| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "intrinsics_x86.h" |
| |
| #include <limits> |
| |
| #include "arch/x86/instruction_set_features_x86.h" |
| #include "art_method.h" |
| #include "base/bit_utils.h" |
| #include "code_generator_x86.h" |
| #include "data_type-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics.h" |
| #include "intrinsics_utils.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/reference.h" |
| #include "mirror/string.h" |
| #include "mirror/var_handle.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread-current-inl.h" |
| #include "utils/x86/assembler_x86.h" |
| #include "utils/x86/constants_x86.h" |
| |
| namespace art HIDDEN { |
| |
| namespace x86 { |
| |
| IntrinsicLocationsBuilderX86::IntrinsicLocationsBuilderX86(CodeGeneratorX86* codegen) |
| : allocator_(codegen->GetGraph()->GetAllocator()), |
| codegen_(codegen) { |
| } |
| |
| |
| X86Assembler* IntrinsicCodeGeneratorX86::GetAssembler() { |
| return down_cast<X86Assembler*>(codegen_->GetAssembler()); |
| } |
| |
| ArenaAllocator* IntrinsicCodeGeneratorX86::GetAllocator() { |
| return codegen_->GetGraph()->GetAllocator(); |
| } |
| |
| bool IntrinsicLocationsBuilderX86::TryDispatch(HInvoke* invoke) { |
| Dispatch(invoke); |
| LocationSummary* res = invoke->GetLocations(); |
| if (res == nullptr) { |
| return false; |
| } |
| return res->Intrinsified(); |
| } |
| |
| using IntrinsicSlowPathX86 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86>; |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> // NOLINT |
| |
| // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. |
| class ReadBarrierSystemArrayCopySlowPathX86 : public SlowPathCode { |
| public: |
| explicit ReadBarrierSystemArrayCopySlowPathX86(HInstruction* instruction) |
| : SlowPathCode(instruction) { |
| DCHECK(gUseReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(instruction_->IsInvokeStaticOrDirect()) |
| << "Unexpected instruction in read barrier arraycopy slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); |
| |
| int32_t element_size = DataType::Size(DataType::Type::kReference); |
| uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value(); |
| |
| Register src = locations->InAt(0).AsRegister<Register>(); |
| Location src_pos = locations->InAt(1); |
| Register dest = locations->InAt(2).AsRegister<Register>(); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| Location temp1_loc = locations->GetTemp(0); |
| Register temp1 = temp1_loc.AsRegister<Register>(); |
| Register temp2 = locations->GetTemp(1).AsRegister<Register>(); |
| Register temp3 = locations->GetTemp(2).AsRegister<Register>(); |
| |
| __ Bind(GetEntryLabel()); |
| // In this code path, registers `temp1`, `temp2`, and `temp3` |
| // (resp.) are not used for the base source address, the base |
| // destination address, and the end source address (resp.), as in |
| // other SystemArrayCopy intrinsic code paths. Instead they are |
| // (resp.) used for: |
| // - the loop index (`i`); |
| // - the source index (`src_index`) and the loaded (source) |
| // reference (`value`); and |
| // - the destination index (`dest_index`). |
| |
| // i = 0 |
| __ xorl(temp1, temp1); |
| NearLabel loop; |
| __ Bind(&loop); |
| // value = src_array[i + src_pos] |
| if (src_pos.IsConstant()) { |
| int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| int32_t adjusted_offset = offset + constant * element_size; |
| __ movl(temp2, Address(src, temp1, ScaleFactor::TIMES_4, adjusted_offset)); |
| } else { |
| __ leal(temp2, Address(src_pos.AsRegister<Register>(), temp1, ScaleFactor::TIMES_1, 0)); |
| __ movl(temp2, Address(src, temp2, ScaleFactor::TIMES_4, offset)); |
| } |
| __ MaybeUnpoisonHeapReference(temp2); |
| // TODO: Inline the mark bit check before calling the runtime? |
| // value = ReadBarrier::Mark(value) |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| // (See ReadBarrierMarkSlowPathX86::EmitNativeCode for more |
| // explanations.) |
| DCHECK_NE(temp2, ESP); |
| DCHECK(0 <= temp2 && temp2 < kNumberOfCpuRegisters) << temp2; |
| int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(temp2); |
| // This runtime call does not require a stack map. |
| x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| __ MaybePoisonHeapReference(temp2); |
| // dest_array[i + dest_pos] = value |
| if (dest_pos.IsConstant()) { |
| int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| int32_t adjusted_offset = offset + constant * element_size; |
| __ movl(Address(dest, temp1, ScaleFactor::TIMES_4, adjusted_offset), temp2); |
| } else { |
| __ leal(temp3, Address(dest_pos.AsRegister<Register>(), temp1, ScaleFactor::TIMES_1, 0)); |
| __ movl(Address(dest, temp3, ScaleFactor::TIMES_4, offset), temp2); |
| } |
| // ++i |
| __ addl(temp1, Immediate(1)); |
| // if (i != length) goto loop |
| x86_codegen->GenerateIntCompare(temp1_loc, length); |
| __ j(kNotEqual, &loop); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86); |
| }; |
| |
| #undef __ |
| |
| #define __ assembler-> |
| |
| static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is64bit) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| if (is64bit) { |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is64bit) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| if (is64bit) { |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| if (is64bit) { |
| // Need to use the temporary. |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| __ movsd(temp, input.AsFpuRegister<XmmRegister>()); |
| __ movd(output.AsRegisterPairLow<Register>(), temp); |
| __ psrlq(temp, Immediate(32)); |
| __ movd(output.AsRegisterPairHigh<Register>(), temp); |
| } else { |
| __ movd(output.AsRegister<Register>(), input.AsFpuRegister<XmmRegister>()); |
| } |
| } |
| |
| static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| if (is64bit) { |
| // Need to use the temporary. |
| XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| __ movd(temp1, input.AsRegisterPairLow<Register>()); |
| __ movd(temp2, input.AsRegisterPairHigh<Register>()); |
| __ punpckldq(temp1, temp2); |
| __ movsd(output.AsFpuRegister<XmmRegister>(), temp1); |
| } else { |
| __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<Register>()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke, /* is64bit= */ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke, /* is64bit= */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke, /* is64bit= */ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke, /* is64bit= */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorX86::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); |
| } |
| |
| static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| static void CreateLongToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void CreateLongToLongLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| static void GenReverseBytes(LocationSummary* locations, |
| DataType::Type size, |
| X86Assembler* assembler) { |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| switch (size) { |
| case DataType::Type::kInt16: |
| // TODO: Can be done with an xchg of 8b registers. This is straight from Quick. |
| __ bswapl(out); |
| __ sarl(out, Immediate(16)); |
| break; |
| case DataType::Type::kInt32: |
| __ bswapl(out); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected size for reverse-bytes: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongReverseBytes(HInvoke* invoke) { |
| CreateLongToLongLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongReverseBytes(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location input = locations->InAt(0); |
| Register input_lo = input.AsRegisterPairLow<Register>(); |
| Register input_hi = input.AsRegisterPairHigh<Register>(); |
| Location output = locations->Out(); |
| Register output_lo = output.AsRegisterPairLow<Register>(); |
| Register output_hi = output.AsRegisterPairHigh<Register>(); |
| |
| X86Assembler* assembler = GetAssembler(); |
| // Assign the inputs to the outputs, mixing low/high. |
| __ movl(output_lo, input_hi); |
| __ movl(output_hi, input_lo); |
| __ bswapl(output_lo); |
| __ bswapl(output_hi); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitShortReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitShortReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); |
| } |
| |
| static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathSqrt(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathSqrt(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| |
| GetAssembler()->sqrtsd(out, in); |
| } |
| |
| static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator, |
| HInvoke* invoke, |
| CodeGeneratorX86* codegen) { |
| // Do we have instruction support? |
| if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) { |
| return; |
| } |
| |
| CreateFPToFPLocations(allocator, invoke); |
| } |
| |
| static void GenSSE41FPToFPIntrinsic(HInvoke* invoke, X86Assembler* assembler, int round_mode) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(!locations->WillCall()); |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| __ roundsd(out, in, Immediate(round_mode)); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathCeil(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathCeil(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 2); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathFloor(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathFloor(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 1); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathRint(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathRint(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 0); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathRoundFloat(HInvoke* invoke) { |
| // Do we have instruction support? |
| if (!codegen_->GetInstructionSetFeatures().HasSSE4_1()) { |
| return; |
| } |
| |
| HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect(); |
| DCHECK(static_or_direct != nullptr); |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (static_or_direct->HasSpecialInput() && |
| invoke->InputAt( |
| static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathRoundFloat(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(!locations->WillCall()); |
| |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| NearLabel skip_incr, done; |
| X86Assembler* assembler = GetAssembler(); |
| |
| // Since no direct x86 rounding instruction matches the required semantics, |
| // this intrinsic is implemented as follows: |
| // result = floor(in); |
| // if (in - result >= 0.5f) |
| // result = result + 1.0f; |
| __ movss(t2, in); |
| __ roundss(t1, in, Immediate(1)); |
| __ subss(t2, t1); |
| if (locations->GetInputCount() == 2 && locations->InAt(1).IsValid()) { |
| // Direct constant area available. |
| HX86ComputeBaseMethodAddress* method_address = |
| invoke->InputAt(1)->AsX86ComputeBaseMethodAddress(); |
| Register constant_area = locations->InAt(1).AsRegister<Register>(); |
| __ comiss(t2, codegen_->LiteralInt32Address(bit_cast<int32_t, float>(0.5f), |
| method_address, |
| constant_area)); |
| __ j(kBelow, &skip_incr); |
| __ addss(t1, codegen_->LiteralInt32Address(bit_cast<int32_t, float>(1.0f), |
| method_address, |
| constant_area)); |
| __ Bind(&skip_incr); |
| } else { |
| // No constant area: go through stack. |
| __ pushl(Immediate(bit_cast<int32_t, float>(0.5f))); |
| __ pushl(Immediate(bit_cast<int32_t, float>(1.0f))); |
| __ comiss(t2, Address(ESP, 4)); |
| __ j(kBelow, &skip_incr); |
| __ addss(t1, Address(ESP, 0)); |
| __ Bind(&skip_incr); |
| __ addl(ESP, Immediate(8)); |
| } |
| |
| // Final conversion to an integer. Unfortunately this also does not have a |
| // direct x86 instruction, since NaN should map to 0 and large positive |
| // values need to be clipped to the extreme value. |
| __ movl(out, Immediate(kPrimIntMax)); |
| __ cvtsi2ss(t2, out); |
| __ comiss(t1, t2); |
| __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered |
| __ movl(out, Immediate(0)); // does not change flags |
| __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) |
| __ cvttss2si(out, t1); |
| __ Bind(&done); |
| } |
| |
| static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| } |
| |
| static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86* codegen, QuickEntrypointEnum entry) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(locations->WillCall()); |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| X86Assembler* assembler = codegen->GetAssembler(); |
| |
| // We need some place to pass the parameters. |
| __ subl(ESP, Immediate(16)); |
| __ cfi().AdjustCFAOffset(16); |
| |
| // Pass the parameters at the bottom of the stack. |
| __ movsd(Address(ESP, 0), XMM0); |
| |
| // If we have a second parameter, pass it next. |
| if (invoke->GetNumberOfArguments() == 2) { |
| __ movsd(Address(ESP, 8), XMM1); |
| } |
| |
| // Now do the actual call. |
| codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); |
| |
| // Extract the return value from the FP stack. |
| __ fstpl(Address(ESP, 0)); |
| __ movsd(XMM0, Address(ESP, 0)); |
| |
| // And clean up the stack. |
| __ addl(ESP, Immediate(16)); |
| __ cfi().AdjustCFAOffset(-16); |
| } |
| |
| static void CreateLowestOneBitLocations(ArenaAllocator* allocator, bool is_long, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| if (is_long) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(0, Location::Any()); |
| } |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| static void GenLowestOneBit(X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| bool is_long, |
| HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| Location out_loc = locations->Out(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| if (is_long) { |
| __ xorl(out_loc.AsRegisterPairLow<Register>(), out_loc.AsRegisterPairLow<Register>()); |
| __ xorl(out_loc.AsRegisterPairHigh<Register>(), out_loc.AsRegisterPairHigh<Register>()); |
| } else { |
| __ xorl(out_loc.AsRegister<Register>(), out_loc.AsRegister<Register>()); |
| } |
| return; |
| } |
| // Nonzero value. |
| value = is_long ? CTZ(static_cast<uint64_t>(value)) |
| : CTZ(static_cast<uint32_t>(value)); |
| if (is_long) { |
| if (value >= 32) { |
| int shift = value-32; |
| codegen->Load32BitValue(out_loc.AsRegisterPairLow<Register>(), 0); |
| codegen->Load32BitValue(out_loc.AsRegisterPairHigh<Register>(), 1 << shift); |
| } else { |
| codegen->Load32BitValue(out_loc.AsRegisterPairLow<Register>(), 1 << value); |
| codegen->Load32BitValue(out_loc.AsRegisterPairHigh<Register>(), 0); |
| } |
| } else { |
| codegen->Load32BitValue(out_loc.AsRegister<Register>(), 1 << value); |
| } |
| return; |
| } |
| // Handle non constant case |
| if (is_long) { |
| DCHECK(src.IsRegisterPair()); |
| Register src_lo = src.AsRegisterPairLow<Register>(); |
| Register src_hi = src.AsRegisterPairHigh<Register>(); |
| |
| Register out_lo = out_loc.AsRegisterPairLow<Register>(); |
| Register out_hi = out_loc.AsRegisterPairHigh<Register>(); |
| |
| __ movl(out_lo, src_lo); |
| __ movl(out_hi, src_hi); |
| |
| __ negl(out_lo); |
| __ adcl(out_hi, Immediate(0)); |
| __ negl(out_hi); |
| |
| __ andl(out_lo, src_lo); |
| __ andl(out_hi, src_hi); |
| } else { |
| if (codegen->GetInstructionSetFeatures().HasAVX2() && src.IsRegister()) { |
| Register out = out_loc.AsRegister<Register>(); |
| __ blsi(out, src.AsRegister<Register>()); |
| } else { |
| Register out = out_loc.AsRegister<Register>(); |
| // Do tmp & -tmp |
| if (src.IsRegister()) { |
| __ movl(out, src.AsRegister<Register>()); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ movl(out, Address(ESP, src.GetStackIndex())); |
| } |
| __ negl(out); |
| |
| if (src.IsRegister()) { |
| __ andl(out, src.AsRegister<Register>()); |
| } else { |
| __ andl(out, Address(ESP, src.GetStackIndex())); |
| } |
| } |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathCos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathCos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCos); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathSin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathSin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSin); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAcos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAcos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAcos); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAsin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAsin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAsin); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAtan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAtan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathCbrt(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathCbrt(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCbrt); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathCosh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathCosh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCosh); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathExp(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathExp(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExp); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathExpm1(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathExpm1(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExpm1); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathLog(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathLog(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathLog10(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathLog10(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog10); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathSinh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathSinh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSinh); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathTan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathTan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTan); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathTanh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathTanh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTanh); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| CreateLowestOneBitLocations(allocator_, /*is_long=*/ false, invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| GenLowestOneBit(GetAssembler(), codegen_, /*is_long=*/ false, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongLowestOneBit(HInvoke* invoke) { |
| CreateLowestOneBitLocations(allocator_, /*is_long=*/ true, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongLowestOneBit(HInvoke* invoke) { |
| GenLowestOneBit(GetAssembler(), codegen_, /*is_long=*/ true, invoke); |
| } |
| |
| static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| } |
| |
| static void CreateFPFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 3U); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetInAt(2, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathAtan2(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathAtan2(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan2); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathPow(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathPow(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickPow); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathHypot(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathHypot(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickHypot); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathNextAfter(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathNextAfter(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickNextAfter); |
| } |
| |
| static void CreateSystemArrayCopyLocations(HInvoke* invoke) { |
| // We need at least two of the positions or length to be an integer constant, |
| // or else we won't have enough free registers. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| |
| int num_constants = |
| ((src_pos != nullptr) ? 1 : 0) |
| + ((dest_pos != nullptr) ? 1 : 0) |
| + ((length != nullptr) ? 1 : 0); |
| |
| if (num_constants < 2) { |
| // Not enough free registers. |
| return; |
| } |
| |
| // As long as we are checking, we might as well check to see if the src and dest |
| // positions are >= 0. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dest_pos != nullptr && dest_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // And since we are already checking, check the length too. |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0) { |
| // Just call as normal. |
| return; |
| } |
| } |
| |
| // Okay, it is safe to generate inline code. |
| LocationSummary* locations = |
| new (invoke->GetBlock()->GetGraph()->GetAllocator()) |
| LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // arraycopy(Object src, int srcPos, Object dest, int destPos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); |
| locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); |
| |
| // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. |
| locations->AddTemp(Location::RegisterLocation(ESI)); |
| locations->AddTemp(Location::RegisterLocation(EDI)); |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } |
| |
| static void CheckPosition(X86Assembler* assembler, |
| Location pos, |
| Register input, |
| Location length, |
| SlowPathCode* slow_path, |
| Register temp, |
| bool length_is_input_length = false) { |
| // Where is the length in the Array? |
| const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| |
| if (pos.IsConstant()) { |
| int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (pos_const == 0) { |
| if (!length_is_input_length) { |
| // Check that length(input) >= length. |
| if (length.IsConstant()) { |
| __ cmpl(Address(input, length_offset), |
| Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(Address(input, length_offset), length.AsRegister<Register>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } else { |
| // Check that length(input) >= pos. |
| __ movl(temp, Address(input, length_offset)); |
| __ subl(temp, Immediate(pos_const)); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| if (length.IsConstant()) { |
| __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(temp, length.AsRegister<Register>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } else if (length_is_input_length) { |
| // The only way the copy can succeed is if pos is zero. |
| Register pos_reg = pos.AsRegister<Register>(); |
| __ testl(pos_reg, pos_reg); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } else { |
| // Check that pos >= 0. |
| Register pos_reg = pos.AsRegister<Register>(); |
| __ testl(pos_reg, pos_reg); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that pos <= length(input). |
| __ cmpl(Address(input, length_offset), pos_reg); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| __ movl(temp, Address(input, length_offset)); |
| __ subl(temp, pos_reg); |
| if (length.IsConstant()) { |
| __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(temp, length.AsRegister<Register>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| static void SystemArrayCopyPrimitive(HInvoke* invoke, |
| X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| DataType::Type type) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Register src = locations->InAt(0).AsRegister<Register>(); |
| Location src_pos = locations->InAt(1); |
| Register dest = locations->InAt(2).AsRegister<Register>(); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| |
| // Temporaries that we need for MOVSB/W/L. |
| Register src_base = locations->GetTemp(0).AsRegister<Register>(); |
| DCHECK_EQ(src_base, ESI); |
| Register dest_base = locations->GetTemp(1).AsRegister<Register>(); |
| DCHECK_EQ(dest_base, EDI); |
| Register count = locations->GetTemp(2).AsRegister<Register>(); |
| DCHECK_EQ(count, ECX); |
| |
| SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| // Bail out if the source and destination are the same (to handle overlap). |
| __ cmpl(src, dest); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Bail out if the source is null. |
| __ testl(src, src); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Bail out if the destination is null. |
| __ testl(dest, dest); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // If the length is negative, bail out. |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant()) { |
| __ cmpl(length.AsRegister<Register>(), length.AsRegister<Register>()); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| |
| // We need the count in ECX. |
| if (length.IsConstant()) { |
| __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movl(count, length.AsRegister<Register>()); |
| } |
| |
| // Validity checks: source. Use src_base as a temporary register. |
| CheckPosition(assembler, src_pos, src, Location::RegisterLocation(count), slow_path, src_base); |
| |
| // Validity checks: dest. Use src_base as a temporary register. |
| CheckPosition(assembler, dest_pos, dest, Location::RegisterLocation(count), slow_path, src_base); |
| |
| // Okay, everything checks out. Finally time to do the copy. |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t data_size = DataType::Size(type); |
| const ScaleFactor scale_factor = CodeGenerator::ScaleFactorForType(type); |
| const uint32_t data_offset = mirror::Array::DataOffset(data_size).Uint32Value(); |
| |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(src_base, Address(src, data_size * src_pos_const + data_offset)); |
| } else { |
| __ leal(src_base, Address(src, src_pos.AsRegister<Register>(), scale_factor, data_offset)); |
| } |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(dest_base, Address(dest, data_size * dest_pos_const + data_offset)); |
| } else { |
| __ leal(dest_base, Address(dest, dest_pos.AsRegister<Register>(), scale_factor, data_offset)); |
| } |
| |
| // Do the move. |
| switch (type) { |
| case DataType::Type::kInt8: |
| __ rep_movsb(); |
| break; |
| case DataType::Type::kUint16: |
| __ rep_movsw(); |
| break; |
| case DataType::Type::kInt32: |
| __ rep_movsl(); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected data type for intrinsic"; |
| } |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| CreateSystemArrayCopyLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kUint16); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitSystemArrayCopyByte(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kInt8); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitSystemArrayCopyByte(HInvoke* invoke) { |
| CreateSystemArrayCopyLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitSystemArrayCopyInt(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kInt32); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitSystemArrayCopyInt(HInvoke* invoke) { |
| CreateSystemArrayCopyLocations(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringCompareTo(HInvoke* invoke) { |
| // The inputs plus one temp. |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringCompareTo(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| Register argument = locations->InAt(1).AsRegister<Register>(); |
| __ testl(argument, argument); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringEquals(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // Request temporary registers, ECX and EDI needed for repe_cmpsl instruction. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| locations->AddTemp(Location::RegisterLocation(EDI)); |
| |
| // Set output, ESI needed for repe_cmpsl instruction anyways. |
| locations->SetOut(Location::RegisterLocation(ESI), Location::kOutputOverlap); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringEquals(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register str = locations->InAt(0).AsRegister<Register>(); |
| Register arg = locations->InAt(1).AsRegister<Register>(); |
| Register ecx = locations->GetTemp(0).AsRegister<Register>(); |
| Register edi = locations->GetTemp(1).AsRegister<Register>(); |
| Register esi = locations->Out().AsRegister<Register>(); |
| |
| NearLabel end, return_true, return_false; |
| |
| // Get offsets of count, value, and class fields within a string object. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| StringEqualsOptimizations optimizations(invoke); |
| if (!optimizations.GetArgumentNotNull()) { |
| // Check if input is null, return false if it is. |
| __ testl(arg, arg); |
| __ j(kEqual, &return_false); |
| } |
| |
| if (!optimizations.GetArgumentIsString()) { |
| // Instanceof check for the argument by comparing class fields. |
| // All string objects must have the same type since String cannot be subclassed. |
| // Receiver must be a string object, so its class field is equal to all strings' class fields. |
| // If the argument is a string object, its class field must be equal to receiver's class field. |
| // |
| // As the String class is expected to be non-movable, we can read the class |
| // field from String.equals' arguments without read barriers. |
| AssertNonMovableStringClass(); |
| // Also, because we use the loaded class references only to compare them, we |
| // don't need to unpoison them. |
| // /* HeapReference<Class> */ ecx = str->klass_ |
| __ movl(ecx, Address(str, class_offset)); |
| // if (ecx != /* HeapReference<Class> */ arg->klass_) return false |
| __ cmpl(ecx, Address(arg, class_offset)); |
| __ j(kNotEqual, &return_false); |
| } |
| |
| // Reference equality check, return true if same reference. |
| __ cmpl(str, arg); |
| __ j(kEqual, &return_true); |
| |
| // Load length and compression flag of receiver string. |
| __ movl(ecx, Address(str, count_offset)); |
| // Check if lengths and compression flags are equal, return false if they're not. |
| // Two identical strings will always have same compression style since |
| // compression style is decided on alloc. |
| __ cmpl(ecx, Address(arg, count_offset)); |
| __ j(kNotEqual, &return_false); |
| // Return true if strings are empty. Even with string compression `count == 0` means empty. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ jecxz(&return_true); |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel string_uncompressed; |
| // Extract length and differentiate between both compressed or both uncompressed. |
| // Different compression style is cut above. |
| __ shrl(ecx, Immediate(1)); |
| __ j(kCarrySet, &string_uncompressed); |
| // Divide string length by 2, rounding up, and continue as if uncompressed. |
| __ addl(ecx, Immediate(1)); |
| __ shrl(ecx, Immediate(1)); |
| __ Bind(&string_uncompressed); |
| } |
| // Load starting addresses of string values into ESI/EDI as required for repe_cmpsl instruction. |
| __ leal(esi, Address(str, value_offset)); |
| __ leal(edi, Address(arg, value_offset)); |
| |
| // Divide string length by 2 to compare characters 2 at a time and adjust for lengths not |
| // divisible by 2. |
| __ addl(ecx, Immediate(1)); |
| __ shrl(ecx, Immediate(1)); |
| |
| // Assertions that must hold in order to compare strings 2 characters (uncompressed) |
| // or 4 characters (compressed) at a time. |
| DCHECK_ALIGNED(value_offset, 4); |
| static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded"); |
| |
| // Loop to compare strings two characters at a time starting at the beginning of the string. |
| __ repe_cmpsl(); |
| // If strings are not equal, zero flag will be cleared. |
| __ j(kNotEqual, &return_false); |
| |
| // Return true and exit the function. |
| // If loop does not result in returning false, we return true. |
| __ Bind(&return_true); |
| __ movl(esi, Immediate(1)); |
| __ jmp(&end); |
| |
| // Return false and exit the function. |
| __ Bind(&return_false); |
| __ xorl(esi, esi); |
| __ Bind(&end); |
| } |
| |
| static void CreateStringIndexOfLocations(HInvoke* invoke, |
| ArenaAllocator* allocator, |
| bool start_at_zero) { |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| // The data needs to be in EDI for scasw. So request that the string is there, anyways. |
| locations->SetInAt(0, Location::RegisterLocation(EDI)); |
| // If we look for a constant char, we'll still have to copy it into EAX. So just request the |
| // allocator to do that, anyways. We can still do the constant check by checking the parameter |
| // of the instruction explicitly. |
| // Note: This works as we don't clobber EAX anywhere. |
| locations->SetInAt(1, Location::RegisterLocation(EAX)); |
| if (!start_at_zero) { |
| locations->SetInAt(2, Location::RequiresRegister()); // The starting index. |
| } |
| // As we clobber EDI during execution anyways, also use it as the output. |
| locations->SetOut(Location::SameAsFirstInput()); |
| |
| // repne scasw uses ECX as the counter. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| // Need another temporary to be able to compute the result. |
| locations->AddTemp(Location::RequiresRegister()); |
| if (mirror::kUseStringCompression) { |
| // Need another temporary to be able to save unflagged string length. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| static void GenerateStringIndexOf(HInvoke* invoke, |
| X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| bool start_at_zero) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| Register string_obj = locations->InAt(0).AsRegister<Register>(); |
| Register search_value = locations->InAt(1).AsRegister<Register>(); |
| Register counter = locations->GetTemp(0).AsRegister<Register>(); |
| Register string_length = locations->GetTemp(1).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| // Only used when string compression feature is on. |
| Register string_length_flagged; |
| |
| // Check our assumptions for registers. |
| DCHECK_EQ(string_obj, EDI); |
| DCHECK_EQ(search_value, EAX); |
| DCHECK_EQ(counter, ECX); |
| DCHECK_EQ(out, EDI); |
| |
| // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, |
| // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. |
| SlowPathCode* slow_path = nullptr; |
| HInstruction* code_point = invoke->InputAt(1); |
| if (code_point->IsIntConstant()) { |
| if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > |
| std::numeric_limits<uint16_t>::max()) { |
| // Always needs the slow-path. We could directly dispatch to it, but this case should be |
| // rare, so for simplicity just put the full slow-path down and branch unconditionally. |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| } else if (code_point->GetType() != DataType::Type::kUint16) { |
| __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max())); |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ j(kAbove, slow_path->GetEntryLabel()); |
| } |
| |
| // From here down, we know that we are looking for a char that fits in 16 bits. |
| // Location of reference to data array within the String object. |
| int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count within the String object. |
| int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| |
| // Load the count field of the string containing the length and compression flag. |
| __ movl(string_length, Address(string_obj, count_offset)); |
| |
| // Do a zero-length check. Even with string compression `count == 0` means empty. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| // TODO: Support jecxz. |
| NearLabel not_found_label; |
| __ testl(string_length, string_length); |
| __ j(kEqual, ¬_found_label); |
| |
| if (mirror::kUseStringCompression) { |
| string_length_flagged = locations->GetTemp(2).AsRegister<Register>(); |
| __ movl(string_length_flagged, string_length); |
| // Extract the length and shift out the least significant bit used as compression flag. |
| __ shrl(string_length, Immediate(1)); |
| } |
| |
| if (start_at_zero) { |
| // Number of chars to scan is the same as the string length. |
| __ movl(counter, string_length); |
| |
| // Move to the start of the string. |
| __ addl(string_obj, Immediate(value_offset)); |
| } else { |
| Register start_index = locations->InAt(2).AsRegister<Register>(); |
| |
| // Do a start_index check. |
| __ cmpl(start_index, string_length); |
| __ j(kGreaterEqual, ¬_found_label); |
| |
| // Ensure we have a start index >= 0; |
| __ xorl(counter, counter); |
| __ cmpl(start_index, Immediate(0)); |
| __ cmovl(kGreater, counter, start_index); |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel modify_counter, offset_uncompressed_label; |
| __ testl(string_length_flagged, Immediate(1)); |
| __ j(kNotZero, &offset_uncompressed_label); |
| // Move to the start of the string: string_obj + value_offset + start_index. |
| __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset)); |
| __ jmp(&modify_counter); |
| |
| // Move to the start of the string: string_obj + value_offset + 2 * start_index. |
| __ Bind(&offset_uncompressed_label); |
| __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); |
| |
| // Now update ecx (the repne scasw work counter). We have string.length - start_index left to |
| // compare. |
| __ Bind(&modify_counter); |
| } else { |
| __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); |
| } |
| __ negl(counter); |
| __ leal(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); |
| } |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel uncompressed_string_comparison; |
| NearLabel comparison_done; |
| __ testl(string_length_flagged, Immediate(1)); |
| __ j(kNotZero, &uncompressed_string_comparison); |
| |
| // Check if EAX (search_value) is ASCII. |
| __ cmpl(search_value, Immediate(127)); |
| __ j(kGreater, ¬_found_label); |
| // Comparing byte-per-byte. |
| __ repne_scasb(); |
| __ jmp(&comparison_done); |
| |
| // Everything is set up for repne scasw: |
| // * Comparison address in EDI. |
| // * Counter in ECX. |
| __ Bind(&uncompressed_string_comparison); |
| __ repne_scasw(); |
| __ Bind(&comparison_done); |
| } else { |
| __ repne_scasw(); |
| } |
| // Did we find a match? |
| __ j(kNotEqual, ¬_found_label); |
| |
| // Yes, we matched. Compute the index of the result. |
| __ subl(string_length, counter); |
| __ leal(out, Address(string_length, -1)); |
| |
| NearLabel done; |
| __ jmp(&done); |
| |
| // Failed to match; return -1. |
| __ Bind(¬_found_label); |
| __ movl(out, Immediate(-1)); |
| |
| // And join up at the end. |
| __ Bind(&done); |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringIndexOf(HInvoke* invoke) { |
| CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringIndexOf(HInvoke* invoke) { |
| GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringIndexOfAfter(HInvoke* invoke) { |
| CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringIndexOfAfter(HInvoke* invoke) { |
| GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register byte_array = locations->InAt(0).AsRegister<Register>(); |
| __ testl(byte_array, byte_array); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringNewStringFromChars(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringNewStringFromChars(HInvoke* invoke) { |
| // No need to emit code checking whether `locations->InAt(2)` is a null |
| // pointer, as callers of the native method |
| // |
| // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) |
| // |
| // all include a null check on `data` before calling that method. |
| codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringNewStringFromString(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringNewStringFromString(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register string_to_copy = locations->InAt(0).AsRegister<Register>(); |
| __ testl(string_to_copy, string_to_copy); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| // Place srcEnd in ECX to save a move below. |
| locations->SetInAt(2, Location::RegisterLocation(ECX)); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. |
| // We don't have enough registers to also grab ECX, so handle below. |
| locations->AddTemp(Location::RegisterLocation(ESI)); |
| locations->AddTemp(Location::RegisterLocation(EDI)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| size_t char_component_size = DataType::Size(DataType::Type::kUint16); |
| // Location of data in char array buffer. |
| const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); |
| // Location of char array data in string. |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| |
| // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Location srcBegin = locations->InAt(1); |
| int srcBegin_value = |
| srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; |
| Register srcEnd = locations->InAt(2).AsRegister<Register>(); |
| Register dst = locations->InAt(3).AsRegister<Register>(); |
| Register dstBegin = locations->InAt(4).AsRegister<Register>(); |
| |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| // Compute the number of chars (words) to move. |
| // Save ECX, since we don't know if it will be used later. |
| __ pushl(ECX); |
| int stack_adjust = kX86WordSize; |
| __ cfi().AdjustCFAOffset(stack_adjust); |
| DCHECK_EQ(srcEnd, ECX); |
| if (srcBegin.IsConstant()) { |
| __ subl(ECX, Immediate(srcBegin_value)); |
| } else { |
| DCHECK(srcBegin.IsRegister()); |
| __ subl(ECX, srcBegin.AsRegister<Register>()); |
| } |
| |
| NearLabel done; |
| if (mirror::kUseStringCompression) { |
| // Location of count in string |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| __ pushl(EAX); |
| __ cfi().AdjustCFAOffset(stack_adjust); |
| |
| NearLabel copy_loop, copy_uncompressed; |
| __ testl(Address(obj, count_offset), Immediate(1)); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ j(kNotZero, ©_uncompressed); |
| // Compute the address of the source string by adding the number of chars from |
| // the source beginning to the value offset of a string. |
| __ leal(ESI, CodeGeneratorX86::ArrayAddress(obj, srcBegin, TIMES_1, value_offset)); |
| |
| // Start the loop to copy String's value to Array of Char. |
| __ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); |
| __ Bind(©_loop); |
| __ jecxz(&done); |
| // Use EAX temporary (convert byte from ESI to word). |
| // TODO: Use LODSB/STOSW (not supported by X86Assembler) with AH initialized to 0. |
| __ movzxb(EAX, Address(ESI, 0)); |
| __ movw(Address(EDI, 0), EAX); |
| __ leal(EDI, Address(EDI, char_size)); |
| __ leal(ESI, Address(ESI, c_char_size)); |
| // TODO: Add support for LOOP to X86Assembler. |
| __ subl(ECX, Immediate(1)); |
| __ jmp(©_loop); |
| __ Bind(©_uncompressed); |
| } |
| |
| // Do the copy for uncompressed string. |
| // Compute the address of the destination buffer. |
| __ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); |
| __ leal(ESI, CodeGeneratorX86::ArrayAddress(obj, srcBegin, TIMES_2, value_offset)); |
| __ rep_movsw(); |
| |
| __ Bind(&done); |
| if (mirror::kUseStringCompression) { |
| // Restore EAX. |
| __ popl(EAX); |
| __ cfi().AdjustCFAOffset(-stack_adjust); |
| } |
| // Restore ECX. |
| __ popl(ECX); |
| __ cfi().AdjustCFAOffset(-stack_adjust); |
| } |
| |
| static void GenPeek(LocationSummary* locations, DataType::Type size, X86Assembler* assembler) { |
| Register address = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Location out_loc = locations->Out(); |
| // x86 allows unaligned access. We do not have to check the input or use specific instructions |
| // to avoid a SIGBUS. |
| switch (size) { |
| case DataType::Type::kInt8: |
| __ movsxb(out_loc.AsRegister<Register>(), Address(address, 0)); |
| break; |
| case DataType::Type::kInt16: |
| __ movsxw(out_loc.AsRegister<Register>(), Address(address, 0)); |
| break; |
| case DataType::Type::kInt32: |
| __ movl(out_loc.AsRegister<Register>(), Address(address, 0)); |
| break; |
| case DataType::Type::kInt64: |
| __ movl(out_loc.AsRegisterPairLow<Register>(), Address(address, 0)); |
| __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(address, 4)); |
| break; |
| default: |
| LOG(FATAL) << "Type not recognized for peek: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPeekByte(HInvoke* invoke) { |
| CreateLongToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPeekByte(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| CreateLongToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| CreateLongToLongLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| CreateLongToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); |
| } |
| |
| static void CreateLongIntToVoidLocations(ArenaAllocator* allocator, |
| DataType::Type size, |
| HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| HInstruction* value = invoke->InputAt(1); |
| if (size == DataType::Type::kInt8) { |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(EDX, value)); |
| } else { |
| locations->SetInAt(1, Location::RegisterOrConstant(value)); |
| } |
| } |
| |
| static void GenPoke(LocationSummary* locations, DataType::Type size, X86Assembler* assembler) { |
| Register address = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Location value_loc = locations->InAt(1); |
| // x86 allows unaligned access. We do not have to check the input or use specific instructions |
| // to avoid a SIGBUS. |
| switch (size) { |
| case DataType::Type::kInt8: |
| if (value_loc.IsConstant()) { |
| __ movb(Address(address, 0), |
| Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movb(Address(address, 0), value_loc.AsRegister<ByteRegister>()); |
| } |
| break; |
| case DataType::Type::kInt16: |
| if (value_loc.IsConstant()) { |
| __ movw(Address(address, 0), |
| Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movw(Address(address, 0), value_loc.AsRegister<Register>()); |
| } |
| break; |
| case DataType::Type::kInt32: |
| if (value_loc.IsConstant()) { |
| __ movl(Address(address, 0), |
| Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movl(Address(address, 0), value_loc.AsRegister<Register>()); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (value_loc.IsConstant()) { |
| int64_t value = value_loc.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(Address(address, 0), Immediate(Low32Bits(value))); |
| __ movl(Address(address, 4), Immediate(High32Bits(value))); |
| } else { |
| __ movl(Address(address, 0), value_loc.AsRegisterPairLow<Register>()); |
| __ movl(Address(address, 4), value_loc.AsRegisterPairHigh<Register>()); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Type not recognized for poke: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPokeByte(HInvoke* invoke) { |
| CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt8, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPokeByte(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| CreateLongIntToVoidLocations(allocator_, DataType::Type::kInt16, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitThreadCurrentThread(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitThreadCurrentThread(HInvoke* invoke) { |
| Register out = invoke->GetLocations()->Out().AsRegister<Register>(); |
| GetAssembler()->fs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86PointerSize>())); |
| } |
| |
| static void GenUnsafeGet(HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile, |
| CodeGeneratorX86* codegen) { |
| X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location base_loc = locations->InAt(1); |
| Register base = base_loc.AsRegister<Register>(); |
| Location offset_loc = locations->InAt(2); |
| Register offset = offset_loc.AsRegisterPairLow<Register>(); |
| Location output_loc = locations->Out(); |
| |
| switch (type) { |
| case DataType::Type::kInt8: { |
| Register output = output_loc.AsRegister<Register>(); |
| __ movsxb(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| break; |
| } |
| |
| case DataType::Type::kInt32: { |
| Register output = output_loc.AsRegister<Register>(); |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| break; |
| } |
| |
| case DataType::Type::kReference: { |
| Register output = output_loc.AsRegister<Register>(); |
| if (gUseReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| Address src(base, offset, ScaleFactor::TIMES_1, 0); |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, output_loc, base, src, /* needs_null_check= */ false); |
| } else { |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| codegen->GenerateReadBarrierSlow( |
| invoke, output_loc, output_loc, base_loc, 0U, offset_loc); |
| } |
| } else { |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| __ MaybeUnpoisonHeapReference(output); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| Register output_lo = output_loc.AsRegisterPairLow<Register>(); |
| Register output_hi = output_loc.AsRegisterPairHigh<Register>(); |
| if (is_volatile) { |
| // Need to use a XMM to read atomically. |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| __ movsd(temp, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| __ movd(output_lo, temp); |
| __ psrlq(temp, Immediate(32)); |
| __ movd(output_hi, temp); |
| } else { |
| __ movl(output_lo, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| __ movl(output_hi, Address(base, offset, ScaleFactor::TIMES_1, 4)); |
| } |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported op size " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| static bool UnsafeGetIntrinsicOnCallList(Intrinsics intrinsic) { |
| switch (intrinsic) { |
| case Intrinsics::kUnsafeGetObject: |
| case Intrinsics::kUnsafeGetObjectVolatile: |
| case Intrinsics::kJdkUnsafeGetObject: |
| case Intrinsics::kJdkUnsafeGetObjectVolatile: |
| case Intrinsics::kJdkUnsafeGetObjectAcquire: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, |
| HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile) { |
| bool can_call = gUseReadBarrier && UnsafeGetIntrinsicOnCallList(invoke->GetIntrinsic()); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| if (type == DataType::Type::kInt64) { |
| if (is_volatile) { |
| // Need to use XMM to read volatile. |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| } else { |
| locations->SetOut(Location::RequiresRegister(), |
| (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGet(HInvoke* invoke) { |
| VisitJdkUnsafeGet(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetLong(HInvoke* invoke) { |
| VisitJdkUnsafeGetLong(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetLongVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetObject(HInvoke* invoke) { |
| VisitJdkUnsafeGetObject(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetObjectVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafeGetByte(HInvoke* invoke) { |
| VisitJdkUnsafeGetByte(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGet(HInvoke* invoke) { |
| VisitJdkUnsafeGet(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetLong(HInvoke* invoke) { |
| VisitJdkUnsafeGetLong(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetLongVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetObject(HInvoke* invoke) { |
| VisitJdkUnsafeGetObject(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetObjectVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafeGetByte(HInvoke* invoke) { |
| VisitJdkUnsafeGetByte(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGet(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations( |
| allocator_, invoke, DataType::Type::kInt32, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetAcquire(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetLong(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations( |
| allocator_, invoke, DataType::Type::kInt64, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetObject(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations( |
| allocator_, invoke, DataType::Type::kReference, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations( |
| allocator_, invoke, DataType::Type::kReference, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetObjectAcquire(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations( |
| allocator_, invoke, DataType::Type::kReference, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeGetByte(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations( |
| allocator_, invoke, DataType::Type::kInt8, /*is_volatile=*/ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGet(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetAcquire(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetLong(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetObject(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetObjectVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetObjectAcquire(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeGetByte(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt8, /*is_volatile=*/ false, codegen_); |
| } |
| |
| static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator, |
| DataType::Type type, |
| HInvoke* invoke, |
| bool is_volatile) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| if (type == DataType::Type::kReference) { |
| // Need temp registers for card-marking. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| // Ensure the value is in a byte register. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } else if (type == DataType::Type::kInt64 && is_volatile) { |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafePut(HInvoke* invoke) { |
| VisitJdkUnsafePut(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutOrdered(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutObject(HInvoke* invoke) { |
| VisitJdkUnsafePutObject(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutObjectOrdered(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutObjectVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutLong(HInvoke* invoke) { |
| VisitJdkUnsafePutLong(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutLongOrdered(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutLongVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86::VisitUnsafePutByte(HInvoke* invoke) { |
| VisitJdkUnsafePutByte(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePut(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt32, invoke, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt32, invoke, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt32, invoke, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutRelease(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt32, invoke, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutObject(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kReference, invoke, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kReference, invoke, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kReference, invoke, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutObjectRelease(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kReference, invoke, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutLong(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt64, invoke, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt64, invoke, /*is_volatile=*/ false); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt64, invoke, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutLongRelease(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt64, invoke, /*is_volatile=*/ true); |
| } |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafePutByte(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations( |
| allocator_, DataType::Type::kInt8, invoke, /*is_volatile=*/ false); |
| } |
| |
| // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 |
| // memory model. |
| static void GenUnsafePut(LocationSummary* locations, |
| DataType::Type type, |
| bool is_volatile, |
| CodeGeneratorX86* codegen) { |
| X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); |
| Register base = locations->InAt(1).AsRegister<Register>(); |
| Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); |
| Location value_loc = locations->InAt(3); |
| |
| if (type == DataType::Type::kInt64) { |
| Register value_lo = value_loc.AsRegisterPairLow<Register>(); |
| Register value_hi = value_loc.AsRegisterPairHigh<Register>(); |
| if (is_volatile) { |
| XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| __ movd(temp1, value_lo); |
| __ movd(temp2, value_hi); |
| __ punpckldq(temp1, temp2); |
| __ movsd(Address(base, offset, ScaleFactor::TIMES_1, 0), temp1); |
| } else { |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_lo); |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 4), value_hi); |
| } |
| } else if (kPoisonHeapReferences && type == DataType::Type::kReference) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value_loc.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); |
| } else { |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_loc.AsRegister<Register>()); |
| } |
| |
| if (is_volatile) { |
| codegen->MemoryFence(); |
| } |
| |
| if (type == DataType::Type::kReference) { |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(locations->GetTemp(0).AsRegister<Register>(), |
| locations->GetTemp(1).AsRegister<Register>(), |
| base, |
| value_loc.AsRegister<Register>(), |
| value_can_be_null); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafePut(HInvoke* invoke) { |
| VisitJdkUnsafePut(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutOrdered(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutObject(HInvoke* invoke) { |
| VisitJdkUnsafePutObject(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutObjectOrdered(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutObjectVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutLong(HInvoke* invoke) { |
| VisitJdkUnsafePutLong(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutLongOrdered(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutLongVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86::VisitUnsafePutByte(HInvoke* invoke) { |
| VisitJdkUnsafePutByte(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePut(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutRelease(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutObject(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutObjectVolatile(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutObjectRelease(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutLong(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutLongRelease(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafePutByte(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt8, /*is_volatile=*/ false, codegen_); |
| } |
| |
| static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator, |
| DataType::Type type, |
| HInvoke* invoke) { |
| const bool can_call = gUseReadBarrier && |
| kUseBakerReadBarrier && |
| IsUnsafeCASObject(invoke); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Offset is a long, but in 32 bit mode, we only need the low word. |
| // Can we update the invoke here to remove a TypeConvert to Long? |
| locations->SetInAt(2, Location::RequiresRegister()); |
| // Expected value must be in EAX or EDX:EAX. |
| // For long, new value must be in ECX:EBX. |
| if (type == DataType::Type::kInt64) { |
| locations->SetInAt(3, Location::RegisterPairLocation(EAX, EDX)); |
| locations->SetInAt(4, Location::RegisterPairLocation(EBX, ECX)); |
| } else { |
| locations->SetInAt(3, Location::RegisterLocation(EAX)); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| } |
| |
| // Force a byte register for the output. |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| if (type == DataType::Type::kReference) { |
| // Need temporary registers for card-marking, and possibly for |
| // (Baker) read barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| // Need a byte register for marking. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafeCASInt(HInvoke* invoke) { |
| VisitJdkUnsafeCASInt(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafeCASLong(HInvoke* invoke) { |
| VisitJdkUnsafeCASLong(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitUnsafeCASObject(HInvoke* invoke) { |
| VisitJdkUnsafeCASObject(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeCASInt(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetInt(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeCASLong(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetLong(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeCASObject(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetObject(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) { |
| CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt32, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) { |
| CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt64, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitJdkUnsafeCompareAndSetObject(HInvoke* invoke) { |
| // The only supported read barrier implementation is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kReference, invoke); |
| } |
| |
| static void GenPrimitiveLockedCmpxchg(DataType::Type type, |
| CodeGeneratorX86* codegen, |
| Location expected_value, |
| Location new_value, |
| Register base, |
| Register offset, |
| // Only necessary for floating point |
| Register temp = Register::kNoRegister) { |
| X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); |
| |
| if (DataType::Kind(type) == DataType::Type::kInt32) { |
| DCHECK_EQ(expected_value.AsRegister<Register>(), EAX); |
| } |
| |
| // The address of the field within the holding object. |
| Address field_addr(base, offset, TIMES_1, 0); |
| |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kInt8: |
| __ LockCmpxchgb(field_addr, new_value.AsRegister<ByteRegister>()); |
| break; |
| case DataType::Type::kInt16: |
| case DataType::Type::kUint16: |
| __ LockCmpxchgw(field_addr, new_value.AsRegister<Register>()); |
| break; |
| case DataType::Type::kInt32: |
| __ LockCmpxchgl(field_addr, new_value.AsRegister<Register>()); |
| break; |
| case DataType::Type::kFloat32: { |
| // cmpxchg requires the expected value to be in EAX so the new value must be elsewhere. |
| DCHECK_NE(temp, EAX); |
| // EAX is both an input and an output for cmpxchg |
| codegen->Move32(Location::RegisterLocation(EAX), expected_value); |
| codegen->Move32(Location::RegisterLocation(temp), new_value); |
| __ LockCmpxchgl(field_addr, temp); |
| break; |
| } |
| case DataType::Type::kInt64: |
| // Ensure the expected value is in EAX:EDX and that the new |
| // value is in EBX:ECX (required by the CMPXCHG8B instruction). |
| DCHECK_EQ(expected_value.AsRegisterPairLow<Register>(), EAX); |
| DCHECK_EQ(expected_value.AsRegisterPairHigh<Register>(), EDX); |
| DCHECK_EQ(new_value.AsRegisterPairLow<Register>(), EBX); |
| DCHECK_EQ(new_value.AsRegisterPairHigh<Register>(), ECX); |
| __ LockCmpxchg8b(field_addr); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected CAS type " << type; |
| } |
| // LOCK CMPXCHG/LOCK CMPXCHG8B have full barrier semantics, and we |
| // don't need scheduling barriers at this time. |
| } |
| |
| static void GenPrimitiveCAS(DataType::Type type, |
| CodeGeneratorX86* codegen, |
| Location expected_value, |
| Location new_value, |
| Register base, |
| Register offset, |
| Location out, |
| // Only necessary for floating point |
| Register temp = Register::kNoRegister, |
| bool is_cmpxchg = false) { |
| X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); |
| |
| if (!is_cmpxchg || DataType::Kind(type) == DataType::Type::kInt32) { |
| DCHECK_EQ(out.AsRegister<Register>(), EAX); |
| } |
| |
| GenPrimitiveLockedCmpxchg(type, codegen, expected_value, new_value, base, offset, temp); |
| |
| if (is_cmpxchg) { |
| // Sign-extend, zero-extend or move the result if necessary |
| switch (type) { |
| case DataType::Type::kBool: |
| __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>()); |
| break; |
| case DataType::Type::kInt8: |
| __ movsxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>()); |
| break; |
| case DataType::Type::kInt16: |
| __ movsxw(out.AsRegister<Register>(), out.AsRegister<Register>()); |
| break; |
| case DataType::Type::kUint16: |
| __ movzxw(out.AsRegister<Register>(), out.AsRegister<Register>()); |
| break; |
| case DataType::Type::kFloat32: |
| __ movd(out.AsFpuRegister<XmmRegister>(), EAX); |
| break; |
| default: |
| // Nothing to do |
| break; |
| } |
| } else { |
| // Convert ZF into the Boolean result. |
| __ setb(kZero, out.AsRegister<Register>()); |
| __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>()); |
| } |
| } |
| |
| static void GenReferenceCAS(HInvoke* invoke, |
| CodeGeneratorX86* codegen, |
| Location expected_value, |
| Location new_value, |
| Register base, |
| Register offset, |
| Register temp, |
| Register temp2, |
| bool is_cmpxchg = false) { |
| X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler()); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location out = locations->Out(); |
| |
| // The address of the field within the holding object. |
| Address field_addr(base, offset, TIMES_1, 0); |
| |
| Register value = new_value.AsRegister<Register>(); |
| Register expected = expected_value.AsRegister<Register>(); |
| DCHECK_EQ(expected, EAX); |
| DCHECK_NE(temp, temp2); |
| |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // Need to make sure the reference stored in the field is a to-space |
| // one before attempting the CAS or the CAS could fail incorrectly. |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, |
| // Unused, used only as a "temporary" within the read barrier. |
| Location::RegisterLocation(temp), |
| base, |
| field_addr, |
| /* needs_null_check= */ false, |
| /* always_update_field= */ true, |
| &temp2); |
| } |
| bool base_equals_value = (base == value); |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // If `base` and `value` are the same register location, move |
| // `value` to a temporary register. This way, poisoning |
| // `value` won't invalidate `base`. |
| value = temp; |
| __ movl(value, base); |
| } |
| |
| // Check that the register allocator did not assign the location |
| // of `expected` (EAX) to `value` nor to `base`, so that heap |
| // poisoning (when enabled) works as intended below. |
| // - If `value` were equal to `expected`, both references would |
| // be poisoned twice, meaning they would not be poisoned at |
| // all, as heap poisoning uses address negation. |
| // - If `base` were equal to `expected`, poisoning `expected` |
| // would invalidate `base`. |
| DCHECK_NE(value, expected); |
| DCHECK_NE(base, expected); |
| __ PoisonHeapReference(expected); |
| __ PoisonHeapReference(value); |
| } |
| __ LockCmpxchgl(field_addr, value); |
| |
| // LOCK CMPXCHG has full barrier semantics, and we don't need |
| // scheduling barriers at this time. |
| |
| if (is_cmpxchg) { |
| DCHECK_EQ(out.AsRegister<Register>(), EAX); |
| __ MaybeUnpoisonHeapReference(out.AsRegister<Register>()); |
| } else { |
| // Convert ZF into the Boolean result. |
| __ setb(kZero, out.AsRegister<Register>()); |
| __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>()); |
| } |
| |
| // Mark card for object if the new value is stored. |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| NearLabel skip_mark_gc_card; |
| __ j(kNotZero, &skip_mark_gc_card); |
| codegen->MarkGCCard(temp, temp2, base, value, value_can_be_null); |
| __ Bind(&skip_mark_gc_card); |
| |
| // If heap poisoning is enabled, we need to unpoison the values |
| // that were poisoned earlier. |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // `value` has been moved to a temporary register, no need to |
| // unpoison it. |
| } else { |
| // Ensure `value` is different from `out`, so that unpoisoning |
| // the former does not invalidate the latter. |
| DCHECK_NE(value, out.AsRegister<Register>()); |
| __ UnpoisonHeapReference(value); |
| } |
| } |
| // Do not unpoison the reference contained in register |
| // `expected`, as it is the same as register `out` (EAX). |
| } |
| |
| static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register base = locations->InAt(1).AsRegister<Register>(); |
| Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); |
| Location expected_value = locations->InAt(3); |
| Location new_value = locations->InAt(4); |
| Location out = locations->Out(); |
| DCHECK_EQ(out.AsRegister<Register>(), EAX); |
| |
| if (type == DataType::Type::kReference) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| Register temp2 = locations->GetTemp(1).AsRegister<Register>(); |
| GenReferenceCAS(invoke, codegen, expected_value, new_value, base, offset, temp, temp2); |
| } else { |
| DCHECK(!DataType::IsFloatingPointType(type)); |
| GenPrimitiveCAS(type, codegen, expected_value, new_value, base, offset, out); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafeCASInt(HInvoke* invoke) { |
| VisitJdkUnsafeCASInt(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafeCASLong(HInvoke* invoke) { |
| VisitJdkUnsafeCASLong(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| GenCAS(DataType::Type::kReference, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeCASInt(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetInt(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeCASLong(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetLong(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeCASObject(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetObject(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) { |
| GenCAS(DataType::Type::kInt32, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) { |
| GenCAS(DataType::Type::kInt64, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitJdkUnsafeCompareAndSetObject(HInvoke* invoke) { |
| // The only supported read barrier implementation is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| GenCAS(DataType::Type::kReference, invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerReverse(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void SwapBits(Register reg, Register temp, int32_t shift, int32_t mask, |
| X86Assembler* assembler) { |
| Immediate imm_shift(shift); |
| Immediate imm_mask(mask); |
| __ movl(temp, reg); |
| __ shrl(reg, imm_shift); |
| __ andl(temp, imm_mask); |
| __ andl(reg, imm_mask); |
| __ shll(temp, imm_shift); |
| __ orl(reg, temp); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerReverse(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register reg = locations->InAt(0).AsRegister<Register>(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| |
| /* |
| * Use one bswap instruction to reverse byte order first and then use 3 rounds of |
| * swapping bits to reverse bits in a number x. Using bswap to save instructions |
| * compared to generic luni implementation which has 5 rounds of swapping bits. |
| * x = bswap x |
| * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; |
| * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; |
| * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; |
| */ |
| __ bswapl(reg); |
| SwapBits(reg, temp, 1, 0x55555555, assembler); |
| SwapBits(reg, temp, 2, 0x33333333, assembler); |
| SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongReverse(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongReverse(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register reg_low = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Register reg_high = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| |
| // We want to swap high/low, then bswap each one, and then do the same |
| // as a 32 bit reverse. |
| // Exchange high and low. |
| __ movl(temp, reg_low); |
| __ movl(reg_low, reg_high); |
| __ movl(reg_high, temp); |
| |
| // bit-reverse low |
| __ bswapl(reg_low); |
| SwapBits(reg_low, temp, 1, 0x55555555, assembler); |
| SwapBits(reg_low, temp, 2, 0x33333333, assembler); |
| SwapBits(reg_low, temp, 4, 0x0f0f0f0f, assembler); |
| |
| // bit-reverse high |
| __ bswapl(reg_high); |
| SwapBits(reg_high, temp, 1, 0x55555555, assembler); |
| SwapBits(reg_high, temp, 2, 0x33333333, assembler); |
| SwapBits(reg_high, temp, 4, 0x0f0f0f0f, assembler); |
| } |
| |
| static void CreateBitCountLocations( |
| ArenaAllocator* allocator, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { |
| if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { |
| // Do nothing if there is no popcnt support. This results in generating |
| // a call for the intrinsic rather than direct code. |
| return; |
| } |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| if (is_long) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenBitCount(X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| int32_t result = is_long |
| ? POPCOUNT(static_cast<uint64_t>(value)) |
| : POPCOUNT(static_cast<uint32_t>(value)); |
| codegen->Load32BitValue(out, result); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (!is_long) { |
| if (src.IsRegister()) { |
| __ popcntl(out, src.AsRegister<Register>()); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ popcntl(out, Address(ESP, src.GetStackIndex())); |
| } |
| } else { |
| // The 64-bit case needs to worry about two parts. |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| if (src.IsRegisterPair()) { |
| __ popcntl(temp, src.AsRegisterPairLow<Register>()); |
| __ popcntl(out, src.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ popcntl(temp, Address(ESP, src.GetStackIndex())); |
| __ popcntl(out, Address(ESP, src.GetHighStackIndex(kX86WordSize))); |
| } |
| __ addl(out, temp); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerBitCount(HInvoke* invoke) { |
| CreateBitCountLocations(allocator_, codegen_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerBitCount(HInvoke* invoke) { |
| GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongBitCount(HInvoke* invoke) { |
| CreateBitCountLocations(allocator_, codegen_, invoke, /* is_long= */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongBitCount(HInvoke* invoke) { |
| GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ true); |
| } |
| |
| static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| if (is_long) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(0, Location::Any()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenLeadingZeros(X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| value = is_long ? 64 : 32; |
| } else { |
| value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value)); |
| } |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (!is_long) { |
| if (src.IsRegister()) { |
| __ bsrl(out, src.AsRegister<Register>()); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsrl(out, Address(ESP, src.GetStackIndex())); |
| } |
| |
| // BSR sets ZF if the input was zero, and the output is undefined. |
| NearLabel all_zeroes, done; |
| __ j(kEqual, &all_zeroes); |
| |
| // Correct the result from BSR to get the final CLZ result. |
| __ xorl(out, Immediate(31)); |
| __ jmp(&done); |
| |
| // Fix the zero case with the expected result. |
| __ Bind(&all_zeroes); |
| __ movl(out, Immediate(32)); |
| |
| __ Bind(&done); |
| return; |
| } |
| |
| // 64 bit case needs to worry about both parts of the register. |
| DCHECK(src.IsRegisterPair()); |
| Register src_lo = src.AsRegisterPairLow<Register>(); |
| Register src_hi = src.AsRegisterPairHigh<Register>(); |
| NearLabel handle_low, done, all_zeroes; |
| |
| // Is the high word zero? |
| __ testl(src_hi, src_hi); |
| __ j(kEqual, &handle_low); |
| |
| // High word is not zero. We know that the BSR result is defined in this case. |
| __ bsrl(out, src_hi); |
| |
| // Correct the result from BSR to get the final CLZ result. |
| __ xorl(out, Immediate(31)); |
| __ jmp(&done); |
| |
| // High word was zero. We have to compute the low word count and add 32. |
| __ Bind(&handle_low); |
| __ bsrl(out, src_lo); |
| __ j(kEqual, &all_zeroes); |
| |
| // We had a valid result. Use an XOR to both correct the result and add 32. |
| __ xorl(out, Immediate(63)); |
| __ jmp(&done); |
| |
| // All zero case. |
| __ Bind(&all_zeroes); |
| __ movl(out, Immediate(64)); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLeadingZeroLocations(allocator_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLeadingZeroLocations(allocator_, invoke, /* is_long= */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true); |
| } |
| |
| static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| if (is_long) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(0, Location::Any()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenTrailingZeros(X86Assembler* assembler, |
| CodeGeneratorX86* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| value = is_long ? 64 : 32; |
| } else { |
| value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value)); |
| } |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (!is_long) { |
| if (src.IsRegister()) { |
| __ bsfl(out, src.AsRegister<Register>()); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsfl(out, Address(ESP, src.GetStackIndex())); |
| } |
| |
| // BSF sets ZF if the input was zero, and the output is undefined. |
| NearLabel done; |
| __ j(kNotEqual, &done); |
| |
| // Fix the zero case with the expected result. |
| __ movl(out, Immediate(32)); |
| |
| __ Bind(&done); |
| return; |
| } |
| |
| // 64 bit case needs to worry about both parts of the register. |
| DCHECK(src.IsRegisterPair()); |
| Register src_lo = src.AsRegisterPairLow<Register>(); |
| Register src_hi = src.AsRegisterPairHigh<Register>(); |
| NearLabel done, all_zeroes; |
| |
| // If the low word is zero, then ZF will be set. If not, we have the answer. |
| __ bsfl(out, src_lo); |
| __ j(kNotEqual, &done); |
| |
| // Low word was zero. We have to compute the high word count and add 32. |
| __ bsfl(out, src_hi); |
| __ j(kEqual, &all_zeroes); |
| |
| // We had a valid result. Add 32 to account for the low word being zero. |
| __ addl(out, Immediate(32)); |
| __ jmp(&done); |
| |
| // All zero case. |
| __ Bind(&all_zeroes); |
| __ movl(out, Immediate(64)); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateTrailingZeroLocations(allocator_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateTrailingZeroLocations(allocator_, invoke, /* is_long= */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true); |
| } |
| |
| static bool IsSameInput(HInstruction* instruction, size_t input0, size_t input1) { |
| return instruction->InputAt(input0) == instruction->InputAt(input1); |
| } |
| |
| // Compute base address for the System.arraycopy intrinsic in `base`. |
| static void GenSystemArrayCopyBaseAddress(X86Assembler* assembler, |
| DataType::Type type, |
| const Register& array, |
| const Location& pos, |
| const Register& base) { |
| // This routine is only used by the SystemArrayCopy intrinsic at the |
| // moment. We can allow DataType::Type::kReference as `type` to implement |
| // the SystemArrayCopyChar intrinsic. |
| DCHECK_EQ(type, DataType::Type::kReference); |
| const int32_t element_size = DataType::Size(type); |
| const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type)); |
| const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); |
| |
| if (pos.IsConstant()) { |
| int32_t constant = pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(base, Address(array, element_size * constant + data_offset)); |
| } else { |
| __ leal(base, Address(array, pos.AsRegister<Register>(), scale_factor, data_offset)); |
| } |
| } |
| |
| // Compute end source address for the System.arraycopy intrinsic in `end`. |
| static void GenSystemArrayCopyEndAddress(X86Assembler* assembler, |
| DataType::Type type, |
| const Location& copy_length, |
| const Register& base, |
| const Register& end) { |
| // This routine is only used by the SystemArrayCopy intrinsic at the |
| // moment. We can allow DataType::Type::kReference as `type` to implement |
| // the SystemArrayCopyChar intrinsic. |
| DCHECK_EQ(type, DataType::Type::kReference); |
| const int32_t element_size = DataType::Size(type); |
| const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type)); |
| |
| if (copy_length.IsConstant()) { |
| int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(end, Address(base, element_size * constant)); |
| } else { |
| __ leal(end, Address(base, copy_length.AsRegister<Register>(), scale_factor, 0)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); |
| if (invoke->GetLocations() != nullptr) { |
| // Need a byte register for marking. |
| invoke->GetLocations()->SetTempAt(1, Location::RegisterLocation(ECX)); |
| |
| static constexpr size_t kSrc = 0; |
| static constexpr size_t kSrcPos = 1; |
| static constexpr size_t kDest = 2; |
| static constexpr size_t kDestPos = 3; |
| static constexpr size_t kLength = 4; |
| |
| if (!invoke->InputAt(kSrcPos)->IsIntConstant() && |
| !invoke->InputAt(kDestPos)->IsIntConstant() && |
| !invoke->InputAt(kLength)->IsIntConstant()) { |
| if (!IsSameInput(invoke, kSrcPos, kDestPos) && |
| !IsSameInput(invoke, kSrcPos, kLength) && |
| !IsSameInput(invoke, kDestPos, kLength) && |
| !IsSameInput(invoke, kSrc, kDest)) { |
| // Not enough registers, make the length also take a stack slot. |
| invoke->GetLocations()->SetInAt(kLength, Location::Any()); |
| } |
| } |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| Register src = locations->InAt(0).AsRegister<Register>(); |
| Location src_pos = locations->InAt(1); |
| Register dest = locations->InAt(2).AsRegister<Register>(); |
| Location dest_pos = locations->InAt(3); |
| Location length_arg = locations->InAt(4); |
| Location length = length_arg; |
| Location temp1_loc = locations->GetTemp(0); |
| Register temp1 = temp1_loc.AsRegister<Register>(); |
| Location temp2_loc = locations->GetTemp(1); |
| Register temp2 = temp2_loc.AsRegister<Register>(); |
| |
| SlowPathCode* intrinsic_slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(intrinsic_slow_path); |
| |
| NearLabel conditions_on_positions_validated; |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| // If source and destination are the same, we go to slow path if we need to do |
| // forward copying. |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (optimizations.GetDestinationIsSource()) { |
| // Checked when building locations. |
| DCHECK_GE(src_pos_constant, dest_pos_constant); |
| } else if (src_pos_constant < dest_pos_constant) { |
| __ cmpl(src, dest); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ cmpl(src, dest); |
| __ j(kNotEqual, &conditions_on_positions_validated); |
| } |
| __ cmpl(dest_pos.AsRegister<Register>(), Immediate(src_pos_constant)); |
| __ j(kGreater, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ cmpl(src, dest); |
| __ j(kNotEqual, &conditions_on_positions_validated); |
| } |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ cmpl(src_pos.AsRegister<Register>(), Immediate(dest_pos_constant)); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } else { |
| __ cmpl(src_pos.AsRegister<Register>(), dest_pos.AsRegister<Register>()); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } |
| |
| __ Bind(&conditions_on_positions_validated); |
| |
| if (!optimizations.GetSourceIsNotNull()) { |
| // Bail out if the source is null. |
| __ testl(src, src); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { |
| // Bail out if the destination is null. |
| __ testl(dest, dest); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| Location temp3_loc = locations->GetTemp(2); |
| Register temp3 = temp3_loc.AsRegister<Register>(); |
| if (length.IsStackSlot()) { |
| __ movl(temp3, Address(ESP, length.GetStackIndex())); |
| length = Location::RegisterLocation(temp3); |
| } |
| |
| // If the length is negative, bail out. |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant() && |
| !optimizations.GetCountIsSourceLength() && |
| !optimizations.GetCountIsDestinationLength()) { |
| __ testl(length.AsRegister<Register>(), length.AsRegister<Register>()); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // Validity checks: source. |
| CheckPosition(assembler, |
| src_pos, |
| src, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsSourceLength()); |
| |
| // Validity checks: dest. |
| CheckPosition(assembler, |
| dest_pos, |
| dest, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsDestinationLength()); |
| |
| if (!optimizations.GetDoesNotNeedTypeCheck()) { |
| // Check whether all elements of the source array are assignable to the component |
| // type of the destination array. We do two checks: the classes are the same, |
| // or the destination is Object[]. If none of these checks succeed, we go to the |
| // slow path. |
| |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false); |
| // Bail out if the source is not a non primitive array. |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false); |
| __ testl(temp1, temp1); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp1` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| __ movl(temp1, Address(src, class_offset)); |
| __ MaybeUnpoisonHeapReference(temp1); |
| // Bail out if the source is not a non primitive array. |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ movl(temp1, Address(temp1, component_offset)); |
| __ testl(temp1, temp1); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(temp1); |
| } |
| __ cmpw(Address(temp1, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| if (length.Equals(Location::RegisterLocation(temp3))) { |
| // When Baker read barriers are enabled, register `temp3`, |
| // which in the present case contains the `length` parameter, |
| // will be overwritten below. Make the `length` location |
| // reference the original stack location; it will be moved |
| // back to `temp3` later if necessary. |
| DCHECK(length_arg.IsStackSlot()); |
| length = length_arg; |
| } |
| |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, dest, class_offset, /* needs_null_check= */ false); |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| // |
| // Register `temp1` is not trashed by the read barrier emitted |
| // by GenerateFieldLoadWithBakerReadBarrier below, as that |
| // method produces a call to a ReadBarrierMarkRegX entry point, |
| // which saves all potentially live registers, including |
| // temporaries such a `temp1`. |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp2_loc, temp1, component_offset, /* needs_null_check= */ false); |
| __ testl(temp2, temp2); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp2` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| __ cmpw(Address(temp2, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // For the same reason given earlier, `temp1` is not trashed by the |
| // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp2_loc, src, class_offset, /* needs_null_check= */ false); |
| // Note: if heap poisoning is on, we are comparing two unpoisoned references here. |
| __ cmpl(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| NearLabel do_copy; |
| __ j(kEqual, &do_copy); |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false); |
| // We do not need to emit a read barrier for the following |
| // heap reference load, as `temp1` is only used in a |
| // comparison with null below, and this reference is not |
| // kept afterwards. |
| __ cmpl(Address(temp1, super_offset), Immediate(0)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| // Non read barrier code. |
| |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| __ movl(temp1, Address(dest, class_offset)); |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| __ MaybeUnpoisonHeapReference(temp1); |
| // Bail out if the destination is not a non primitive array. |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| __ movl(temp2, Address(temp1, component_offset)); |
| __ testl(temp2, temp2); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(temp2); |
| __ cmpw(Address(temp2, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| // Re-poison the heap reference to make the compare instruction below |
| // compare two poisoned references. |
| __ PoisonHeapReference(temp1); |
| } |
| |
| // Note: if heap poisoning is on, we are comparing two poisoned references here. |
| __ cmpl(temp1, Address(src, class_offset)); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| NearLabel do_copy; |
| __ j(kEqual, &do_copy); |
| __ MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ movl(temp1, Address(temp1, component_offset)); |
| __ MaybeUnpoisonHeapReference(temp1); |
| __ cmpl(Address(temp1, super_offset), Immediate(0)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } |
| } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); |
| // Bail out if the source is not a non primitive array. |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false); |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false); |
| __ testl(temp1, temp1); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp1` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| __ movl(temp1, Address(src, class_offset)); |
| __ MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ movl(temp1, Address(temp1, component_offset)); |
| __ testl(temp1, temp1); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(temp1); |
| } |
| __ cmpw(Address(temp1, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| const DataType::Type type = DataType::Type::kReference; |
| const int32_t element_size = DataType::Size(type); |
| |
| // Compute the base source address in `temp1`. |
| GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); |
| |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // If it is needed (in the case of the fast-path loop), the base |
| // destination address is computed later, as `temp2` is used for |
| // intermediate computations. |
| |
| // Compute the end source address in `temp3`. |
| if (length.IsStackSlot()) { |
| // Location `length` is again pointing at a stack slot, as |
| // register `temp3` (which was containing the length parameter |
| // earlier) has been overwritten; restore it now |
| DCHECK(length.Equals(length_arg)); |
| __ movl(temp3, Address(ESP, length.GetStackIndex())); |
| length = Location::RegisterLocation(temp3); |
| } |
| GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); |
| |
| // SystemArrayCopy implementation for Baker read barriers (see |
| // also CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier): |
| // |
| // if (src_ptr != end_ptr) { |
| // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // // Slow-path copy. |
| // for (size_t i = 0; i != length; ++i) { |
| // dest_array[dest_pos + i] = |
| // MaybePoison(ReadBarrier::Mark(MaybeUnpoison(src_array[src_pos + i]))); |
| // } |
| // } else { |
| // // Fast-path copy. |
| // do { |
| // *dest_ptr++ = *src_ptr++; |
| // } while (src_ptr != end_ptr) |
| // } |
| // } |
| |
| NearLabel loop, done; |
| |
| // Don't enter copy loop if `length == 0`. |
| __ cmpl(temp1, temp3); |
| __ j(kEqual, &done); |
| |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; |
| constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; |
| constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position); |
| |
| // if (rb_state == ReadBarrier::GrayState()) |
| // goto slow_path; |
| // At this point, just do the "if" and make sure that flags are preserved until the branch. |
| __ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value)); |
| |
| // Load fence to prevent load-load reordering. |
| // Note that this is a no-op, thanks to the x86 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| |
| // Slow path used to copy array when `src` is gray. |
| SlowPathCode* read_barrier_slow_path = |
| new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86(invoke); |
| codegen_->AddSlowPath(read_barrier_slow_path); |
| |
| // We have done the "if" of the gray bit check above, now branch based on the flags. |
| __ j(kNotZero, read_barrier_slow_path->GetEntryLabel()); |
| |
| // Fast-path copy. |
| // Compute the base destination address in `temp2`. |
| GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| __ Bind(&loop); |
| __ pushl(Address(temp1, 0)); |
| __ cfi().AdjustCFAOffset(4); |
| __ popl(Address(temp2, 0)); |
| __ cfi().AdjustCFAOffset(-4); |
| __ addl(temp1, Immediate(element_size)); |
| __ addl(temp2, Immediate(element_size)); |
| __ cmpl(temp1, temp3); |
| __ j(kNotEqual, &loop); |
| |
| __ Bind(read_barrier_slow_path->GetExitLabel()); |
| __ Bind(&done); |
| } else { |
| // Non read barrier code. |
| // Compute the base destination address in `temp2`. |
| GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); |
| // Compute the end source address in `temp3`. |
| GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| NearLabel loop, done; |
| __ cmpl(temp1, temp3); |
| __ j(kEqual, &done); |
| __ Bind(&loop); |
| __ pushl(Address(temp1, 0)); |
| __ cfi().AdjustCFAOffset(4); |
| __ popl(Address(temp2, 0)); |
| __ cfi().AdjustCFAOffset(-4); |
| __ addl(temp1, Immediate(element_size)); |
| __ addl(temp2, Immediate(element_size)); |
| __ cmpl(temp1, temp3); |
| __ j(kNotEqual, &loop); |
| __ Bind(&done); |
| } |
| |
| // We only need one card marking on the destination array. |
| codegen_->MarkGCCard(temp1, temp2, dest, Register(kNoRegister), /* emit_null_check= */ false); |
| |
| __ Bind(intrinsic_slow_path->GetExitLabel()); |
| } |
| |
| static void RequestBaseMethodAddressInRegister(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| if (locations != nullptr) { |
| HInvokeStaticOrDirect* invoke_static_or_direct = invoke->AsInvokeStaticOrDirect(); |
| // Note: The base method address is not present yet when this is called from the |
| // PCRelativeHandlerVisitor via IsCallFreeIntrinsic() to determine whether to insert it. |
| if (invoke_static_or_direct->HasSpecialInput()) { |
| DCHECK(invoke_static_or_direct->InputAt(invoke_static_or_direct->GetSpecialInputIndex()) |
| ->IsX86ComputeBaseMethodAddress()); |
| locations->SetInAt(invoke_static_or_direct->GetSpecialInputIndex(), |
| Location::RequiresRegister()); |
| } |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerValueOf(HInvoke* invoke) { |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| InvokeRuntimeCallingConvention calling_convention; |
| IntrinsicVisitor::ComputeIntegerValueOfLocations( |
| invoke, |
| codegen_, |
| Location::RegisterLocation(EAX), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| RequestBaseMethodAddressInRegister(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerValueOf(HInvoke* invoke) { |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| IntrinsicVisitor::IntegerValueOfInfo info = |
| IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); |
| LocationSummary* locations = invoke->GetLocations(); |
| X86Assembler* assembler = GetAssembler(); |
| |
| Register out = locations->Out().AsRegister<Register>(); |
| auto allocate_instance = [&]() { |
| DCHECK_EQ(out, InvokeRuntimeCallingConvention().GetRegisterAt(0)); |
| codegen_->LoadIntrinsicDeclaringClass(out, invoke->AsInvokeStaticOrDirect()); |
| codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| }; |
| if (invoke->InputAt(0)->IsConstant()) { |
| int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); |
| if (static_cast<uint32_t>(value - info.low) < info.length) { |
| // Just embed the j.l.Integer in the code. |
| DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); |
| codegen_->LoadBootImageAddress( |
| out, info.value_boot_image_reference, invoke->AsInvokeStaticOrDirect()); |
| } else { |
| DCHECK(locations->CanCall()); |
| // Allocate and initialize a new j.l.Integer. |
| // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the |
| // JIT object table. |
| allocate_instance(); |
| __ movl(Address(out, info.value_offset), Immediate(value)); |
| } |
| } else { |
| DCHECK(locations->CanCall()); |
| Register in = locations->InAt(0).AsRegister<Register>(); |
| // Check bounds of our cache. |
| __ leal(out, Address(in, -info.low)); |
| __ cmpl(out, Immediate(info.length)); |
| NearLabel allocate, done; |
| __ j(kAboveEqual, &allocate); |
| // If the value is within the bounds, load the j.l.Integer directly from the array. |
| constexpr size_t kElementSize = sizeof(mirror::HeapReference<mirror::Object>); |
| static_assert((1u << TIMES_4) == sizeof(mirror::HeapReference<mirror::Object>), |
| "Check heap reference size."); |
| if (codegen_->GetCompilerOptions().IsBootImage()) { |
| DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); |
| size_t method_address_index = invoke->AsInvokeStaticOrDirect()->GetSpecialInputIndex(); |
| HX86ComputeBaseMethodAddress* method_address = |
| invoke->InputAt(method_address_index)->AsX86ComputeBaseMethodAddress(); |
| DCHECK(method_address != nullptr); |
| Register method_address_reg = |
| invoke->GetLocations()->InAt(method_address_index).AsRegister<Register>(); |
| __ movl(out, |
| Address(method_address_reg, out, TIMES_4, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| codegen_->RecordBootImageIntrinsicPatch(method_address, info.array_data_boot_image_reference); |
| } else { |
| // Note: We're about to clobber the index in `out`, so we need to use `in` and |
| // adjust the offset accordingly. |
| uint32_t mid_array_boot_image_offset = |
| info.array_data_boot_image_reference - info.low * kElementSize; |
| codegen_->LoadBootImageAddress( |
| out, mid_array_boot_image_offset, invoke->AsInvokeStaticOrDirect()); |
| DCHECK_NE(out, in); |
| __ movl(out, Address(out, in, TIMES_4, 0)); |
| } |
| __ MaybeUnpoisonHeapReference(out); |
| __ jmp(&done); |
| __ Bind(&allocate); |
| // Otherwise allocate and initialize a new j.l.Integer. |
| allocate_instance(); |
| __ movl(Address(out, info.value_offset), in); |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitReferenceGetReferent(HInvoke* invoke) { |
| IntrinsicVisitor::CreateReferenceGetReferentLocations(invoke, codegen_); |
| RequestBaseMethodAddressInRegister(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitReferenceGetReferent(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Location obj = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| if (gUseReadBarrier) { |
| // Check self->GetWeakRefAccessEnabled(). |
| ThreadOffset32 offset = Thread::WeakRefAccessEnabledOffset<kX86PointerSize>(); |
| __ fs()->cmpl(Address::Absolute(offset), |
| Immediate(enum_cast<int32_t>(WeakRefAccessState::kVisiblyEnabled))); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| |
| // Load the java.lang.ref.Reference class, use the output register as a temporary. |
| codegen_->LoadIntrinsicDeclaringClass(out.AsRegister<Register>(), |
| invoke->AsInvokeStaticOrDirect()); |
| |
| // Check static fields java.lang.ref.Reference.{disableIntrinsic,slowPathEnabled} together. |
| MemberOffset disable_intrinsic_offset = IntrinsicVisitor::GetReferenceDisableIntrinsicOffset(); |
| DCHECK_ALIGNED(disable_intrinsic_offset.Uint32Value(), 2u); |
| DCHECK_EQ(disable_intrinsic_offset.Uint32Value() + 1u, |
| IntrinsicVisitor::GetReferenceSlowPathEnabledOffset().Uint32Value()); |
| __ cmpw(Address(out.AsRegister<Register>(), disable_intrinsic_offset.Uint32Value()), |
| Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| |
| // Load the value from the field. |
| uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| out, |
| obj.AsRegister<Register>(), |
| referent_offset, |
| /*needs_null_check=*/ true); |
| // Note that the fence is a no-op, thanks to the x86 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. |
| } else { |
| __ movl(out.AsRegister<Register>(), Address(obj.AsRegister<Register>(), referent_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Note that the fence is a no-op, thanks to the x86 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. |
| codegen_->MaybeGenerateReadBarrierSlow(invoke, out, out, obj, referent_offset); |
| } |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitReferenceRefersTo(HInvoke* invoke) { |
| IntrinsicVisitor::CreateReferenceRefersToLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitReferenceRefersTo(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Register other = locations->InAt(1).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| __ movl(out, Address(obj, referent_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| __ MaybeUnpoisonHeapReference(out); |
| // Note that the fence is a no-op, thanks to the x86 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. |
| |
| NearLabel end, return_true, return_false; |
| __ cmpl(out, other); |
| |
| if (gUseReadBarrier) { |
| DCHECK(kUseBakerReadBarrier); |
| |
| __ j(kEqual, &return_true); |
| |
| // Check if the loaded reference is null. |
| __ testl(out, out); |
| __ j(kZero, &return_false); |
| |
| // For correct memory visibility, we need a barrier before loading the lock word |
| // but we already have the barrier emitted for volatile load above which is sufficient. |
| |
| // Load the lockword and check if it is a forwarding address. |
| static_assert(LockWord::kStateShift == 30u); |
| static_assert(LockWord::kStateForwardingAddress == 3u); |
| __ movl(out, Address(out, monitor_offset)); |
| __ cmpl(out, Immediate(static_cast<int32_t>(0xc0000000))); |
| __ j(kBelow, &return_false); |
| |
| // Extract the forwarding address and compare with `other`. |
| __ shll(out, Immediate(LockWord::kForwardingAddressShift)); |
| __ cmpl(out, other); |
| } |
| |
| __ j(kNotEqual, &return_false); |
| |
| // Return true and exit the function. |
| __ Bind(&return_true); |
| __ movl(out, Immediate(1)); |
| __ jmp(&end); |
| |
| // Return false and exit the function. |
| __ Bind(&return_false); |
| __ xorl(out, out); |
| __ Bind(&end); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitThreadInterrupted(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitThreadInterrupted(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| Register out = invoke->GetLocations()->Out().AsRegister<Register>(); |
| Address address = Address::Absolute(Thread::InterruptedOffset<kX86PointerSize>().Int32Value()); |
| NearLabel done; |
| __ fs()->movl(out, address); |
| __ testl(out, out); |
| __ j(kEqual, &done); |
| __ fs()->movl(address, Immediate(0)); |
| codegen_->MemoryFence(); |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitReachabilityFence(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } |
| |
| void IntrinsicLocationsBuilderX86::VisitIntegerDivideUnsigned(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Intel uses edx:eax as the dividend. |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitIntegerDivideUnsigned(HInvoke* invoke) { |
| X86Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Register edx = locations->GetTemp(0).AsRegister<Register>(); |
| Register second_reg = second.AsRegister<Register>(); |
| |
| DCHECK_EQ(EAX, first.AsRegister<Register>()); |
| DCHECK_EQ(EAX, out.AsRegister<Register>()); |
| DCHECK_EQ(EDX, edx); |
| |
| // Check if divisor is zero, bail to managed implementation to handle. |
| __ testl(second_reg, second_reg); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| __ xorl(edx, edx); |
| __ divl(second_reg); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| static bool HasVarHandleIntrinsicImplementation(HInvoke* invoke) { |
| VarHandleOptimizations optimizations(invoke); |
| if (optimizations.GetDoNotIntrinsify()) { |
| return false; |
| } |
| |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| DCHECK_LE(expected_coordinates_count, 2u); // Filtered by the `DoNotIntrinsify` flag above. |
| if (expected_coordinates_count > 1u) { |
| // Only static and instance fields VarHandle are supported now. |
| // TODO: add support for arrays and views. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void GenerateVarHandleAccessModeCheck(Register varhandle_object, |
| mirror::VarHandle::AccessMode access_mode, |
| SlowPathCode* slow_path, |
| X86Assembler* assembler) { |
| const uint32_t access_modes_bitmask_offset = |
| mirror::VarHandle::AccessModesBitMaskOffset().Uint32Value(); |
| const uint32_t access_mode_bit = 1u << static_cast<uint32_t>(access_mode); |
| |
| // If the access mode is not supported, bail to runtime implementation to handle |
| __ testl(Address(varhandle_object, access_modes_bitmask_offset), Immediate(access_mode_bit)); |
| __ j(kZero, slow_path->GetEntryLabel()); |
| } |
| |
| static void GenerateVarHandleStaticFieldCheck(Register varhandle_object, |
| SlowPathCode* slow_path, |
| X86Assembler* assembler) { |
| const uint32_t coordtype0_offset = mirror::VarHandle::CoordinateType0Offset().Uint32Value(); |
| |
| // Check that the VarHandle references a static field by checking that coordinateType0 == null. |
| // Do not emit read barrier (or unpoison the reference) for comparing to null. |
| __ cmpl(Address(varhandle_object, coordtype0_offset), Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| |
| static void GenerateSubTypeObjectCheck(Register object, |
| Register temp, |
| Address type_address, |
| SlowPathCode* slow_path, |
| X86Assembler* assembler, |
| bool object_can_be_null = true) { |
| const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); |
| const uint32_t super_class_offset = mirror::Class::SuperClassOffset().Uint32Value(); |
| NearLabel check_type_compatibility, type_matched; |
| |
| // If the object is null, there is no need to check the type |
| if (object_can_be_null) { |
| __ testl(object, object); |
| __ j(kZero, &type_matched); |
| } |
| |
| // Do not unpoison for in-memory comparison. |
| // We deliberately avoid the read barrier, letting the slow path handle the false negatives. |
| __ movl(temp, Address(object, class_offset)); |
| __ Bind(&check_type_compatibility); |
| __ cmpl(temp, type_address); |
| __ j(kEqual, &type_matched); |
| // Load the super class. |
| __ MaybeUnpoisonHeapReference(temp); |
| __ movl(temp, Address(temp, super_class_offset)); |
| // If the super class is null, we reached the root of the hierarchy without a match. |
| // We let the slow path handle uncovered cases (e.g. interfaces). |
| __ testl(temp, temp); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ jmp(&check_type_compatibility); |
| __ Bind(&type_matched); |
| } |
| |
| static void GenerateVarHandleInstanceFieldChecks(HInvoke* invoke, |
| Register temp, |
| SlowPathCode* slow_path, |
| X86Assembler* assembler) { |
| VarHandleOptimizations optimizations(invoke); |
| LocationSummary* locations = invoke->GetLocations(); |
| Register varhandle_object = locations->InAt(0).AsRegister<Register>(); |
| Register object = locations->InAt(1).AsRegister<Register>(); |
| |
| const uint32_t coordtype0_offset = mirror::VarHandle::CoordinateType0Offset().Uint32Value(); |
| const uint32_t coordtype1_offset = mirror::VarHandle::CoordinateType1Offset().Uint32Value(); |
| |
| // Check that the VarHandle references an instance field by checking that |
| // coordinateType1 == null. coordinateType0 should be not null, but this is handled by the |
| // type compatibility check with the source object's type, which will fail for null. |
| __ cmpl(Address(varhandle_object, coordtype1_offset), Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| |
| // Check if the object is null |
| if (!optimizations.GetSkipObjectNullCheck()) { |
| __ testl(object, object); |
| __ j(kZero, slow_path->GetEntryLabel()); |
| } |
| |
| // Check the object's class against coordinateType0. |
| GenerateSubTypeObjectCheck(object, |
| temp, |
| Address(varhandle_object, coordtype0_offset), |
| slow_path, |
| assembler, |
| /* object_can_be_null= */ false); |
| } |
| |
| static void GenerateVarTypePrimitiveTypeCheck(Register varhandle_object, |
| Register temp, |
| DataType::Type type, |
| SlowPathCode* slow_path, |
| X86Assembler* assembler) { |
| const uint32_t var_type_offset = mirror::VarHandle::VarTypeOffset().Uint32Value(); |
| const uint32_t primitive_type_offset = mirror::Class::PrimitiveTypeOffset().Uint32Value(); |
| const uint32_t primitive_type = static_cast<uint32_t>(DataTypeToPrimitive(type)); |
| |
| // We do not need a read barrier when loading a reference only for loading a constant field |
| // through the reference. |
| __ movl(temp, Address(varhandle_object, var_type_offset)); |
| __ MaybeUnpoisonHeapReference(temp); |
| __ cmpw(Address(temp, primitive_type_offset), Immediate(primitive_type)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| |
| static void GenerateVarHandleCommonChecks(HInvoke *invoke, |
| Register temp, |
| SlowPathCode* slow_path, |
| X86Assembler* assembler) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Register vh_object = locations->InAt(0).AsRegister<Register>(); |
| mirror::VarHandle::AccessMode access_mode = |
| mirror::VarHandle::GetAccessModeByIntrinsic(invoke->GetIntrinsic()); |
| |
| GenerateVarHandleAccessModeCheck(vh_object, |
| access_mode, |
| slow_path, |
| assembler); |
| |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| switch (expected_coordinates_count) { |
| case 0u: |
| GenerateVarHandleStaticFieldCheck(vh_object, slow_path, assembler); |
| break; |
| case 1u: { |
| GenerateVarHandleInstanceFieldChecks(invoke, temp, slow_path, assembler); |
| break; |
| } |
| default: |
| // Unimplemented |
| UNREACHABLE(); |
| } |
| |
| // Check the return type and varType parameters. |
| mirror::VarHandle::AccessModeTemplate access_mode_template = |
| mirror::VarHandle::GetAccessModeTemplate(access_mode); |
| DataType::Type type = invoke->GetType(); |
| |
| switch (access_mode_template) { |
| case mirror::VarHandle::AccessModeTemplate::kGet: |
| // Check the varType.primitiveType against the type we're trying to retrieve. Reference types |
| // are also checked later by a HCheckCast node as an additional check. |
| GenerateVarTypePrimitiveTypeCheck(vh_object, temp, type, slow_path, assembler); |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kSet: |
| case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: { |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); |
| |
| // Check the varType.primitiveType against the type of the value we're trying to set. |
| GenerateVarTypePrimitiveTypeCheck(vh_object, temp, value_type, slow_path, assembler); |
| if (value_type == DataType::Type::kReference) { |
| const uint32_t var_type_offset = mirror::VarHandle::VarTypeOffset().Uint32Value(); |
| |
| // If the value type is a reference, check it against the varType. |
| GenerateSubTypeObjectCheck(locations->InAt(value_index).AsRegister<Register>(), |
| temp, |
| Address(vh_object, var_type_offset), |
| slow_path, |
| assembler); |
| } |
| break; |
| } |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: { |
| uint32_t new_value_index = invoke->GetNumberOfArguments() - 1; |
| uint32_t expected_value_index = invoke->GetNumberOfArguments() - 2; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, new_value_index); |
| DCHECK_EQ(value_type, GetDataTypeFromShorty(invoke, expected_value_index)); |
| |
| // Check the varType.primitiveType against the type of the expected value. |
| GenerateVarTypePrimitiveTypeCheck(vh_object, temp, value_type, slow_path, assembler); |
| if (value_type == DataType::Type::kReference) { |
| const uint32_t var_type_offset = mirror::VarHandle::VarTypeOffset().Uint32Value(); |
| |
| // If the value type is a reference, check both the expected and the new value against |
| // the varType. |
| GenerateSubTypeObjectCheck(locations->InAt(new_value_index).AsRegister<Register>(), |
| temp, |
| Address(vh_object, var_type_offset), |
| slow_path, |
| assembler); |
| GenerateSubTypeObjectCheck(locations->InAt(expected_value_index).AsRegister<Register>(), |
| temp, |
| Address(vh_object, var_type_offset), |
| slow_path, |
| assembler); |
| } |
| break; |
| } |
| } |
| } |
| |
| // This method loads the field's address referred by a field VarHandle (base + offset). |
| // The return value is the register containing object's reference (in case of an instance field) |
| // or the declaring class (in case of a static field). The declaring class is stored in temp |
| // register. Field's offset is loaded to the `offset` register. |
| static Register GenerateVarHandleFieldReference(HInvoke* invoke, |
| CodeGeneratorX86* codegen, |
| Register temp, |
| /*out*/ Register offset) { |
| X86Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| const uint32_t artfield_offset = mirror::FieldVarHandle::ArtFieldOffset().Uint32Value(); |
| const uint32_t offset_offset = ArtField::OffsetOffset().Uint32Value(); |
| const uint32_t declaring_class_offset = ArtField::DeclaringClassOffset().Uint32Value(); |
| Register varhandle_object = locations->InAt(0).AsRegister<Register>(); |
| |
| // Load the ArtField and the offset |
| __ movl(temp, Address(varhandle_object, artfield_offset)); |
| __ movl(offset, Address(temp, offset_offset)); |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count == 0) { |
| // For static fields, load the declaring class |
| InstructionCodeGeneratorX86* instr_codegen = |
| down_cast<InstructionCodeGeneratorX86*>(codegen->GetInstructionVisitor()); |
| instr_codegen->GenerateGcRootFieldLoad(invoke, |
| Location::RegisterLocation(temp), |
| Address(temp, declaring_class_offset), |
| /* fixup_label= */ nullptr, |
| gCompilerReadBarrierOption); |
| return temp; |
| } |
| |
| // For instance fields, return the register containing the object. |
| DCHECK_EQ(expected_coordinates_count, 1u); |
| |
| return locations->InAt(1).AsRegister<Register>(); |
| } |
| |
| static void CreateVarHandleGetLocations(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary( |
| invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count == 1u) { |
| // For instance fields, this is the source object. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| locations->AddTemp(Location::RequiresRegister()); |
| |
| DataType::Type type = invoke->GetType(); |
| switch (DataType::Kind(type)) { |
| case DataType::Type::kInt64: |
| locations->AddTemp(Location::RequiresRegister()); |
| if (invoke->GetIntrinsic() != Intrinsics::kVarHandleGet) { |
| // We need an XmmRegister for Int64 to ensure an atomic load |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| FALLTHROUGH_INTENDED; |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| default: |
| DCHECK(DataType::IsFloatingPointType(type)); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| static void GenerateVarHandleGet(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| DataType::Type type = invoke->GetType(); |
| DCHECK_NE(type, DataType::Type::kVoid); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| GenerateVarHandleCommonChecks(invoke, temp, slow_path, assembler); |
| |
| Location out = locations->Out(); |
| // Use 'out' as a temporary register if it's a core register |
| Register offset = |
| out.IsRegister() ? out.AsRegister<Register>() : locations->GetTemp(1).AsRegister<Register>(); |
| |
| // Get the field referred by the VarHandle. The returned register contains the object reference |
| // or the declaring class. The field offset will be placed in 'offset'. For static fields, the |
| // declaring class will be placed in 'temp' register. |
| Register ref = GenerateVarHandleFieldReference(invoke, codegen, temp, offset); |
| Address field_addr(ref, offset, TIMES_1, 0); |
| |
| // Load the value from the field |
| if (type == DataType::Type::kReference && gCompilerReadBarrierOption == kWithReadBarrier) { |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, out, ref, field_addr, /* needs_null_check= */ false); |
| } else if (type == DataType::Type::kInt64 && |
| invoke->GetIntrinsic() != Intrinsics::kVarHandleGet) { |
| XmmRegister xmm_temp = locations->GetTemp(2).AsFpuRegister<XmmRegister>(); |
| codegen->LoadFromMemoryNoBarrier( |
| type, out, field_addr, /* instr= */ nullptr, xmm_temp, /* is_atomic_load= */ true); |
| } else { |
| codegen->LoadFromMemoryNoBarrier(type, out, field_addr); |
| } |
| |
| if (invoke->GetIntrinsic() == Intrinsics::kVarHandleGetVolatile || |
| invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAcquire) { |
| // Load fence to prevent load-load reordering. |
| // Note that this is a no-op, thanks to the x86 memory model. |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGet(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGet(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetVolatile(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetVolatile(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAcquire(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAcquire(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetOpaque(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetOpaque(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_); |
| } |
| |
| static void CreateVarHandleSetLocations(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| // The last argument should be the value we intend to set. |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| HInstruction* value = invoke->InputAt(value_index); |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); |
| bool needs_atomicity = invoke->GetIntrinsic() != Intrinsics::kVarHandleSet; |
| if (value_type == DataType::Type::kInt64 && (!value->IsConstant() || needs_atomicity)) { |
| // We avoid the case of a non-constant (or volatile) Int64 value because we would need to |
| // place it in a register pair. If the slow path is taken, the ParallelMove might fail to move |
| // the pair according to the X86DexCallingConvention in case of an overlap (e.g., move the |
| // int64 value from <EAX, EBX> to <EBX, ECX>). (Bug: b/168687887) |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary( |
| invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count == 1u) { |
| // For instance fields, this is the source object |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| |
| switch (value_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint8: |
| // Ensure the value is in a byte register |
| locations->SetInAt(value_index, Location::ByteRegisterOrConstant(EBX, value)); |
| break; |
| case DataType::Type::kInt16: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt32: |
| locations->SetInAt(value_index, Location::RegisterOrConstant(value)); |
| break; |
| case DataType::Type::kInt64: |
| // We only handle constant non-atomic int64 values. |
| DCHECK(value->IsConstant()); |
| locations->SetInAt(value_index, Location::ConstantLocation(value)); |
| break; |
| case DataType::Type::kReference: |
| locations->SetInAt(value_index, Location::RequiresRegister()); |
| break; |
| default: |
| DCHECK(DataType::IsFloatingPointType(value_type)); |
| if (needs_atomicity && value_type == DataType::Type::kFloat64) { |
| locations->SetInAt(value_index, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(value_index, Location::FpuRegisterOrConstant(value)); |
| } |
| } |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| // This temporary register is also used for card for MarkGCCard. Make sure it's a byte register |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| if (expected_coordinates_count == 0 && value_type == DataType::Type::kReference) { |
| // For static reference fields, we need another temporary for the declaring class. We set it |
| // last because we want to make sure that the first 2 temps are reserved for HandleFieldSet. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| static void GenerateVarHandleSet(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| // The value we want to set is the last argument |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| Register temp2 = locations->GetTemp(1).AsRegister<Register>(); |
| SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| GenerateVarHandleCommonChecks(invoke, temp, slow_path, assembler); |
| |
| // For static reference fields, we need another temporary for the declaring class. But since |
| // for instance fields the object is in a separate register, it is safe to use the first |
| // temporary register for GenerateVarHandleFieldReference. |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (value_type == DataType::Type::kReference && expected_coordinates_count == 0) { |
| temp = locations->GetTemp(2).AsRegister<Register>(); |
| } |
| |
| Register offset = temp2; |
| // Get the field referred by the VarHandle. The returned register contains the object reference |
| // or the declaring class. The field offset will be placed in 'offset'. For static fields, the |
| // declaring class will be placed in 'temp' register. |
| Register reference = GenerateVarHandleFieldReference(invoke, codegen, temp, offset); |
| |
| bool is_volatile = false; |
| switch (invoke->GetIntrinsic()) { |
| case Intrinsics::kVarHandleSet: |
| case Intrinsics::kVarHandleSetOpaque: |
| // The only constraint for setOpaque is to ensure bitwise atomicity (atomically set 64 bit |
| // values), but we don't treat Int64 values because we would need to place it in a register |
| // pair. If the slow path is taken, the Parallel move might fail to move the register pair |
| // in case of an overlap (e.g., move from <EAX, EBX> to <EBX, ECX>). (Bug: b/168687887) |
| break; |
| case Intrinsics::kVarHandleSetRelease: |
| // setRelease needs to ensure atomicity too. See the above comment. |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| break; |
| case Intrinsics::kVarHandleSetVolatile: |
| is_volatile = true; |
| break; |
| default: |
| LOG(FATAL) << "GenerateVarHandleSet received non-set intrinsic " << invoke->GetIntrinsic(); |
| } |
| |
| InstructionCodeGeneratorX86* instr_codegen = |
| down_cast<InstructionCodeGeneratorX86*>(codegen->GetInstructionVisitor()); |
| // Store the value to the field |
| instr_codegen->HandleFieldSet( |
| invoke, |
| value_index, |
| value_type, |
| Address(reference, offset, TIMES_1, 0), |
| reference, |
| is_volatile, |
| /* value_can_be_null */ true, |
| // Value can be null, and this write barrier is not being relied on for other sets. |
| WriteBarrierKind::kEmitWithNullCheck); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleSet(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleSet(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleSetVolatile(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleSetVolatile(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleSetRelease(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleSetRelease(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleSetOpaque(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleSetOpaque(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_); |
| } |
| |
| static void CreateVarHandleGetAndSetLocations(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t value_index = number_of_arguments - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); |
| |
| if (DataType::Is64BitType(value_type)) { |
| // We avoid the case of an Int64/Float64 value because we would need to place it in a register |
| // pair. If the slow path is taken, the ParallelMove might fail to move the pair according to |
| // the X86DexCallingConvention in case of an overlap (e.g., move the 64 bit value from |
| // <EAX, EBX> to <EBX, ECX>). |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary( |
| invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| // We use this temporary for the card, so we need a byte register |
| locations->AddTemp(Location::RegisterLocation(EBX)); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (GetExpectedVarHandleCoordinatesCount(invoke) == 1u) { |
| // For instance fields, this is the source object |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else { |
| // For static fields, we need another temp because one will be busy with the declaring class. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| if (value_type == DataType::Type::kFloat32) { |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| locations->SetInAt(value_index, Location::FpuRegisterOrConstant(invoke->InputAt(value_index))); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(value_index, Location::RegisterLocation(EAX)); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| } |
| |
| static void GenerateVarHandleGetAndSet(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| // The value we want to set is the last argument |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| Location value = locations->InAt(value_index); |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); |
| Register temp = locations->GetTemp(1).AsRegister<Register>(); |
| Register temp2 = locations->GetTemp(2).AsRegister<Register>(); |
| SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| GenerateVarHandleCommonChecks(invoke, temp, slow_path, assembler); |
| |
| Register offset = locations->GetTemp(0).AsRegister<Register>(); |
| // Get the field referred by the VarHandle. The returned register contains the object reference |
| // or the declaring class. The field offset will be placed in 'offset'. For static fields, the |
| // declaring class will be placed in 'temp' register. |
| Register reference = GenerateVarHandleFieldReference(invoke, codegen, temp, offset); |
| Address field_addr(reference, offset, TIMES_1, 0); |
| |
| if (invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAndSetRelease) { |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| // For static fields, we need another temporary for the declaring class. But since for instance |
| // fields the object is in a separate register, it is safe to use the first temporary register. |
| temp = expected_coordinates_count == 1u ? temp : locations->GetTemp(3).AsRegister<Register>(); |
| // No need for a lock prefix. `xchg` has an implicit lock when it is used with an address. |
| switch (value_type) { |
| case DataType::Type::kBool: |
| __ xchgb(value.AsRegister<ByteRegister>(), field_addr); |
| __ movzxb(locations->Out().AsRegister<Register>(), |
| locations->Out().AsRegister<ByteRegister>()); |
| break; |
| case DataType::Type::kInt8: |
| __ xchgb(value.AsRegister<ByteRegister>(), field_addr); |
| __ movsxb(locations->Out().AsRegister<Register>(), |
| locations->Out().AsRegister<ByteRegister>()); |
| break; |
| case DataType::Type::kUint16: |
| __ xchgw(value.AsRegister<Register>(), field_addr); |
| __ movzxw(locations->Out().AsRegister<Register>(), locations->Out().AsRegister<Register>()); |
| break; |
| case DataType::Type::kInt16: |
| __ xchgw(value.AsRegister<Register>(), field_addr); |
| __ movsxw(locations->Out().AsRegister<Register>(), locations->Out().AsRegister<Register>()); |
| break; |
| case DataType::Type::kInt32: |
| __ xchgl(value.AsRegister<Register>(), field_addr); |
| break; |
| case DataType::Type::kFloat32: |
| codegen->Move32(Location::RegisterLocation(EAX), value); |
| __ xchgl(EAX, field_addr); |
| __ movd(locations->Out().AsFpuRegister<XmmRegister>(), EAX); |
| break; |
| case DataType::Type::kReference: { |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // Need to make sure the reference stored in the field is a to-space |
| // one before attempting the CAS or the CAS could fail incorrectly. |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, |
| // Unused, used only as a "temporary" within the read barrier. |
| Location::RegisterLocation(temp), |
| reference, |
| field_addr, |
| /* needs_null_check= */ false, |
| /* always_update_field= */ true, |
| &temp2); |
| } |
| codegen->MarkGCCard( |
| temp, temp2, reference, value.AsRegister<Register>(), /* emit_null_check= */ false); |
| if (kPoisonHeapReferences) { |
| __ movl(temp, value.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ xchgl(temp, field_addr); |
| __ UnpoisonHeapReference(temp); |
| __ movl(locations->Out().AsRegister<Register>(), temp); |
| } else { |
| __ xchgl(locations->Out().AsRegister<Register>(), field_addr); |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAndSetAcquire) { |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndSet(HInvoke* invoke) { |
| CreateVarHandleGetAndSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndSet(HInvoke* invoke) { |
| GenerateVarHandleGetAndSet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndSet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndSet(invoke, codegen_); |
| } |
| |
| static void CreateVarHandleCompareAndSetOrExchangeLocations(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t expected_value_index = number_of_arguments - 2; |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, expected_value_index); |
| DCHECK_EQ(value_type, GetDataTypeFromShorty(invoke, new_value_index)); |
| |
| if (DataType::Is64BitType(value_type)) { |
| // We avoid the case of an Int64/Float64 value because we would need to place it in a register |
| // pair. If the slow path is taken, the ParallelMove might fail to move the pair according to |
| // the X86DexCallingConvention in case of an overlap (e.g., move the 64 bit value from |
| // <EAX, EBX> to <EBX, ECX>). |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary( |
| invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| // We use this temporary for the card, so we need a byte register |
| locations->AddTemp(Location::RegisterLocation(EBX)); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (GetExpectedVarHandleCoordinatesCount(invoke) == 1u) { |
| // For instance fields, this is the source object |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else { |
| // For static fields, we need another temp because one will be busy with the declaring class. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| if (DataType::IsFloatingPointType(value_type)) { |
| // We need EAX for placing the expected value |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| locations->SetInAt(new_value_index, |
| Location::FpuRegisterOrConstant(invoke->InputAt(new_value_index))); |
| locations->SetInAt(expected_value_index, |
| Location::FpuRegisterOrConstant(invoke->InputAt(expected_value_index))); |
| } else { |
| // Ensure it's in a byte register |
| locations->SetInAt(new_value_index, Location::RegisterLocation(ECX)); |
| locations->SetInAt(expected_value_index, Location::RegisterLocation(EAX)); |
| } |
| |
| mirror::VarHandle::AccessModeTemplate access_mode_template = |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic()); |
| |
| if (access_mode_template == mirror::VarHandle::AccessModeTemplate::kCompareAndExchange && |
| value_type == DataType::Type::kFloat32) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| } |
| |
| static void GenerateVarHandleCompareAndSetOrExchange(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t expected_value_index = number_of_arguments - 2; |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type type = GetDataTypeFromShorty(invoke, expected_value_index); |
| DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index)); |
| Location expected_value = locations->InAt(expected_value_index); |
| Location new_value = locations->InAt(new_value_index); |
| Register offset = locations->GetTemp(0).AsRegister<Register>(); |
| Register temp = locations->GetTemp(1).AsRegister<Register>(); |
| Register temp2 = locations->GetTemp(2).AsRegister<Register>(); |
| SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| GenerateVarHandleCommonChecks(invoke, temp, slow_path, assembler); |
| |
| // Get the field referred by the VarHandle. The returned register contains the object reference |
| // or the declaring class. The field offset will be placed in 'offset'. For static fields, the |
| // declaring class will be placed in 'temp' register. |
| Register reference = GenerateVarHandleFieldReference(invoke, codegen, temp, offset); |
| |
| uint32_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| // For generating the compare and exchange, we need 2 temporaries. In case of a static field, the |
| // first temporary contains the declaring class so we need another temporary. In case of an |
| // instance field, the object comes in a separate register so it's safe to use the first temp. |
| temp = (expected_coordinates_count == 1u) ? temp : locations->GetTemp(3).AsRegister<Register>(); |
| DCHECK_NE(temp, reference); |
| |
| // We are using `lock cmpxchg` in all cases because there is no CAS equivalent that has weak |
| // failure semantics. `lock cmpxchg` has full barrier semantics, and we don't need scheduling |
| // barriers at this time. |
| |
| mirror::VarHandle::AccessModeTemplate access_mode_template = |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic()); |
| bool is_cmpxchg = |
| access_mode_template == mirror::VarHandle::AccessModeTemplate::kCompareAndExchange; |
| |
| if (type == DataType::Type::kReference) { |
| GenReferenceCAS( |
| invoke, codegen, expected_value, new_value, reference, offset, temp, temp2, is_cmpxchg); |
| } else { |
| Location out = locations->Out(); |
| GenPrimitiveCAS( |
| type, codegen, expected_value, new_value, reference, offset, out, temp, is_cmpxchg); |
| } |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleCompareAndSet(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleCompareAndSet(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleCompareAndExchange(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleCompareAndExchange(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_); |
| } |
| |
| static void CreateVarHandleGetAndAddLocations(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| // The last argument should be the value we intend to set. |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); |
| if (DataType::Is64BitType(value_type)) { |
| // We avoid the case of an Int64/Float64 value because we would need to place it in a register |
| // pair. If the slow path is taken, the ParallelMove might fail to move the pair according to |
| // the X86DexCallingConvention in case of an overlap (e.g., move the 64 bit value from |
| // <EAX, EBX> to <EBX, ECX>). (Bug: b/168687887) |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary( |
| invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count == 1u) { |
| // For instance fields, this is the source object |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else { |
| // For static fields, we need another temp because one will be busy with the declaring class. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| if (DataType::IsFloatingPointType(value_type)) { |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| locations->SetInAt(value_index, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // xadd updates the register argument with the old value. ByteRegister required for xaddb. |
| locations->SetInAt(value_index, Location::RegisterLocation(EAX)); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| } |
| |
| static void GenerateVarHandleGetAndAdd(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t value_index = number_of_arguments - 1; |
| DataType::Type type = GetDataTypeFromShorty(invoke, value_index); |
| DCHECK_EQ(type, invoke->GetType()); |
| Location value_loc = locations->InAt(value_index); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| GenerateVarHandleCommonChecks(invoke, temp, slow_path, assembler); |
| |
| Register offset = locations->GetTemp(1).AsRegister<Register>(); |
| // Get the field referred by the VarHandle. The returned register contains the object reference |
| // or the declaring class. The field offset will be placed in 'offset'. For static fields, the |
| // declaring class will be placed in 'temp' register. |
| Register reference = GenerateVarHandleFieldReference(invoke, codegen, temp, offset); |
| |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| temp = (expected_coordinates_count == 1u) ? temp : locations->GetTemp(2).AsRegister<Register>(); |
| DCHECK_NE(temp, reference); |
| Address field_addr(reference, offset, TIMES_1, 0); |
| |
| switch (type) { |
| case DataType::Type::kInt8: |
| __ LockXaddb(field_addr, value_loc.AsRegister<ByteRegister>()); |
| __ movsxb(locations->Out().AsRegister<Register>(), |
| locations->Out().AsRegister<ByteRegister>()); |
| break; |
| case DataType::Type::kInt16: |
| __ LockXaddw(field_addr, value_loc.AsRegister<Register>()); |
| __ movsxw(locations->Out().AsRegister<Register>(), locations->Out().AsRegister<Register>()); |
| break; |
| case DataType::Type::kUint16: |
| __ LockXaddw(field_addr, value_loc.AsRegister<Register>()); |
| __ movzxw(locations->Out().AsRegister<Register>(), locations->Out().AsRegister<Register>()); |
| break; |
| case DataType::Type::kInt32: |
| __ LockXaddl(field_addr, value_loc.AsRegister<Register>()); |
| break; |
| case DataType::Type::kFloat32: { |
| Location temp_float = |
| (expected_coordinates_count == 1u) ? locations->GetTemp(2) : locations->GetTemp(3); |
| DCHECK(temp_float.IsFpuRegister()); |
| Location eax = Location::RegisterLocation(EAX); |
| NearLabel try_again; |
| __ Bind(&try_again); |
| __ movss(temp_float.AsFpuRegister<XmmRegister>(), field_addr); |
| __ movd(EAX, temp_float.AsFpuRegister<XmmRegister>()); |
| __ addss(temp_float.AsFpuRegister<XmmRegister>(), |
| value_loc.AsFpuRegister<XmmRegister>()); |
| GenPrimitiveLockedCmpxchg(type, |
| codegen, |
| /* expected_value= */ eax, |
| /* new_value= */ temp_float, |
| reference, |
| offset, |
| temp); |
| __ j(kNotZero, &try_again); |
| |
| // The old value is present in EAX. |
| codegen->Move32(locations->Out(), eax); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndAdd(HInvoke* invoke) { |
| CreateVarHandleGetAndAddLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndAdd(HInvoke* invoke) { |
| GenerateVarHandleGetAndAdd(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndAddLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndAdd(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndAddLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndAdd(invoke, codegen_); |
| } |
| |
| static void CreateVarHandleGetAndBitwiseOpLocations(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| // The last argument should be the value we intend to set. |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| if (DataType::Is64BitType(GetDataTypeFromShorty(invoke, value_index))) { |
| // We avoid the case of an Int64 value because we would need to place it in a register pair. |
| // If the slow path is taken, the ParallelMove might fail to move the pair according to the |
| // X86DexCallingConvention in case of an overlap (e.g., move the 64 bit value from |
| // <EAX, EBX> to <EBX, ECX>). (Bug: b/168687887) |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary( |
| invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // We need a byte register temp to store the result of the bitwise operation |
| locations->AddTemp(Location::RegisterLocation(EBX)); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count == 1u) { |
| // For instance fields, this is the source object |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else { |
| // For static fields, we need another temp because one will be busy with the declaring class. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| locations->SetInAt(value_index, Location::RegisterOrConstant(invoke->InputAt(value_index))); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } |
| |
| static void GenerateBitwiseOp(HInvoke* invoke, |
| CodeGeneratorX86* codegen, |
| Register left, |
| Register right) { |
| X86Assembler* assembler = codegen->GetAssembler(); |
| |
| switch (invoke->GetIntrinsic()) { |
| case Intrinsics::kVarHandleGetAndBitwiseOr: |
| case Intrinsics::kVarHandleGetAndBitwiseOrAcquire: |
| case Intrinsics::kVarHandleGetAndBitwiseOrRelease: |
| __ orl(left, right); |
| break; |
| case Intrinsics::kVarHandleGetAndBitwiseXor: |
| case Intrinsics::kVarHandleGetAndBitwiseXorAcquire: |
| case Intrinsics::kVarHandleGetAndBitwiseXorRelease: |
| __ xorl(left, right); |
| break; |
| case Intrinsics::kVarHandleGetAndBitwiseAnd: |
| case Intrinsics::kVarHandleGetAndBitwiseAndAcquire: |
| case Intrinsics::kVarHandleGetAndBitwiseAndRelease: |
| __ andl(left, right); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| static void GenerateVarHandleGetAndBitwiseOp(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| // The only read barrier implementation supporting the |
| // VarHandleGet intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| DataType::Type type = GetDataTypeFromShorty(invoke, value_index); |
| DCHECK_EQ(type, invoke->GetType()); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| GenerateVarHandleCommonChecks(invoke, temp, slow_path, assembler); |
| |
| Register offset = locations->GetTemp(1).AsRegister<Register>(); |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| // For static field, we need another temporary because the first one contains the declaring class |
| Register reference = |
| (expected_coordinates_count == 1u) ? temp : locations->GetTemp(2).AsRegister<Register>(); |
| // Get the field referred by the VarHandle. The returned register contains the object reference |
| // or the declaring class. The field offset will be placed in 'offset'. For static fields, the |
| // declaring class will be placed in 'reference' register. |
| reference = GenerateVarHandleFieldReference(invoke, codegen, reference, offset); |
| DCHECK_NE(temp, reference); |
| Address field_addr(reference, offset, TIMES_1, 0); |
| |
| Register out = locations->Out().AsRegister<Register>(); |
| DCHECK_EQ(out, EAX); |
| |
| if (invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAndBitwiseOrRelease || |
| invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAndBitwiseXorRelease || |
| invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAndBitwiseAndRelease) { |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| NearLabel try_again; |
| __ Bind(&try_again); |
| // Place the expected value in EAX for cmpxchg |
| codegen->LoadFromMemoryNoBarrier(type, locations->Out(), field_addr); |
| codegen->Move32(locations->GetTemp(0), locations->InAt(value_index)); |
| GenerateBitwiseOp(invoke, codegen, temp, out); |
| GenPrimitiveLockedCmpxchg(type, |
| codegen, |
| /* expected_value= */ locations->Out(), |
| /* new_value= */ locations->GetTemp(0), |
| reference, |
| offset); |
| // If the cmpxchg failed, another thread changed the value so try again. |
| __ j(kNotZero, &try_again); |
| |
| // The old value is present in EAX. |
| |
| if (invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAndBitwiseOrAcquire || |
| invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAndBitwiseXorAcquire || |
| invoke->GetIntrinsic() == Intrinsics::kVarHandleGetAndBitwiseAndAcquire) { |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { |
| GenerateVarHandleGetAndBitwiseOp(invoke, codegen_); |
| } |
| |
| static void GenerateMathFma(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| DCHECK(DataType::IsFloatingPointType(invoke->GetType())); |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(locations->InAt(0).Equals(locations->Out())); |
| X86Assembler* assembler = codegen->GetAssembler(); |
| XmmRegister left = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister right = locations->InAt(1).AsFpuRegister<XmmRegister>(); |
| XmmRegister accumulator = locations->InAt(2).AsFpuRegister<XmmRegister>(); |
| if (invoke->GetType() == DataType::Type::kFloat32) { |
| __ vfmadd213ss(left, right, accumulator); |
| } else { |
| DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); |
| __ vfmadd213sd(left, right, accumulator); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathFmaDouble(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2()); |
| GenerateMathFma(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathFmaDouble(HInvoke* invoke) { |
| if (codegen_->GetInstructionSetFeatures().HasAVX2()) { |
| CreateFPFPFPToFPCallLocations(allocator_, invoke); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86::VisitMathFmaFloat(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2()); |
| GenerateMathFma(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86::VisitMathFmaFloat(HInvoke* invoke) { |
| if (codegen_->GetInstructionSetFeatures().HasAVX2()) { |
| CreateFPFPFPToFPCallLocations(allocator_, invoke); |
| } |
| } |
| |
| #define MARK_UNIMPLEMENTED(Name) UNIMPLEMENTED_INTRINSIC(X86, Name) |
| UNIMPLEMENTED_INTRINSIC_LIST_X86(MARK_UNIMPLEMENTED); |
| #undef MARK_UNIMPLEMENTED |
| |
| UNREACHABLE_INTRINSICS(X86) |
| |
| #undef __ |
| |
| } // namespace x86 |
| } // namespace art |