenaPool());
pool->FreeSingleObjArena(reinterpret_cast<uint8_t*>(p));
}
};
} // namespace art
#endif // ART_RUNTIME_BASE_GC_VISITED_ARENA_POOL_H_