blob: 00593f5708545bdabe0137142c1d8548406f4ced [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Test is in compiler, as it uses compiler related code.
#include "verifier/verifier_deps.h"
#include "art_method-inl.h"
#include "base/indenter.h"
#include "class_linker.h"
#include "common_compiler_driver_test.h"
#include "compiler_callbacks.h"
#include "dex/class_accessor-inl.h"
#include "dex/class_iterator.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_types.h"
#include "dex/verification_results.h"
#include "driver/compiler_driver-inl.h"
#include "driver/compiler_options.h"
#include "handle_scope-inl.h"
#include "mirror/class_loader.h"
#include "runtime.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "utils/atomic_dex_ref_map-inl.h"
#include "verifier/method_verifier-inl.h"
namespace art {
namespace verifier {
class VerifierDepsCompilerCallbacks : public CompilerCallbacks {
public:
VerifierDepsCompilerCallbacks()
: CompilerCallbacks(CompilerCallbacks::CallbackMode::kCompileApp),
deps_(nullptr) {}
void AddUncompilableMethod(MethodReference ref ATTRIBUTE_UNUSED) override {}
void AddUncompilableClass(ClassReference ref ATTRIBUTE_UNUSED) override {}
void ClassRejected(ClassReference ref ATTRIBUTE_UNUSED) override {}
verifier::VerifierDeps* GetVerifierDeps() const override { return deps_; }
void SetVerifierDeps(verifier::VerifierDeps* deps) override { deps_ = deps; }
private:
verifier::VerifierDeps* deps_;
};
class VerifierDepsTest : public CommonCompilerDriverTest {
public:
VerifierDepsTest() {
this->use_boot_image_ = true; // Make the Runtime creation cheaper.
}
void SetUpRuntimeOptions(RuntimeOptions* options) override {
CommonCompilerTest::SetUpRuntimeOptions(options);
callbacks_.reset(new VerifierDepsCompilerCallbacks());
}
ObjPtr<mirror::Class> FindClassByName(ScopedObjectAccess& soa, const std::string& name)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader_handle(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(class_loader_)));
ObjPtr<mirror::Class> klass =
class_linker_->FindClass(soa.Self(), name.c_str(), class_loader_handle);
if (klass == nullptr) {
DCHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
}
return klass;
}
void SetupCompilerDriver() {
compiler_options_->image_type_ = CompilerOptions::ImageType::kNone;
compiler_driver_->InitializeThreadPools();
}
void VerifyWithCompilerDriver(verifier::VerifierDeps* verifier_deps) {
TimingLogger timings("Verify", false, false);
// The compiler driver handles the verifier deps in the callbacks, so
// remove what this class did for unit testing.
if (verifier_deps == nullptr) {
// Create some verifier deps by default if they are not already specified.
verifier_deps = new verifier::VerifierDeps(dex_files_);
verifier_deps_.reset(verifier_deps);
}
callbacks_->SetVerifierDeps(verifier_deps);
compiler_driver_->Verify(class_loader_, dex_files_, &timings);
callbacks_->SetVerifierDeps(nullptr);
}
void SetVerifierDeps(const std::vector<const DexFile*>& dex_files) {
verifier_deps_.reset(new verifier::VerifierDeps(dex_files));
VerifierDepsCompilerCallbacks* callbacks =
reinterpret_cast<VerifierDepsCompilerCallbacks*>(callbacks_.get());
callbacks->SetVerifierDeps(verifier_deps_.get());
}
void LoadDexFile(ScopedObjectAccess& soa, const char* name1, const char* name2 = nullptr)
REQUIRES_SHARED(Locks::mutator_lock_) {
class_loader_ = (name2 == nullptr) ? LoadDex(name1) : LoadMultiDex(name1, name2);
dex_files_ = GetDexFiles(class_loader_);
primary_dex_file_ = dex_files_.front();
SetVerifierDeps(dex_files_);
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> loader =
hs.NewHandle(soa.Decode<mirror::ClassLoader>(class_loader_));
for (const DexFile* dex_file : dex_files_) {
class_linker_->RegisterDexFile(*dex_file, loader.Get());
}
SetDexFilesForOatFile(dex_files_);
}
void LoadDexFile(ScopedObjectAccess& soa) REQUIRES_SHARED(Locks::mutator_lock_) {
LoadDexFile(soa, "VerifierDeps");
CHECK_EQ(dex_files_.size(), 1u);
klass_Main_ = FindClassByName(soa, "LMain;");
CHECK(klass_Main_ != nullptr);
}
bool VerifyMethod(const std::string& method_name) {
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(soa);
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader_handle(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(class_loader_)));
Handle<mirror::DexCache> dex_cache_handle(hs.NewHandle(klass_Main_->GetDexCache()));
const dex::ClassDef* class_def = klass_Main_->GetClassDef();
ClassAccessor accessor(*primary_dex_file_, *class_def);
bool has_failures = true;
bool found_method = false;
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
ArtMethod* resolved_method =
class_linker_->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
method.GetIndex(),
dex_cache_handle,
class_loader_handle,
/* referrer= */ nullptr,
method.GetInvokeType(class_def->access_flags_));
CHECK(resolved_method != nullptr);
if (method_name == resolved_method->GetName()) {
std::unique_ptr<MethodVerifier> verifier(
MethodVerifier::CreateVerifier(soa.Self(),
callbacks_->GetVerifierDeps(),
primary_dex_file_,
dex_cache_handle,
class_loader_handle,
*class_def,
method.GetCodeItem(),
method.GetIndex(),
method.GetAccessFlags(),
/* can_load_classes= */ true,
/* verify to dump */ false,
/* allow_thread_suspension= */ true,
/* api_level= */ 0));
verifier->Verify();
soa.Self()->SetVerifierDeps(nullptr);
has_failures = verifier->HasFailures();
found_method = true;
}
}
CHECK(found_method) << "Expected to find method " << method_name;
return !has_failures;
}
void VerifyDexFile(const char* multidex = nullptr) {
{
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(soa, "VerifierDeps", multidex);
}
SetupCompilerDriver();
VerifyWithCompilerDriver(/* verifier_deps= */ nullptr);
}
bool TestAssignabilityRecording(const std::string& dst, const std::string& src) {
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(soa);
StackHandleScope<1> hs(soa.Self());
Handle<mirror::Class> klass_dst = hs.NewHandle(FindClassByName(soa, dst));
DCHECK(klass_dst != nullptr) << dst;
ObjPtr<mirror::Class> klass_src = FindClassByName(soa, src);
DCHECK(klass_src != nullptr) << src;
verifier_deps_->AddAssignability(*primary_dex_file_,
primary_dex_file_->GetClassDef(0),
klass_dst.Get(),
klass_src);
return true;
}
// Check that the status of classes in `class_loader_` match the
// expected status in `deps`.
void VerifyClassStatus(const verifier::VerifierDeps& deps) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader_handle(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(class_loader_)));
MutableHandle<mirror::Class> cls(hs.NewHandle<mirror::Class>(nullptr));
for (const DexFile* dex_file : dex_files_) {
const std::vector<bool>& verified_classes = deps.GetVerifiedClasses(*dex_file);
ASSERT_EQ(verified_classes.size(), dex_file->NumClassDefs());
for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
const dex::ClassDef& class_def = dex_file->GetClassDef(i);
const char* descriptor = dex_file->GetClassDescriptor(class_def);
cls.Assign(class_linker_->FindClass(soa.Self(), descriptor, class_loader_handle));
if (cls == nullptr) {
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
} else if (&cls->GetDexFile() != dex_file) {
// Ignore classes from different dex files.
} else if (verified_classes[i]) {
ASSERT_EQ(cls->GetStatus(), ClassStatus::kVerifiedNeedsAccessChecks);
} else {
ASSERT_LT(cls->GetStatus(), ClassStatus::kVerified);
}
}
}
}
uint16_t GetClassDefIndex(const std::string& cls, const DexFile& dex_file) {
const dex::TypeId* type_id = dex_file.FindTypeId(cls.c_str());
DCHECK(type_id != nullptr);
dex::TypeIndex type_idx = dex_file.GetIndexForTypeId(*type_id);
const dex::ClassDef* class_def = dex_file.FindClassDef(type_idx);
DCHECK(class_def != nullptr);
return dex_file.GetIndexForClassDef(*class_def);
}
bool HasVerifiedClass(const std::string& cls) {
return HasVerifiedClass(cls, *primary_dex_file_);
}
bool HasUnverifiedClass(const std::string& cls) {
return !HasVerifiedClass(cls, *primary_dex_file_);
}
bool HasUnverifiedClass(const std::string& cls, const DexFile& dex_file) {
return !HasVerifiedClass(cls, dex_file);
}
bool HasVerifiedClass(const std::string& cls, const DexFile& dex_file) {
uint16_t class_def_idx = GetClassDefIndex(cls, dex_file);
return verifier_deps_->GetVerifiedClasses(dex_file)[class_def_idx];
}
// Iterates over all assignability records and tries to find an entry which
// matches the expected destination/source pair.
bool HasAssignable(const std::string& expected_destination,
const std::string& expected_source) const {
for (auto& dex_dep : verifier_deps_->dex_deps_) {
const DexFile& dex_file = *dex_dep.first;
auto& storage = dex_dep.second->assignable_types_;
for (auto& set : storage) {
for (auto& entry : set) {
std::string actual_destination =
verifier_deps_->GetStringFromId(dex_file, entry.GetDestination());
std::string actual_source = verifier_deps_->GetStringFromId(dex_file, entry.GetSource());
if ((expected_destination == actual_destination) && (expected_source == actual_source)) {
return true;
}
}
}
}
return false;
}
size_t NumberOfCompiledDexFiles() {
return verifier_deps_->dex_deps_.size();
}
bool HasBoolValue(const std::vector<bool>& vec, bool value) {
return std::count(vec.begin(), vec.end(), value) > 0;
}
bool HasEachKindOfRecord() {
bool has_strings = false;
bool has_assignability = false;
bool has_verified_classes = false;
bool has_unverified_classes = false;
for (auto& entry : verifier_deps_->dex_deps_) {
has_strings |= !entry.second->strings_.empty();
has_assignability |= !entry.second->assignable_types_.empty();
has_verified_classes |= HasBoolValue(entry.second->verified_classes_, true);
has_unverified_classes |= HasBoolValue(entry.second->verified_classes_, false);
}
return has_strings &&
has_assignability &&
has_verified_classes &&
has_unverified_classes;
}
// Load the dex file again with a new class loader, decode the VerifierDeps
// in `buffer`, allow the caller to modify the deps and then run validation.
template<typename Fn>
bool RunValidation(Fn fn, const std::vector<uint8_t>& buffer, std::string* error_msg) {
ScopedObjectAccess soa(Thread::Current());
jobject second_loader = LoadDex("VerifierDeps");
const auto& second_dex_files = GetDexFiles(second_loader);
VerifierDeps decoded_deps(second_dex_files, /*output_only=*/ false);
bool parsed = decoded_deps.ParseStoredData(second_dex_files, ArrayRef<const uint8_t>(buffer));
CHECK(parsed);
VerifierDeps::DexFileDeps* decoded_dex_deps =
decoded_deps.GetDexFileDeps(*second_dex_files.front());
// Let the test modify the dependencies.
fn(*decoded_dex_deps);
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> new_class_loader =
hs.NewHandle<mirror::ClassLoader>(soa.Decode<mirror::ClassLoader>(second_loader));
return decoded_deps.ValidateDependencies(soa.Self(),
new_class_loader,
second_dex_files,
error_msg);
}
std::unique_ptr<verifier::VerifierDeps> verifier_deps_;
std::vector<const DexFile*> dex_files_;
const DexFile* primary_dex_file_;
jobject class_loader_;
ObjPtr<mirror::Class> klass_Main_;
};
TEST_F(VerifierDepsTest, StringToId) {
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(soa);
dex::StringIndex id_Main1 = verifier_deps_->GetIdFromString(*primary_dex_file_, "LMain;");
ASSERT_LT(id_Main1.index_, primary_dex_file_->NumStringIds());
ASSERT_EQ("LMain;", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Main1));
dex::StringIndex id_Main2 = verifier_deps_->GetIdFromString(*primary_dex_file_, "LMain;");
ASSERT_LT(id_Main2.index_, primary_dex_file_->NumStringIds());
ASSERT_EQ("LMain;", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Main2));
dex::StringIndex id_Lorem1 = verifier_deps_->GetIdFromString(*primary_dex_file_, "Lorem ipsum");
ASSERT_GE(id_Lorem1.index_, primary_dex_file_->NumStringIds());
ASSERT_EQ("Lorem ipsum", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Lorem1));
dex::StringIndex id_Lorem2 = verifier_deps_->GetIdFromString(*primary_dex_file_, "Lorem ipsum");
ASSERT_GE(id_Lorem2.index_, primary_dex_file_->NumStringIds());
ASSERT_EQ("Lorem ipsum", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Lorem2));
ASSERT_EQ(id_Main1, id_Main2);
ASSERT_EQ(id_Lorem1, id_Lorem2);
ASSERT_NE(id_Main1, id_Lorem1);
}
TEST_F(VerifierDepsTest, Assignable_BothInBoot) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst= */ "Ljava/util/TimeZone;",
/* src= */ "Ljava/util/SimpleTimeZone;"));
ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;"));
}
TEST_F(VerifierDepsTest, Assignable_BothArrays_Resolved) {
ASSERT_TRUE(TestAssignabilityRecording(/* dst= */ "[[Ljava/util/TimeZone;",
/* src= */ "[[Ljava/util/SimpleTimeZone;"));
// If the component types of both arrays are resolved, we optimize the list of
// dependencies by recording a dependency on the component types.
ASSERT_FALSE(HasAssignable("[[Ljava/util/TimeZone;", "[[Ljava/util/SimpleTimeZone;"));
ASSERT_FALSE(HasAssignable("[Ljava/util/TimeZone;", "[Ljava/util/SimpleTimeZone;"));
ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;"));
}
TEST_F(VerifierDepsTest, ReturnType_Reference) {
ASSERT_TRUE(VerifyMethod("ReturnType_Reference"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/lang/IllegalStateException;"));
}
TEST_F(VerifierDepsTest, InvokeArgumentType) {
ASSERT_TRUE(VerifyMethod("InvokeArgumentType"));
ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;"));
}
TEST_F(VerifierDepsTest, MergeTypes_RegisterLines) {
ASSERT_TRUE(VerifyMethod("MergeTypes_RegisterLines"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "LMySocketTimeoutException;"));
ASSERT_TRUE(HasAssignable(
"Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;"));
}
TEST_F(VerifierDepsTest, MergeTypes_IfInstanceOf) {
ASSERT_TRUE(VerifyMethod("MergeTypes_IfInstanceOf"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "Ljava/net/SocketTimeoutException;"));
ASSERT_TRUE(HasAssignable(
"Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;"));
}
TEST_F(VerifierDepsTest, MergeTypes_Unresolved) {
ASSERT_TRUE(VerifyMethod("MergeTypes_Unresolved"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "Ljava/net/SocketTimeoutException;"));
ASSERT_TRUE(HasAssignable(
"Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;"));
}
TEST_F(VerifierDepsTest, Throw) {
ASSERT_TRUE(VerifyMethod("Throw"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/lang/IllegalStateException;"));
}
TEST_F(VerifierDepsTest, MoveException_Resolved) {
ASSERT_TRUE(VerifyMethod("MoveException_Resolved"));
// Testing that all exception types are assignable to Throwable.
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/io/InterruptedIOException;"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/net/SocketTimeoutException;"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/util/zip/ZipException;"));
// Testing that the merge type is assignable to Throwable.
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/io/IOException;"));
// Merging of exception types.
ASSERT_TRUE(HasAssignable("Ljava/io/IOException;", "Ljava/io/InterruptedIOException;"));
ASSERT_TRUE(HasAssignable("Ljava/io/IOException;", "Ljava/util/zip/ZipException;"));
ASSERT_TRUE(HasAssignable(
"Ljava/io/InterruptedIOException;", "Ljava/net/SocketTimeoutException;"));
}
TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInReferenced) {
ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInReferenced"));
ASSERT_TRUE(HasAssignable(
"Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;"));
}
TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInSuperclass1) {
ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInSuperclass1"));
ASSERT_TRUE(HasAssignable(
"Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;"));
}
TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInSuperclass2) {
ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInSuperclass2"));
ASSERT_TRUE(HasAssignable(
"Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;"));
}
TEST_F(VerifierDepsTest, InvokeVirtual_Resolved_DeclaredInReferenced) {
ASSERT_TRUE(VerifyMethod("InvokeVirtual_Resolved_DeclaredInReferenced"));
// Type dependency on `this` argument.
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "LMySocketTimeoutException;"));
}
TEST_F(VerifierDepsTest, InvokeVirtual_Resolved_DeclaredInSuperclass1) {
ASSERT_TRUE(VerifyMethod("InvokeVirtual_Resolved_DeclaredInSuperclass1"));
// Type dependency on `this` argument.
ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "LMySocketTimeoutException;"));
}
TEST_F(VerifierDepsTest, InvokeSuper_ThisAssignable) {
ASSERT_TRUE(VerifyMethod("InvokeSuper_ThisAssignable"));
ASSERT_TRUE(HasAssignable("Ljava/lang/Runnable;", "LMain;"));
}
TEST_F(VerifierDepsTest, EncodeDecode) {
VerifyDexFile();
ASSERT_EQ(1u, NumberOfCompiledDexFiles());
ASSERT_TRUE(HasEachKindOfRecord());
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
ASSERT_FALSE(buffer.empty());
VerifierDeps decoded_deps(dex_files_, /*output_only=*/ false);
bool parsed = decoded_deps.ParseStoredData(dex_files_, ArrayRef<const uint8_t>(buffer));
ASSERT_TRUE(parsed);
ASSERT_TRUE(verifier_deps_->Equals(decoded_deps));
}
TEST_F(VerifierDepsTest, EncodeDecodeMulti) {
VerifyDexFile("MultiDex");
ASSERT_GT(NumberOfCompiledDexFiles(), 1u);
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
ASSERT_FALSE(buffer.empty());
// Create new DexFile, to mess with std::map order: the verifier deps used
// to iterate over the map, which doesn't guarantee insertion order. We fixed
// this by passing the expected order when encoding/decoding.
std::vector<std::unique_ptr<const DexFile>> first_dex_files = OpenTestDexFiles("VerifierDeps");
std::vector<std::unique_ptr<const DexFile>> second_dex_files = OpenTestDexFiles("MultiDex");
std::vector<const DexFile*> dex_files;
dex_files.reserve(first_dex_files.size() + second_dex_files.size());
for (auto& dex_file : first_dex_files) {
dex_files.push_back(dex_file.get());
}
for (auto& dex_file : second_dex_files) {
dex_files.push_back(dex_file.get());
}
// Dump the new verifier deps to ensure it can properly read the data.
VerifierDeps decoded_deps(dex_files, /*output_only=*/ false);
bool parsed = decoded_deps.ParseStoredData(dex_files, ArrayRef<const uint8_t>(buffer));
ASSERT_TRUE(parsed);
std::ostringstream stream;
VariableIndentationOutputStream os(&stream);
decoded_deps.Dump(&os);
}
TEST_F(VerifierDepsTest, UnverifiedClasses) {
VerifyDexFile();
ASSERT_FALSE(HasUnverifiedClass("LMyThread;"));
// Test that a class with a soft failure is recorded.
ASSERT_TRUE(HasUnverifiedClass("LMain;"));
// Test that a class with hard failure is recorded.
ASSERT_TRUE(HasUnverifiedClass("LMyVerificationFailure;"));
// Test that a class with unresolved super and hard failure is recorded.
ASSERT_TRUE(HasUnverifiedClass("LMyClassWithNoSuperButFailures;"));
// Test that a class with unresolved super can be verified.
ASSERT_TRUE(HasVerifiedClass("LMyClassWithNoSuper;"));
}
TEST_F(VerifierDepsTest, UnverifiedOrder) {
ScopedObjectAccess soa(Thread::Current());
jobject loader = LoadDex("VerifierDeps");
std::vector<const DexFile*> dex_files = GetDexFiles(loader);
ASSERT_GT(dex_files.size(), 0u);
const DexFile* dex_file = dex_files[0];
VerifierDeps deps1(dex_files);
deps1.MaybeRecordVerificationStatus(&deps1,
*dex_file,
dex_file->GetClassDef(0u),
verifier::FailureKind::kHardFailure);
deps1.MaybeRecordVerificationStatus(&deps1,
*dex_file,
dex_file->GetClassDef(1u),
verifier::FailureKind::kHardFailure);
VerifierDeps deps2(dex_files);
deps2.MaybeRecordVerificationStatus(&deps2,
*dex_file,
dex_file->GetClassDef(1u),
verifier::FailureKind::kHardFailure);
deps2.MaybeRecordVerificationStatus(&deps2,
*dex_file,
dex_file->GetClassDef(0u),
verifier::FailureKind::kHardFailure);
std::vector<uint8_t> buffer1;
deps1.Encode(dex_files, &buffer1);
std::vector<uint8_t> buffer2;
deps2.Encode(dex_files, &buffer2);
EXPECT_EQ(buffer1, buffer2);
}
TEST_F(VerifierDepsTest, VerifyDeps) {
std::string error_msg;
VerifyDexFile();
ASSERT_EQ(1u, NumberOfCompiledDexFiles());
ASSERT_TRUE(HasEachKindOfRecord());
// When validating, we create a new class loader, as
// the existing `class_loader_` may contain erroneous classes,
// that ClassLinker::FindClass won't return.
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
ASSERT_FALSE(buffer.empty());
// Check that dependencies are satisfied after decoding `buffer`.
ASSERT_TRUE(RunValidation([](VerifierDeps::DexFileDeps&) {}, buffer, &error_msg))
<< error_msg;
}
TEST_F(VerifierDepsTest, CompilerDriver) {
SetupCompilerDriver();
// Test both multi-dex and single-dex configuration.
for (const char* multi : { "MultiDex", static_cast<const char*>(nullptr) }) {
// Test that the compiler driver behaves as expected when the dependencies
// verify and when they don't verify.
for (bool verify_failure : { false, true }) {
{
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(soa, "VerifierDeps", multi);
}
VerifyWithCompilerDriver(/* verifier_deps= */ nullptr);
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
{
ScopedObjectAccess soa(Thread::Current());
LoadDexFile(soa, "VerifierDeps", multi);
}
VerifierDeps decoded_deps(dex_files_, /*output_only=*/ false);
bool parsed = decoded_deps.ParseStoredData(dex_files_, ArrayRef<const uint8_t>(buffer));
ASSERT_TRUE(parsed);
VerifyWithCompilerDriver(&decoded_deps);
if (verify_failure) {
ASSERT_FALSE(verifier_deps_ == nullptr);
ASSERT_FALSE(verifier_deps_->Equals(decoded_deps));
} else {
VerifyClassStatus(decoded_deps);
}
}
}
}
TEST_F(VerifierDepsTest, MultiDexVerification) {
VerifyDexFile("VerifierDepsMulti");
ASSERT_EQ(NumberOfCompiledDexFiles(), 2u);
ASSERT_TRUE(HasUnverifiedClass("LMySoftVerificationFailure;", *dex_files_[1]));
ASSERT_TRUE(HasUnverifiedClass("LMySub1SoftVerificationFailure;", *dex_files_[0]));
ASSERT_TRUE(HasUnverifiedClass("LMySub2SoftVerificationFailure;", *dex_files_[0]));
std::vector<uint8_t> buffer;
verifier_deps_->Encode(dex_files_, &buffer);
ASSERT_FALSE(buffer.empty());
}
} // namespace verifier
} // namespace art