| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_x86.h" |
| |
| #include "arch/x86/jni_frame_x86.h" |
| #include "art_method-inl.h" |
| #include "class_table.h" |
| #include "code_generator_utils.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "gc/accounting/card_table.h" |
| #include "gc/space/image_space.h" |
| #include "heap_poisoning.h" |
| #include "interpreter/mterp/nterp.h" |
| #include "intrinsics.h" |
| #include "intrinsics_utils.h" |
| #include "intrinsics_x86.h" |
| #include "jit/profiling_info.h" |
| #include "linker/linker_patch.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/var_handle.h" |
| #include "optimizing/nodes.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| #include "utils/x86/assembler_x86.h" |
| #include "utils/x86/managed_register_x86.h" |
| |
| namespace art HIDDEN { |
| |
| template<class MirrorType> |
| class GcRoot; |
| |
| namespace x86 { |
| |
| static constexpr int kCurrentMethodStackOffset = 0; |
| static constexpr Register kMethodRegisterArgument = EAX; |
| static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI }; |
| |
| static constexpr int kC2ConditionMask = 0x400; |
| |
| static constexpr int kFakeReturnRegister = Register(8); |
| |
| static constexpr int64_t kDoubleNaN = INT64_C(0x7FF8000000000000); |
| static constexpr int32_t kFloatNaN = INT32_C(0x7FC00000); |
| |
| static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK() |
| // that the the kPrimNot result register is the same as the first argument register. |
| return caller_saves; |
| } |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86PointerSize, x).Int32Value() |
| |
| class NullCheckSlowPathX86 : public SlowPathCode { |
| public: |
| explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| x86_codegen->InvokeRuntime(kQuickThrowNullPointer, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "NullCheckSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86); |
| }; |
| |
| class DivZeroCheckSlowPathX86 : public SlowPathCode { |
| public: |
| explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| x86_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "DivZeroCheckSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86); |
| }; |
| |
| class DivRemMinusOneSlowPathX86 : public SlowPathCode { |
| public: |
| DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div) |
| : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| __ Bind(GetEntryLabel()); |
| if (is_div_) { |
| __ negl(reg_); |
| } else { |
| __ movl(reg_, Immediate(0)); |
| } |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "DivRemMinusOneSlowPathX86"; } |
| |
| private: |
| Register reg_; |
| bool is_div_; |
| DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86); |
| }; |
| |
| class BoundsCheckSlowPathX86 : public SlowPathCode { |
| public: |
| explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| InvokeRuntimeCallingConvention calling_convention; |
| Location index_arg = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| Location length_arg = Location::RegisterLocation(calling_convention.GetRegisterAt(1)); |
| |
| // Are we using an array length from memory? |
| if (!length_loc.IsValid()) { |
| DCHECK(instruction_->InputAt(1)->IsArrayLength()); |
| HArrayLength* array_length = instruction_->InputAt(1)->AsArrayLength(); |
| DCHECK(array_length->IsEmittedAtUseSite()); |
| uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length); |
| Location array_loc = array_length->GetLocations()->InAt(0); |
| if (!index_loc.Equals(length_arg)) { |
| // The index is not clobbered by loading the length directly to `length_arg`. |
| __ movl(length_arg.AsRegister<Register>(), |
| Address(array_loc.AsRegister<Register>(), len_offset)); |
| x86_codegen->Move32(index_arg, index_loc); |
| } else if (!array_loc.Equals(index_arg)) { |
| // The array reference is not clobbered by the index move. |
| x86_codegen->Move32(index_arg, index_loc); |
| __ movl(length_arg.AsRegister<Register>(), |
| Address(array_loc.AsRegister<Register>(), len_offset)); |
| } else { |
| // We do not have a temporary we could use, so swap the registers using the |
| // parallel move resolver and replace the array with the length afterwards. |
| codegen->EmitParallelMoves( |
| index_loc, |
| index_arg, |
| DataType::Type::kInt32, |
| array_loc, |
| length_arg, |
| DataType::Type::kReference); |
| __ movl(length_arg.AsRegister<Register>(), |
| Address(length_arg.AsRegister<Register>(), len_offset)); |
| } |
| if (mirror::kUseStringCompression && array_length->IsStringLength()) { |
| __ shrl(length_arg.AsRegister<Register>(), Immediate(1)); |
| } |
| } else { |
| // We're moving two locations to locations that could overlap, |
| // so we need a parallel move resolver. |
| codegen->EmitParallelMoves( |
| index_loc, |
| index_arg, |
| DataType::Type::kInt32, |
| length_loc, |
| length_arg, |
| DataType::Type::kInt32); |
| } |
| |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? kQuickThrowStringBounds |
| : kQuickThrowArrayBounds; |
| x86_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "BoundsCheckSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86); |
| }; |
| |
| class SuspendCheckSlowPathX86 : public SlowPathCode { |
| public: |
| SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCode(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); // Only saves full width XMM for SIMD. |
| x86_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| RestoreLiveRegisters(codegen, locations); // Only restores full width XMM for SIMD. |
| if (successor_ == nullptr) { |
| __ jmp(GetReturnLabel()); |
| } else { |
| __ jmp(x86_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const override { return "SuspendCheckSlowPathX86"; } |
| |
| private: |
| HBasicBlock* const successor_; |
| Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86); |
| }; |
| |
| class LoadStringSlowPathX86 : public SlowPathCode { |
| public: |
| explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index.index_)); |
| x86_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "LoadStringSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86); |
| }; |
| |
| class LoadClassSlowPathX86 : public SlowPathCode { |
| public: |
| LoadClassSlowPathX86(HLoadClass* cls, HInstruction* at) |
| : SlowPathCode(at), cls_(cls) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location out = locations->Out(); |
| const uint32_t dex_pc = instruction_->GetDexPc(); |
| bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); |
| bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| if (must_resolve_type) { |
| DCHECK(IsSameDexFile(cls_->GetDexFile(), x86_codegen->GetGraph()->GetDexFile()) || |
| x86_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) || |
| ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(), |
| &cls_->GetDexFile())); |
| dex::TypeIndex type_index = cls_->GetTypeIndex(); |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(type_index.index_)); |
| if (cls_->NeedsAccessCheck()) { |
| CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>(); |
| x86_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this); |
| } else { |
| CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>(); |
| x86_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); |
| } |
| // If we also must_do_clinit, the resolved type is now in the correct register. |
| } else { |
| DCHECK(must_do_clinit); |
| Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); |
| x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), source); |
| } |
| if (must_do_clinit) { |
| x86_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>(); |
| } |
| |
| // Move the class to the desired location. |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| x86_codegen->Move32(out, Location::RegisterLocation(EAX)); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "LoadClassSlowPathX86"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86); |
| }; |
| |
| class TypeCheckSlowPathX86 : public SlowPathCode { |
| public: |
| TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal) |
| : SlowPathCode(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| |
| if (kPoisonHeapReferences && |
| instruction_->IsCheckCast() && |
| instruction_->AsCheckCast()->GetTypeCheckKind() == TypeCheckKind::kInterfaceCheck) { |
| // First, unpoison the `cls` reference that was poisoned for direct memory comparison. |
| __ UnpoisonHeapReference(locations->InAt(1).AsRegister<Register>()); |
| } |
| |
| if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| x86_codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kReference); |
| if (instruction_->IsInstanceOf()) { |
| x86_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| x86_codegen->InvokeRuntime(kQuickCheckInstanceOf, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| if (instruction_->IsInstanceOf()) { |
| x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ jmp(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const override { return "TypeCheckSlowPathX86"; } |
| bool IsFatal() const override { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86); |
| }; |
| |
| class DeoptimizationSlowPathX86 : public SlowPathCode { |
| public: |
| explicit DeoptimizationSlowPathX86(HDeoptimize* instruction) |
| : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| SaveLiveRegisters(codegen, locations); |
| InvokeRuntimeCallingConvention calling_convention; |
| x86_codegen->Load32BitValue( |
| calling_convention.GetRegisterAt(0), |
| static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); |
| x86_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); |
| } |
| |
| const char* GetDescription() const override { return "DeoptimizationSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86); |
| }; |
| |
| class ArraySetSlowPathX86 : public SlowPathCode { |
| public: |
| explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kReference, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| x86_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ArraySetSlowPathX86"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read |
| // barrier. The field `obj.field` in the object `obj` holding this |
| // reference does not get updated by this slow path after marking (see |
| // ReadBarrierMarkAndUpdateFieldSlowPathX86 below for that). |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| class ReadBarrierMarkSlowPathX86 : public SlowPathCode { |
| public: |
| ReadBarrierMarkSlowPathX86(HInstruction* instruction, |
| Location ref, |
| bool unpoison_ref_before_marking) |
| : SlowPathCode(instruction), |
| ref_(ref), |
| unpoison_ref_before_marking_(unpoison_ref_before_marking) { |
| DCHECK(gUseReadBarrier); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierMarkSlowPathX86"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register ref_reg = ref_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsPredicatedInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsArraySet() || |
| instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| if (unpoison_ref_before_marking_) { |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| } |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| DCHECK_NE(ref_reg, ESP); |
| DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in EAX): |
| // |
| // EAX <- ref |
| // EAX <- ReadBarrierMark(EAX) |
| // ref <- EAX |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg); |
| // This runtime call does not require a stack map. |
| x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| __ jmp(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| // Should the reference in `ref_` be unpoisoned prior to marking it? |
| const bool unpoison_ref_before_marking_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read barrier, |
| // and if needed, atomically updating the field `obj.field` in the |
| // object `obj` holding this reference after marking (contrary to |
| // ReadBarrierMarkSlowPathX86 above, which never tries to update |
| // `obj.field`). |
| // |
| // This means that after the execution of this slow path, both `ref` |
| // and `obj.field` will be up-to-date; i.e., after the flip, both will |
| // hold the same to-space reference (unless another thread installed |
| // another object reference (different from `ref`) in `obj.field`). |
| class ReadBarrierMarkAndUpdateFieldSlowPathX86 : public SlowPathCode { |
| public: |
| ReadBarrierMarkAndUpdateFieldSlowPathX86(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| const Address& field_addr, |
| bool unpoison_ref_before_marking, |
| Register temp) |
| : SlowPathCode(instruction), |
| ref_(ref), |
| obj_(obj), |
| field_addr_(field_addr), |
| unpoison_ref_before_marking_(unpoison_ref_before_marking), |
| temp_(temp) { |
| DCHECK(gUseReadBarrier); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierMarkAndUpdateFieldSlowPathX86"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register ref_reg = ref_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| DCHECK((instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking and field updating slow path: " |
| << instruction_->DebugName(); |
| HInvoke* invoke = instruction_->AsInvoke(); |
| DCHECK(IsUnsafeCASObject(invoke) || IsVarHandleCASFamily(invoke)) << invoke->GetIntrinsic(); |
| |
| __ Bind(GetEntryLabel()); |
| if (unpoison_ref_before_marking_) { |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| } |
| |
| // Save the old (unpoisoned) reference. |
| __ movl(temp_, ref_reg); |
| |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| DCHECK_NE(ref_reg, ESP); |
| DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in EAX): |
| // |
| // EAX <- ref |
| // EAX <- ReadBarrierMark(EAX) |
| // ref <- EAX |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg); |
| // This runtime call does not require a stack map. |
| x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| |
| // If the new reference is different from the old reference, |
| // update the field in the holder (`*field_addr`). |
| // |
| // Note that this field could also hold a different object, if |
| // another thread had concurrently changed it. In that case, the |
| // LOCK CMPXCHGL instruction in the compare-and-set (CAS) |
| // operation below would abort the CAS, leaving the field as-is. |
| NearLabel done; |
| __ cmpl(temp_, ref_reg); |
| __ j(kEqual, &done); |
| |
| // Update the the holder's field atomically. This may fail if |
| // mutator updates before us, but it's OK. This is achieved |
| // using a strong compare-and-set (CAS) operation with relaxed |
| // memory synchronization ordering, where the expected value is |
| // the old reference and the desired value is the new reference. |
| // This operation is implemented with a 32-bit LOCK CMPXLCHG |
| // instruction, which requires the expected value (the old |
| // reference) to be in EAX. Save EAX beforehand, and move the |
| // expected value (stored in `temp_`) into EAX. |
| __ pushl(EAX); |
| __ movl(EAX, temp_); |
| |
| // Convenience aliases. |
| Register base = obj_; |
| Register expected = EAX; |
| Register value = ref_reg; |
| |
| bool base_equals_value = (base == value); |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // If `base` and `value` are the same register location, move |
| // `value` to a temporary register. This way, poisoning |
| // `value` won't invalidate `base`. |
| value = temp_; |
| __ movl(value, base); |
| } |
| |
| // Check that the register allocator did not assign the location |
| // of `expected` (EAX) to `value` nor to `base`, so that heap |
| // poisoning (when enabled) works as intended below. |
| // - If `value` were equal to `expected`, both references would |
| // be poisoned twice, meaning they would not be poisoned at |
| // all, as heap poisoning uses address negation. |
| // - If `base` were equal to `expected`, poisoning `expected` |
| // would invalidate `base`. |
| DCHECK_NE(value, expected); |
| DCHECK_NE(base, expected); |
| |
| __ PoisonHeapReference(expected); |
| __ PoisonHeapReference(value); |
| } |
| |
| __ LockCmpxchgl(field_addr_, value); |
| |
| // If heap poisoning is enabled, we need to unpoison the values |
| // that were poisoned earlier. |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // `value` has been moved to a temporary register, no need |
| // to unpoison it. |
| } else { |
| __ UnpoisonHeapReference(value); |
| } |
| // No need to unpoison `expected` (EAX), as it is be overwritten below. |
| } |
| |
| // Restore EAX. |
| __ popl(EAX); |
| |
| __ Bind(&done); |
| __ jmp(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| // The register containing the object holding the marked object reference field. |
| const Register obj_; |
| // The address of the marked reference field. The base of this address must be `obj_`. |
| const Address field_addr_; |
| |
| // Should the reference in `ref_` be unpoisoned prior to marking it? |
| const bool unpoison_ref_before_marking_; |
| |
| const Register temp_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathX86); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode { |
| public: |
| ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCode(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(gUseReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ movl(out, Address(out, offset)); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg_out = out_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsPredicatedInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| Register index_reg = index_.AsRegister<Register>(); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); |
| if (codegen->IsCoreCalleeSaveRegister(index_reg)) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to art::x86::X86Assembler::shll and |
| // art::x86::X86Assembler::AddImmediate below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| Register free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ movl(free_reg, index_reg); |
| index_reg = free_reg; |
| index = Location::RegisterLocation(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ shll(index_reg, Immediate(TIMES_4)); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ AddImmediate(index_reg, Immediate(offset_)); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kJdkUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kJdkUnsafeGetObjectVolatile) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kJdkUnsafeGetObjectAcquire)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0U); |
| DCHECK(index_.IsRegisterPair()); |
| // UnsafeGet's offset location is a register pair, the low |
| // part contains the correct offset. |
| index = index_.ToLow(); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove(ref_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kReference, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kInt32, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_)); |
| } |
| x86_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathX86"; } |
| |
| private: |
| Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(ref_.AsRegister<Register>()); |
| size_t obj = static_cast<int>(obj_.AsRegister<Register>()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { |
| return static_cast<Register>(i); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on x86 |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free caller-save register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathX86 : public SlowPathCode { |
| public: |
| ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root) |
| : SlowPathCode(instruction), out_(out), root_(root) { |
| DCHECK(gUseReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg_out = out_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); |
| x86_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierForRootSlowPathX86"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86); |
| }; |
| |
| class MethodEntryExitHooksSlowPathX86 : public SlowPathCode { |
| public: |
| explicit MethodEntryExitHooksSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| QuickEntrypointEnum entry_point = |
| (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook; |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| if (instruction_->IsMethodExitHook()) { |
| __ movl(EBX, Immediate(codegen->GetFrameSize())); |
| } |
| x86_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this); |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { |
| return "MethodEntryExitHooksSlowPath"; |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathX86); |
| }; |
| |
| class CompileOptimizedSlowPathX86 : public SlowPathCode { |
| public: |
| CompileOptimizedSlowPathX86() : SlowPathCode(/* instruction= */ nullptr) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); |
| __ Bind(GetEntryLabel()); |
| x86_codegen->GenerateInvokeRuntime( |
| GetThreadOffset<kX86PointerSize>(kQuickCompileOptimized).Int32Value()); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { |
| return "CompileOptimizedSlowPath"; |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathX86); |
| }; |
| |
| #undef __ |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<X86Assembler*>(GetAssembler())-> // NOLINT |
| |
| inline Condition X86Condition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return kEqual; |
| case kCondNE: return kNotEqual; |
| case kCondLT: return kLess; |
| case kCondLE: return kLessEqual; |
| case kCondGT: return kGreater; |
| case kCondGE: return kGreaterEqual; |
| case kCondB: return kBelow; |
| case kCondBE: return kBelowEqual; |
| case kCondA: return kAbove; |
| case kCondAE: return kAboveEqual; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| // Maps signed condition to unsigned condition and FP condition to x86 name. |
| inline Condition X86UnsignedOrFPCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return kEqual; |
| case kCondNE: return kNotEqual; |
| // Signed to unsigned, and FP to x86 name. |
| case kCondLT: return kBelow; |
| case kCondLE: return kBelowEqual; |
| case kCondGT: return kAbove; |
| case kCondGE: return kAboveEqual; |
| // Unsigned remain unchanged. |
| case kCondB: return kBelow; |
| case kCondBE: return kBelowEqual; |
| case kCondA: return kAbove; |
| case kCondAE: return kAboveEqual; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << Register(reg); |
| } |
| |
| void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << XmmRegister(reg); |
| } |
| |
| const X86InstructionSetFeatures& CodeGeneratorX86::GetInstructionSetFeatures() const { |
| return *GetCompilerOptions().GetInstructionSetFeatures()->AsX86InstructionSetFeatures(); |
| } |
| |
| size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id)); |
| return kX86WordSize; |
| } |
| |
| size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index)); |
| return kX86WordSize; |
| } |
| |
| size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| if (GetGraph()->HasSIMD()) { |
| __ movups(Address(ESP, stack_index), XmmRegister(reg_id)); |
| } else { |
| __ movsd(Address(ESP, stack_index), XmmRegister(reg_id)); |
| } |
| return GetSlowPathFPWidth(); |
| } |
| |
| size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| if (GetGraph()->HasSIMD()) { |
| __ movups(XmmRegister(reg_id), Address(ESP, stack_index)); |
| } else { |
| __ movsd(XmmRegister(reg_id), Address(ESP, stack_index)); |
| } |
| return GetSlowPathFPWidth(); |
| } |
| |
| void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| GenerateInvokeRuntime(GetThreadOffset<kX86PointerSize>(entrypoint).Int32Value()); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| |
| void CodeGeneratorX86::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| GenerateInvokeRuntime(entry_point_offset); |
| } |
| |
| void CodeGeneratorX86::GenerateInvokeRuntime(int32_t entry_point_offset) { |
| __ fs()->call(Address::Absolute(entry_point_offset)); |
| } |
| |
| namespace detail { |
| // Mark which intrinsics we don't have handcrafted code for. |
| template <Intrinsics T> |
| struct IsUnimplemented { |
| bool is_unimplemented = false; |
| }; |
| |
| #define TRUE_OVERRIDE(Name) \ |
| template <> \ |
| struct IsUnimplemented<Intrinsics::k##Name> { \ |
| bool is_unimplemented = true; \ |
| }; |
| UNIMPLEMENTED_INTRINSIC_LIST_X86(TRUE_OVERRIDE) |
| #undef TRUE_OVERRIDE |
| |
| #include "intrinsics_list.h" |
| static constexpr bool kIsIntrinsicUnimplemented[] = { |
| false, // kNone |
| #define IS_UNIMPLEMENTED(Intrinsic, ...) \ |
| IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented, |
| INTRINSICS_LIST(IS_UNIMPLEMENTED) |
| #undef IS_UNIMPLEMENTED |
| }; |
| #undef INTRINSICS_LIST |
| |
| } // namespace detail |
| |
| CodeGeneratorX86::CodeGeneratorX86(HGraph* graph, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfCpuRegisters, |
| kNumberOfXmmRegisters, |
| kNumberOfRegisterPairs, |
| ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), |
| arraysize(kCoreCalleeSaves)) |
| | (1 << kFakeReturnRegister), |
| 0, |
| compiler_options, |
| stats, |
| ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)), |
| block_labels_(nullptr), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetAllocator(), this), |
| assembler_(graph->GetAllocator(), |
| compiler_options.GetInstructionSetFeatures()->AsX86InstructionSetFeatures()), |
| boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| constant_area_start_(-1), |
| fixups_to_jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| method_address_offset_(std::less<uint32_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) { |
| // Use a fake return address register to mimic Quick. |
| AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister)); |
| } |
| |
| void CodeGeneratorX86::SetupBlockedRegisters() const { |
| // Stack register is always reserved. |
| blocked_core_registers_[ESP] = true; |
| } |
| |
| InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| static dwarf::Reg DWARFReg(Register reg) { |
| return dwarf::Reg::X86Core(static_cast<int>(reg)); |
| } |
| |
| void SetInForReturnValue(HInstruction* ret, LocationSummary* locations) { |
| switch (ret->InputAt(0)->GetType()) { |
| case DataType::Type::kReference: |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| break; |
| |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::FpuRegisterLocation(XMM0)); |
| break; |
| |
| case DataType::Type::kVoid: |
| locations->SetInAt(0, Location::NoLocation()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitMethodExitHook(HMethodExitHook* method_hook) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(method_hook, LocationSummary::kCallOnSlowPath); |
| SetInForReturnValue(method_hook, locations); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateMethodEntryExitHook(HInstruction* instruction) { |
| SlowPathCode* slow_path = |
| new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| if (instruction->IsMethodExitHook()) { |
| // Check if we are required to check if the caller needs a deoptimization. Strictly speaking it |
| // would be sufficient to check if CheckCallerForDeopt bit is set. Though it is faster to check |
| // if it is just non-zero. kCHA bit isn't used in debuggable runtimes as cha optimization is |
| // disabled in debuggable runtime. The other bit is used when this method itself requires a |
| // deoptimization due to redefinition. So it is safe to just check for non-zero value here. |
| __ cmpl(Address(ESP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()), Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| |
| uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation()); |
| MemberOffset offset = instruction->IsMethodExitHook() ? |
| instrumentation::Instrumentation::HaveMethodExitListenersOffset() : |
| instrumentation::Instrumentation::HaveMethodEntryListenersOffset(); |
| __ cmpb(Address::Absolute(address + offset.Int32Value()), Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMethodExitHook(HMethodExitHook* instruction) { |
| DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable()); |
| DCHECK(codegen_->RequiresCurrentMethod()); |
| GenerateMethodEntryExitHook(instruction); |
| } |
| |
| void LocationsBuilderX86::VisitMethodEntryHook(HMethodEntryHook* method_hook) { |
| new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMethodEntryHook(HMethodEntryHook* instruction) { |
| DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable()); |
| DCHECK(codegen_->RequiresCurrentMethod()); |
| GenerateMethodEntryExitHook(instruction); |
| } |
| |
| void CodeGeneratorX86::MaybeIncrementHotness(bool is_frame_entry) { |
| if (GetCompilerOptions().CountHotnessInCompiledCode()) { |
| Register reg = EAX; |
| if (is_frame_entry) { |
| reg = kMethodRegisterArgument; |
| } else { |
| __ pushl(EAX); |
| __ cfi().AdjustCFAOffset(4); |
| __ movl(EAX, Address(ESP, kX86WordSize)); |
| } |
| NearLabel overflow; |
| __ cmpw(Address(reg, ArtMethod::HotnessCountOffset().Int32Value()), |
| Immediate(interpreter::kNterpHotnessValue)); |
| __ j(kEqual, &overflow); |
| __ addw(Address(reg, ArtMethod::HotnessCountOffset().Int32Value()), Immediate(-1)); |
| __ Bind(&overflow); |
| if (!is_frame_entry) { |
| __ popl(EAX); |
| __ cfi().AdjustCFAOffset(-4); |
| } |
| } |
| |
| if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { |
| SlowPathCode* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathX86(); |
| AddSlowPath(slow_path); |
| ProfilingInfo* info = GetGraph()->GetProfilingInfo(); |
| DCHECK(info != nullptr); |
| uint32_t address = reinterpret_cast32<uint32_t>(info) + |
| ProfilingInfo::BaselineHotnessCountOffset().Int32Value(); |
| DCHECK(!HasEmptyFrame()); |
| // With multiple threads, this can overflow. This is OK, we will eventually get to see |
| // it reaching 0. Also, at this point we have no register available to look |
| // at the counter directly. |
| __ addw(Address::Absolute(address), Immediate(-1)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void CodeGeneratorX86::GenerateFrameEntry() { |
| __ cfi().SetCurrentCFAOffset(kX86WordSize); // return address |
| |
| // Check if we need to generate the clinit check. We will jump to the |
| // resolution stub if the class is not initialized and the executing thread is |
| // not the thread initializing it. |
| // We do this before constructing the frame to get the correct stack trace if |
| // an exception is thrown. |
| if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) { |
| NearLabel continue_execution, resolution; |
| // We'll use EBP as temporary. |
| __ pushl(EBP); |
| // Check if we're visibly initialized. |
| |
| // We don't emit a read barrier here to save on code size. We rely on the |
| // resolution trampoline to do a suspend check before re-entering this code. |
| __ movl(EBP, Address(kMethodRegisterArgument, ArtMethod::DeclaringClassOffset().Int32Value())); |
| __ cmpb(Address(EBP, status_byte_offset), Immediate(shifted_visibly_initialized_value)); |
| __ j(kAboveEqual, &continue_execution); |
| |
| // Check if we're initializing and the thread initializing is the one |
| // executing the code. |
| __ cmpb(Address(EBP, status_byte_offset), Immediate(shifted_initializing_value)); |
| __ j(kBelow, &resolution); |
| |
| __ movl(EBP, Address(EBP, mirror::Class::ClinitThreadIdOffset().Int32Value())); |
| __ fs()->cmpl(EBP, Address::Absolute(Thread::TidOffset<kX86PointerSize>().Int32Value())); |
| __ j(kEqual, &continue_execution); |
| __ Bind(&resolution); |
| |
| __ popl(EBP); |
| // Jump to the resolution stub. |
| ThreadOffset32 entrypoint_offset = |
| GetThreadOffset<kX86PointerSize>(kQuickQuickResolutionTrampoline); |
| __ fs()->jmp(Address::Absolute(entrypoint_offset)); |
| |
| __ Bind(&continue_execution); |
| __ popl(EBP); |
| } |
| |
| __ Bind(&frame_entry_label_); |
| bool skip_overflow_check = |
| IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| |
| if (!skip_overflow_check) { |
| size_t reserved_bytes = GetStackOverflowReservedBytes(InstructionSet::kX86); |
| __ testl(EAX, Address(ESP, -static_cast<int32_t>(reserved_bytes))); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| if (!HasEmptyFrame()) { |
| for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { |
| Register reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| __ pushl(reg); |
| __ cfi().AdjustCFAOffset(kX86WordSize); |
| __ cfi().RelOffset(DWARFReg(reg), 0); |
| } |
| } |
| |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| IncreaseFrame(adjust); |
| // Save the current method if we need it. Note that we do not |
| // do this in HCurrentMethod, as the instruction might have been removed |
| // in the SSA graph. |
| if (RequiresCurrentMethod()) { |
| __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument); |
| } |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| // Initialize should_deoptimize flag to 0. |
| __ movl(Address(ESP, GetStackOffsetOfShouldDeoptimizeFlag()), Immediate(0)); |
| } |
| } |
| |
| MaybeIncrementHotness(/* is_frame_entry= */ true); |
| } |
| |
| void CodeGeneratorX86::GenerateFrameExit() { |
| __ cfi().RememberState(); |
| if (!HasEmptyFrame()) { |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| DecreaseFrame(adjust); |
| |
| for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { |
| Register reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| __ popl(reg); |
| __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize)); |
| __ cfi().Restore(DWARFReg(reg)); |
| } |
| } |
| } |
| __ ret(); |
| __ cfi().RestoreState(); |
| __ cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorX86::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(DataType::Type type) const { |
| switch (type) { |
| case DataType::Type::kReference: |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kUint32: |
| case DataType::Type::kInt32: |
| return Location::RegisterLocation(EAX); |
| |
| case DataType::Type::kUint64: |
| case DataType::Type::kInt64: |
| return Location::RegisterPairLocation(EAX, EDX); |
| |
| case DataType::Type::kVoid: |
| return Location::NoLocation(); |
| |
| case DataType::Type::kFloat64: |
| case DataType::Type::kFloat32: |
| return Location::FpuRegisterLocation(XMM0); |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const { |
| return Location::RegisterLocation(kMethodRegisterArgument); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86::GetNextLocation(DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kReference: |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: { |
| uint32_t index = gp_index_++; |
| stack_index_++; |
| if (index < calling_convention.GetNumberOfRegisters()) { |
| return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); |
| } |
| } |
| |
| case DataType::Type::kInt64: { |
| uint32_t index = gp_index_; |
| gp_index_ += 2; |
| stack_index_ += 2; |
| if (index + 1 < calling_convention.GetNumberOfRegisters()) { |
| X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair( |
| calling_convention.GetRegisterPairAt(index)); |
| return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh()); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); |
| } |
| } |
| |
| case DataType::Type::kFloat32: { |
| uint32_t index = float_index_++; |
| stack_index_++; |
| if (index < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); |
| } |
| } |
| |
| case DataType::Type::kFloat64: { |
| uint32_t index = float_index_++; |
| stack_index_ += 2; |
| if (index < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); |
| } |
| } |
| |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| UNREACHABLE(); |
| } |
| return Location::NoLocation(); |
| } |
| |
| Location CriticalNativeCallingConventionVisitorX86::GetNextLocation(DataType::Type type) { |
| DCHECK_NE(type, DataType::Type::kReference); |
| |
| Location location; |
| if (DataType::Is64BitType(type)) { |
| location = Location::DoubleStackSlot(stack_offset_); |
| stack_offset_ += 2 * kFramePointerSize; |
| } else { |
| location = Location::StackSlot(stack_offset_); |
| stack_offset_ += kFramePointerSize; |
| } |
| if (for_register_allocation_) { |
| location = Location::Any(); |
| } |
| return location; |
| } |
| |
| Location CriticalNativeCallingConventionVisitorX86::GetReturnLocation(DataType::Type type) const { |
| // We perform conversion to the managed ABI return register after the call if needed. |
| InvokeDexCallingConventionVisitorX86 dex_calling_convention; |
| return dex_calling_convention.GetReturnLocation(type); |
| } |
| |
| Location CriticalNativeCallingConventionVisitorX86::GetMethodLocation() const { |
| // Pass the method in the hidden argument EAX. |
| return Location::RegisterLocation(EAX); |
| } |
| |
| void CodeGeneratorX86::Move32(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegister()) { |
| if (source.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| int32_t value = GetInt32ValueOf(source.GetConstant()); |
| __ movl(destination.AsRegister<Register>(), Immediate(value)); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsRegister()) { |
| __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| if (source.IsRegister()) { |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| int32_t value = GetInt32ValueOf(constant); |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); |
| } else { |
| DCHECK(source.IsStackSlot()); |
| __ pushl(Address(ESP, source.GetStackIndex())); |
| __ popl(Address(ESP, destination.GetStackIndex())); |
| } |
| } |
| } |
| |
| void CodeGeneratorX86::Move64(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegisterPair()) { |
| if (source.IsRegisterPair()) { |
| EmitParallelMoves( |
| Location::RegisterLocation(source.AsRegisterPairHigh<Register>()), |
| Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()), |
| DataType::Type::kInt32, |
| Location::RegisterLocation(source.AsRegisterPairLow<Register>()), |
| Location::RegisterLocation(destination.AsRegisterPairLow<Register>()), |
| DataType::Type::kInt32); |
| } else if (source.IsFpuRegister()) { |
| XmmRegister src_reg = source.AsFpuRegister<XmmRegister>(); |
| __ movd(destination.AsRegisterPairLow<Register>(), src_reg); |
| __ psrlq(src_reg, Immediate(32)); |
| __ movd(destination.AsRegisterPairHigh<Register>(), src_reg); |
| } else { |
| // No conflict possible, so just do the moves. |
| DCHECK(source.IsDoubleStackSlot()); |
| __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); |
| __ movl(destination.AsRegisterPairHigh<Register>(), |
| Address(ESP, source.GetHighStackIndex(kX86WordSize))); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsDoubleStackSlot()) { |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else if (source.IsRegisterPair()) { |
| size_t elem_size = DataType::Size(DataType::Type::kInt32); |
| // Push the 2 source registers to the stack. |
| __ pushl(source.AsRegisterPairHigh<Register>()); |
| __ cfi().AdjustCFAOffset(elem_size); |
| __ pushl(source.AsRegisterPairLow<Register>()); |
| __ cfi().AdjustCFAOffset(elem_size); |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| // And remove the temporary stack space we allocated. |
| DecreaseFrame(2 * elem_size); |
| } else { |
| LOG(FATAL) << "Unimplemented"; |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| if (source.IsRegisterPair()) { |
| // No conflict possible, so just do the moves. |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>()); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), |
| source.AsRegisterPairHigh<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| DCHECK(constant->IsLongConstant() || constant->IsDoubleConstant()); |
| int64_t value = GetInt64ValueOf(constant); |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value))); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), |
| Immediate(High32Bits(value))); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()) << source; |
| EmitParallelMoves( |
| Location::StackSlot(source.GetStackIndex()), |
| Location::StackSlot(destination.GetStackIndex()), |
| DataType::Type::kInt32, |
| Location::StackSlot(source.GetHighStackIndex(kX86WordSize)), |
| Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)), |
| DataType::Type::kInt32); |
| } |
| } |
| } |
| |
| static Address CreateAddress(Register base, |
| Register index = Register::kNoRegister, |
| ScaleFactor scale = TIMES_1, |
| int32_t disp = 0) { |
| if (index == Register::kNoRegister) { |
| return Address(base, disp); |
| } |
| |
| return Address(base, index, scale, disp); |
| } |
| |
| void CodeGeneratorX86::LoadFromMemoryNoBarrier(DataType::Type dst_type, |
| Location dst, |
| Address src, |
| HInstruction* instr, |
| XmmRegister temp, |
| bool is_atomic_load) { |
| switch (dst_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| __ movzxb(dst.AsRegister<Register>(), src); |
| break; |
| case DataType::Type::kInt8: |
| __ movsxb(dst.AsRegister<Register>(), src); |
| break; |
| case DataType::Type::kInt16: |
| __ movsxw(dst.AsRegister<Register>(), src); |
| break; |
| case DataType::Type::kUint16: |
| __ movzxw(dst.AsRegister<Register>(), src); |
| break; |
| case DataType::Type::kInt32: |
| __ movl(dst.AsRegister<Register>(), src); |
| break; |
| case DataType::Type::kInt64: { |
| if (is_atomic_load) { |
| __ movsd(temp, src); |
| if (instr != nullptr) { |
| MaybeRecordImplicitNullCheck(instr); |
| } |
| __ movd(dst.AsRegisterPairLow<Register>(), temp); |
| __ psrlq(temp, Immediate(32)); |
| __ movd(dst.AsRegisterPairHigh<Register>(), temp); |
| } else { |
| DCHECK_NE(src.GetBaseRegister(), dst.AsRegisterPairLow<Register>()); |
| Address src_high = Address::displace(src, kX86WordSize); |
| __ movl(dst.AsRegisterPairLow<Register>(), src); |
| if (instr != nullptr) { |
| MaybeRecordImplicitNullCheck(instr); |
| } |
| __ movl(dst.AsRegisterPairHigh<Register>(), src_high); |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: |
| __ movss(dst.AsFpuRegister<XmmRegister>(), src); |
| break; |
| case DataType::Type::kFloat64: |
| __ movsd(dst.AsFpuRegister<XmmRegister>(), src); |
| break; |
| case DataType::Type::kReference: |
| DCHECK(!gUseReadBarrier); |
| __ movl(dst.AsRegister<Register>(), src); |
| __ MaybeUnpoisonHeapReference(dst.AsRegister<Register>()); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable type " << dst_type; |
| } |
| if (instr != nullptr && dst_type != DataType::Type::kInt64) { |
| // kInt64 needs special handling that is done in the above switch. |
| MaybeRecordImplicitNullCheck(instr); |
| } |
| } |
| |
| void CodeGeneratorX86::MoveToMemory(DataType::Type src_type, |
| Location src, |
| Register dst_base, |
| Register dst_index, |
| ScaleFactor dst_scale, |
| int32_t dst_disp) { |
| DCHECK(dst_base != Register::kNoRegister); |
| Address dst = CreateAddress(dst_base, dst_index, dst_scale, dst_disp); |
| |
| switch (src_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: { |
| if (src.IsConstant()) { |
| __ movb(dst, Immediate(CodeGenerator::GetInt8ValueOf(src.GetConstant()))); |
| } else { |
| __ movb(dst, src.AsRegister<ByteRegister>()); |
| } |
| break; |
| } |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: { |
| if (src.IsConstant()) { |
| __ movw(dst, Immediate(CodeGenerator::GetInt16ValueOf(src.GetConstant()))); |
| } else { |
| __ movw(dst, src.AsRegister<Register>()); |
| } |
| break; |
| } |
| case DataType::Type::kUint32: |
| case DataType::Type::kInt32: { |
| if (src.IsConstant()) { |
| int32_t v = CodeGenerator::GetInt32ValueOf(src.GetConstant()); |
| __ movl(dst, Immediate(v)); |
| } else { |
| __ movl(dst, src.AsRegister<Register>()); |
| } |
| break; |
| } |
| case DataType::Type::kUint64: |
| case DataType::Type::kInt64: { |
| Address dst_next_4_bytes = CreateAddress(dst_base, dst_index, dst_scale, dst_disp + 4); |
| if (src.IsConstant()) { |
| int64_t v = CodeGenerator::GetInt64ValueOf(src.GetConstant()); |
| __ movl(dst, Immediate(Low32Bits(v))); |
| __ movl(dst_next_4_bytes, Immediate(High32Bits(v))); |
| } else { |
| __ movl(dst, src.AsRegisterPairLow<Register>()); |
| __ movl(dst_next_4_bytes, src.AsRegisterPairHigh<Register>()); |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: { |
| if (src.IsConstant()) { |
| int32_t v = CodeGenerator::GetInt32ValueOf(src.GetConstant()); |
| __ movl(dst, Immediate(v)); |
| } else { |
| __ movss(dst, src.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| case DataType::Type::kFloat64: { |
| Address dst_next_4_bytes = CreateAddress(dst_base, dst_index, dst_scale, dst_disp + 4); |
| if (src.IsConstant()) { |
| int64_t v = CodeGenerator::GetInt64ValueOf(src.GetConstant()); |
| __ movl(dst, Immediate(Low32Bits(v))); |
| __ movl(dst_next_4_bytes, Immediate(High32Bits(v))); |
| } else { |
| __ movsd(dst, src.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| case DataType::Type::kVoid: |
| case DataType::Type::kReference: |
| LOG(FATAL) << "Unreachable type " << src_type; |
| } |
| } |
| |
| void CodeGeneratorX86::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| __ movl(location.AsRegister<Register>(), Immediate(value)); |
| } |
| |
| void CodeGeneratorX86::MoveLocation(Location dst, Location src, DataType::Type dst_type) { |
| HParallelMove move(GetGraph()->GetAllocator()); |
| if (dst_type == DataType::Type::kInt64 && !src.IsConstant() && !src.IsFpuRegister()) { |
| move.AddMove(src.ToLow(), dst.ToLow(), DataType::Type::kInt32, nullptr); |
| move.AddMove(src.ToHigh(), dst.ToHigh(), DataType::Type::kInt32, nullptr); |
| } else { |
| move.AddMove(src, dst, dst_type, nullptr); |
| } |
| GetMoveResolver()->EmitNativeCode(&move); |
| } |
| |
| void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else if (location.IsRegisterPair()) { |
| locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); |
| locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| if (successor->IsExitBlock()) { |
| DCHECK(got->GetPrevious()->AlwaysThrows()); |
| return; // no code needed |
| } |
| |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| |
| HLoopInformation* info = block->GetLoopInformation(); |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false); |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { |
| __ jmp(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond, |
| LabelType* true_label, |
| LabelType* false_label) { |
| if (cond->IsFPConditionTrueIfNaN()) { |
| __ j(kUnordered, true_label); |
| } else if (cond->IsFPConditionFalseIfNaN()) { |
| __ j(kUnordered, false_label); |
| } |
| __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label); |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond, |
| LabelType* true_label, |
| LabelType* false_label) { |
| LocationSummary* locations = cond->GetLocations(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| IfCondition if_cond = cond->GetCondition(); |
| |
| Register left_high = left.AsRegisterPairHigh<Register>(); |
| Register left_low = left.AsRegisterPairLow<Register>(); |
| IfCondition true_high_cond = if_cond; |
| IfCondition false_high_cond = cond->GetOppositeCondition(); |
| Condition final_condition = X86UnsignedOrFPCondition(if_cond); // unsigned on lower part |
| |
| // Set the conditions for the test, remembering that == needs to be |
| // decided using the low words. |
| switch (if_cond) { |
| case kCondEQ: |
| case kCondNE: |
| // Nothing to do. |
| break; |
| case kCondLT: |
| false_high_cond = kCondGT; |
| break; |
| case kCondLE: |
| true_high_cond = kCondLT; |
| break; |
| case kCondGT: |
| false_high_cond = kCondLT; |
| break; |
| case kCondGE: |
| true_high_cond = kCondGT; |
| break; |
| case kCondB: |
| false_high_cond = kCondA; |
| break; |
| case kCondBE: |
| true_high_cond = kCondB; |
| break; |
| case kCondA: |
| false_high_cond = kCondB; |
| break; |
| case kCondAE: |
| true_high_cond = kCondA; |
| break; |
| } |
| |
| if (right.IsConstant()) { |
| int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t val_high = High32Bits(value); |
| int32_t val_low = Low32Bits(value); |
| |
| codegen_->Compare32BitValue(left_high, val_high); |
| if (if_cond == kCondNE) { |
| __ j(X86Condition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ j(X86Condition(false_high_cond), false_label); |
| } else { |
| __ j(X86Condition(true_high_cond), true_label); |
| __ j(X86Condition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| codegen_->Compare32BitValue(left_low, val_low); |
| } else if (right.IsRegisterPair()) { |
| Register right_high = right.AsRegisterPairHigh<Register>(); |
| Register right_low = right.AsRegisterPairLow<Register>(); |
| |
| __ cmpl(left_high, right_high); |
| if (if_cond == kCondNE) { |
| __ j(X86Condition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ j(X86Condition(false_high_cond), false_label); |
| } else { |
| __ j(X86Condition(true_high_cond), true_label); |
| __ j(X86Condition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| __ cmpl(left_low, right_low); |
| } else { |
| DCHECK(right.IsDoubleStackSlot()); |
| __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); |
| if (if_cond == kCondNE) { |
| __ j(X86Condition(true_high_cond), true_label); |
| } else if (if_cond == kCondEQ) { |
| __ j(X86Condition(false_high_cond), false_label); |
| } else { |
| __ j(X86Condition(true_high_cond), true_label); |
| __ j(X86Condition(false_high_cond), false_label); |
| } |
| // Must be equal high, so compare the lows. |
| __ cmpl(left_low, Address(ESP, right.GetStackIndex())); |
| } |
| // The last comparison might be unsigned. |
| __ j(final_condition, true_label); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs, |
| Location rhs, |
| HInstruction* insn, |
| bool is_double) { |
| HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable(); |
| if (is_double) { |
| if (rhs.IsFpuRegister()) { |
| __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); |
| } else if (const_area != nullptr) { |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(rhs.IsDoubleStackSlot()); |
| __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex())); |
| } |
| } else { |
| if (rhs.IsFpuRegister()) { |
| __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); |
| } else if (const_area != nullptr) { |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(rhs.IsStackSlot()); |
| __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex())); |
| } |
| } |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition, |
| LabelType* true_target_in, |
| LabelType* false_target_in) { |
| // Generated branching requires both targets to be explicit. If either of the |
| // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. |
| LabelType fallthrough_target; |
| LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; |
| LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; |
| |
| LocationSummary* locations = condition->GetLocations(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| DataType::Type type = condition->InputAt(0)->GetType(); |
| switch (type) { |
| case DataType::Type::kInt64: |
| GenerateLongComparesAndJumps(condition, true_target, false_target); |
| break; |
| case DataType::Type::kFloat32: |
| GenerateFPCompare(left, right, condition, false); |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| case DataType::Type::kFloat64: |
| GenerateFPCompare(left, right, condition, true); |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected compare type " << type; |
| } |
| |
| if (false_target != &fallthrough_target) { |
| __ jmp(false_target); |
| } |
| |
| if (fallthrough_target.IsLinked()) { |
| __ Bind(&fallthrough_target); |
| } |
| } |
| |
| static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) { |
| // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS |
| // are set only strictly before `branch`. We can't use the eflags on long/FP |
| // conditions if they are materialized due to the complex branching. |
| return cond->IsCondition() && |
| cond->GetNext() == branch && |
| cond->InputAt(0)->GetType() != DataType::Type::kInt64 && |
| !DataType::IsFloatingPointType(cond->InputAt(0)->GetType()); |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| LabelType* true_target, |
| LabelType* false_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ jmp(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ jmp(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| if (AreEflagsSetFrom(cond, instruction)) { |
| if (true_target == nullptr) { |
| __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target); |
| } else { |
| __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target); |
| } |
| } else { |
| // Materialized condition, compare against 0. |
| Location lhs = instruction->GetLocations()->InAt(condition_input_index); |
| if (lhs.IsRegister()) { |
| __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>()); |
| } else { |
| __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0)); |
| } |
| if (true_target == nullptr) { |
| __ j(kEqual, false_target); |
| } else { |
| __ j(kNotEqual, true_target); |
| } |
| } |
| } else { |
| // Condition has not been materialized, use its inputs as the comparison and |
| // its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| |
| // If this is a long or FP comparison that has been folded into |
| // the HCondition, generate the comparison directly. |
| DataType::Type type = condition->InputAt(0)->GetType(); |
| if (type == DataType::Type::kInt64 || DataType::IsFloatingPointType(type)) { |
| GenerateCompareTestAndBranch(condition, true_target, false_target); |
| return; |
| } |
| |
| Location lhs = condition->GetLocations()->InAt(0); |
| Location rhs = condition->GetLocations()->InAt(1); |
| // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition). |
| codegen_->GenerateIntCompare(lhs, rhs); |
| if (true_target == nullptr) { |
| __ j(X86Condition(condition->GetOppositeCondition()), false_target); |
| } else { |
| __ j(X86Condition(condition->GetCondition()), true_target); |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ jmp(false_target); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::Any()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? |
| nullptr : codegen_->GetLabelOf(true_successor); |
| Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? |
| nullptr : codegen_->GetLabelOf(false_successor); |
| GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::Any()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize); |
| GenerateTestAndBranch<Label>(deoptimize, |
| /* condition_input_index= */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target= */ nullptr); |
| } |
| |
| void LocationsBuilderX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(flag, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| __ movl(flag->GetLocations()->Out().AsRegister<Register>(), |
| Address(ESP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag())); |
| } |
| |
| static bool SelectCanUseCMOV(HSelect* select) { |
| // There are no conditional move instructions for XMMs. |
| if (DataType::IsFloatingPointType(select->GetType())) { |
| return false; |
| } |
| |
| // A FP condition doesn't generate the single CC that we need. |
| // In 32 bit mode, a long condition doesn't generate a single CC either. |
| HInstruction* condition = select->GetCondition(); |
| if (condition->IsCondition()) { |
| DataType::Type compare_type = condition->InputAt(0)->GetType(); |
| if (compare_type == DataType::Type::kInt64 || |
| DataType::IsFloatingPointType(compare_type)) { |
| return false; |
| } |
| } |
| |
| // We can generate a CMOV for this Select. |
| return true; |
| } |
| |
| void LocationsBuilderX86::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); |
| if (DataType::IsFloatingPointType(select->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (SelectCanUseCMOV(select)) { |
| if (select->InputAt(1)->IsConstant()) { |
| // Cmov can't handle a constant value. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| } |
| if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) { |
| LocationSummary* locations = select->GetLocations(); |
| DCHECK(locations->InAt(0).Equals(locations->Out())); |
| if (SelectCanUseCMOV(select)) { |
| // If both the condition and the source types are integer, we can generate |
| // a CMOV to implement Select. |
| |
| HInstruction* select_condition = select->GetCondition(); |
| Condition cond = kNotEqual; |
| |
| // Figure out how to test the 'condition'. |
| if (select_condition->IsCondition()) { |
| HCondition* condition = select_condition->AsCondition(); |
| if (!condition->IsEmittedAtUseSite()) { |
| // This was a previously materialized condition. |
| // Can we use the existing condition code? |
| if (AreEflagsSetFrom(condition, select)) { |
| // Materialization was the previous instruction. Condition codes are right. |
| cond = X86Condition(condition->GetCondition()); |
| } else { |
| // No, we have to recreate the condition code. |
| Register cond_reg = locations->InAt(2).AsRegister<Register>(); |
| __ testl(cond_reg, cond_reg); |
| } |
| } else { |
| // We can't handle FP or long here. |
| DCHECK_NE(condition->InputAt(0)->GetType(), DataType::Type::kInt64); |
| DCHECK(!DataType::IsFloatingPointType(condition->InputAt(0)->GetType())); |
| LocationSummary* cond_locations = condition->GetLocations(); |
| codegen_->GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1)); |
| cond = X86Condition(condition->GetCondition()); |
| } |
| } else { |
| // Must be a Boolean condition, which needs to be compared to 0. |
| Register cond_reg = locations->InAt(2).AsRegister<Register>(); |
| __ testl(cond_reg, cond_reg); |
| } |
| |
| // If the condition is true, overwrite the output, which already contains false. |
| Location false_loc = locations->InAt(0); |
| Location true_loc = locations->InAt(1); |
| if (select->GetType() == DataType::Type::kInt64) { |
| // 64 bit conditional move. |
| Register false_high = false_loc.AsRegisterPairHigh<Register>(); |
| Register false_low = false_loc.AsRegisterPairLow<Register>(); |
| if (true_loc.IsRegisterPair()) { |
| __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>()); |
| __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>()); |
| } else { |
| __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize))); |
| __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex())); |
| } |
| } else { |
| // 32 bit conditional move. |
| Register false_reg = false_loc.AsRegister<Register>(); |
| if (true_loc.IsRegister()) { |
| __ cmovl(cond, false_reg, true_loc.AsRegister<Register>()); |
| } else { |
| __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex())); |
| } |
| } |
| } else { |
| NearLabel false_target; |
| GenerateTestAndBranch<NearLabel>( |
| select, /* condition_input_index= */ 2, /* true_target= */ nullptr, &false_target); |
| codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); |
| __ Bind(&false_target); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitNop(HNop* nop) { |
| new (GetGraph()->GetAllocator()) LocationSummary(nop); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNop(HNop*) { |
| // The environment recording already happened in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorX86::IncreaseFrame(size_t adjustment) { |
| __ subl(ESP, Immediate(adjustment)); |
| __ cfi().AdjustCFAOffset(adjustment); |
| } |
| |
| void CodeGeneratorX86::DecreaseFrame(size_t adjustment) { |
| __ addl(ESP, Immediate(adjustment)); |
| __ cfi().AdjustCFAOffset(-adjustment); |
| } |
| |
| void CodeGeneratorX86::GenerateNop() { |
| __ nop(); |
| } |
| |
| void LocationsBuilderX86::HandleCondition(HCondition* cond) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(cond, LocationSummary::kNoCall); |
| // Handle the long/FP comparisons made in instruction simplification. |
| switch (cond->InputAt(0)->GetType()) { |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (cond->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(cond->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (cond->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| break; |
| } |
| default: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (!cond->IsEmittedAtUseSite()) { |
| // We need a byte register. |
| locations->SetOut(Location::RegisterLocation(ECX)); |
| } |
| break; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) { |
| if (cond->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = cond->GetLocations(); |
| Location lhs = locations->InAt(0); |
| Location rhs = locations->InAt(1); |
| Register reg = locations->Out().AsRegister<Register>(); |
| NearLabel true_label, false_label; |
| |
| switch (cond->InputAt(0)->GetType()) { |
| default: { |
| // Integer case. |
| |
| // Clear output register: setb only sets the low byte. |
| __ xorl(reg, reg); |
| codegen_->GenerateIntCompare(lhs, rhs); |
| __ setb(X86Condition(cond->GetCondition()), reg); |
| return; |
| } |
| case DataType::Type::kInt64: |
| GenerateLongComparesAndJumps(cond, &true_label, &false_label); |
| break; |
| case DataType::Type::kFloat32: |
| GenerateFPCompare(lhs, rhs, cond, false); |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| case DataType::Type::kFloat64: |
| GenerateFPCompare(lhs, rhs, cond, true); |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| } |
| |
| // Convert the jumps into the result. |
| NearLabel done_label; |
| |
| // False case: result = 0. |
| __ Bind(&false_label); |
| __ xorl(reg, reg); |
| __ jmp(&done_label); |
| |
| // True case: result = 1. |
| __ Bind(&true_label); |
| __ movl(reg, Immediate(1)); |
| __ Bind(&done_label); |
| } |
| |
| void LocationsBuilderX86::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86::VisitConstructorFence(HConstructorFence* constructor_fence) { |
| constructor_fence->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitConstructorFence( |
| HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| |
| void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) { |
| ret->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderX86::VisitReturn(HReturn* ret) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(ret, LocationSummary::kNoCall); |
| SetInForReturnValue(ret, locations); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) { |
| switch (ret->InputAt(0)->GetType()) { |
| case DataType::Type::kReference: |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX); |
| break; |
| |
| case DataType::Type::kInt64: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX); |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX); |
| break; |
| |
| case DataType::Type::kFloat32: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0); |
| if (GetGraph()->IsCompilingOsr()) { |
| // To simplify callers of an OSR method, we put the return value in both |
| // floating point and core registers. |
| __ movd(EAX, XMM0); |
| } |
| break; |
| |
| case DataType::Type::kFloat64: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0); |
| if (GetGraph()->IsCompilingOsr()) { |
| // To simplify callers of an OSR method, we put the return value in both |
| // floating point and core registers. |
| __ movd(EAX, XMM0); |
| // Use XMM1 as temporary register to not clobber XMM0. |
| __ movaps(XMM1, XMM0); |
| __ psrlq(XMM1, Immediate(32)); |
| __ movd(EDX, XMM1); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); |
| } |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderX86 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| if (invoke->GetLocations()->CanCall() && |
| invoke->HasPcRelativeMethodLoadKind() && |
| invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()).IsInvalid()) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); |
| } |
| return; |
| } |
| |
| if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { |
| CriticalNativeCallingConventionVisitorX86 calling_convention_visitor( |
| /*for_register_allocation=*/ true); |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } else { |
| HandleInvoke(invoke); |
| } |
| |
| // For PC-relative load kinds the invoke has an extra input, the PC-relative address base. |
| if (invoke->HasPcRelativeMethodLoadKind()) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); |
| } |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorX86 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderX86 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| |
| if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { |
| // Add one temporary for inline cache update. |
| invoke->GetLocations()->AddTemp(Location::RegisterLocation(EBP)); |
| } |
| } |
| |
| void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorX86 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // This call to HandleInvoke allocates a temporary (core) register |
| // which is also used to transfer the hidden argument from FP to |
| // core register. |
| HandleInvoke(invoke); |
| // Add the hidden argument. |
| invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7)); |
| |
| if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { |
| // Add one temporary for inline cache update. |
| invoke->GetLocations()->AddTemp(Location::RegisterLocation(EBP)); |
| } |
| |
| // For PC-relative load kinds the invoke has an extra input, the PC-relative address base. |
| if (IsPcRelativeMethodLoadKind(invoke->GetHiddenArgumentLoadKind())) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); |
| } |
| |
| if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { |
| invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, |
| Location::RequiresRegister()); |
| } |
| } |
| |
| void CodeGeneratorX86::MaybeGenerateInlineCacheCheck(HInstruction* instruction, Register klass) { |
| DCHECK_EQ(EAX, klass); |
| // We know the destination of an intrinsic, so no need to record inline |
| // caches (also the intrinsic location builder doesn't request an additional |
| // temporary). |
| if (!instruction->GetLocations()->Intrinsified() && |
| GetGraph()->IsCompilingBaseline() && |
| !Runtime::Current()->IsAotCompiler()) { |
| DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke()); |
| ProfilingInfo* info = GetGraph()->GetProfilingInfo(); |
| DCHECK(info != nullptr); |
| InlineCache* cache = info->GetInlineCache(instruction->GetDexPc()); |
| uint32_t address = reinterpret_cast32<uint32_t>(cache); |
| if (kIsDebugBuild) { |
| uint32_t temp_index = instruction->GetLocations()->GetTempCount() - 1u; |
| CHECK_EQ(EBP, instruction->GetLocations()->GetTemp(temp_index).AsRegister<Register>()); |
| } |
| Register temp = EBP; |
| NearLabel done; |
| __ movl(temp, Immediate(address)); |
| // Fast path for a monomorphic cache. |
| __ cmpl(klass, Address(temp, InlineCache::ClassesOffset().Int32Value())); |
| __ j(kEqual, &done); |
| GenerateInvokeRuntime(GetThreadOffset<kX86PointerSize>(kQuickUpdateInlineCache).Int32Value()); |
| __ Bind(&done); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| LocationSummary* locations = invoke->GetLocations(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| Location receiver = locations->InAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| |
| // Set the hidden argument. This is safe to do this here, as XMM7 |
| // won't be modified thereafter, before the `call` instruction. |
| DCHECK_EQ(XMM7, hidden_reg); |
| if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { |
| __ movd(hidden_reg, locations->InAt(invoke->GetNumberOfArguments() - 1).AsRegister<Register>()); |
| } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) { |
| codegen_->LoadMethod(invoke->GetHiddenArgumentLoadKind(), locations->GetTemp(0), invoke); |
| __ movd(hidden_reg, temp); |
| } |
| |
| if (receiver.IsStackSlot()) { |
| __ movl(temp, Address(ESP, receiver.GetStackIndex())); |
| // /* HeapReference<Class> */ temp = temp->klass_ |
| __ movl(temp, Address(temp, class_offset)); |
| } else { |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| codegen_->MaybeGenerateInlineCacheCheck(invoke, temp); |
| |
| // temp = temp->GetAddressOfIMT() |
| __ movl(temp, |
| Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value())); |
| // temp = temp->GetImtEntryAt(method_offset); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kX86PointerSize)); |
| __ movl(temp, Address(temp, method_offset)); |
| if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) { |
| // We pass the method from the IMT in case of a conflict. This will ensure |
| // we go into the runtime to resolve the actual method. |
| __ movd(hidden_reg, temp); |
| } |
| // call temp->GetEntryPoint(); |
| __ call(Address(temp, |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value())); |
| |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| IntrinsicLocationsBuilderX86 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| codegen_->GenerateInvokePolymorphicCall(invoke); |
| } |
| |
| void LocationsBuilderX86::VisitInvokeCustom(HInvokeCustom* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInvokeCustom(HInvokeCustom* invoke) { |
| codegen_->GenerateInvokeCustomCall(invoke); |
| } |
| |
| void LocationsBuilderX86::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| |
| case DataType::Type::kFloat32: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = neg->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| switch (neg->GetResultType()) { |
| case DataType::Type::kInt32: |
| DCHECK(in.IsRegister()); |
| DCHECK(in.Equals(out)); |
| __ negl(out.AsRegister<Register>()); |
| break; |
| |
| case DataType::Type::kInt64: |
| DCHECK(in.IsRegisterPair()); |
| DCHECK(in.Equals(out)); |
| __ negl(out.AsRegisterPairLow<Register>()); |
| // Negation is similar to subtraction from zero. The least |
| // significant byte triggers a borrow when it is different from |
| // zero; to take it into account, add 1 to the most significant |
| // byte if the carry flag (CF) is set to 1 after the first NEGL |
| // operation. |
| __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0)); |
| __ negl(out.AsRegisterPairHigh<Register>()); |
| break; |
| |
| case DataType::Type::kFloat32: { |
| DCHECK(in.Equals(out)); |
| Register constant = locations->GetTemp(0).AsRegister<Register>(); |
| XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| // Implement float negation with an exclusive or with value |
| // 0x80000000 (mask for bit 31, representing the sign of a |
| // single-precision floating-point number). |
| __ movl(constant, Immediate(INT32_C(0x80000000))); |
| __ movd(mask, constant); |
| __ xorps(out.AsFpuRegister<XmmRegister>(), mask); |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| DCHECK(in.Equals(out)); |
| XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| // Implement double negation with an exclusive or with value |
| // 0x8000000000000000 (mask for bit 63, representing the sign of |
| // a double-precision floating-point number). |
| __ LoadLongConstant(mask, INT64_C(0x8000000000000000)); |
| __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); |
| DCHECK(DataType::IsFloatingPointType(neg->GetType())); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) { |
| LocationSummary* locations = neg->GetLocations(); |
| Location out = locations->Out(); |
| DCHECK(locations->InAt(0).Equals(out)); |
| |
| Register constant_area = locations->InAt(1).AsRegister<Register>(); |
| XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| if (neg->GetType() == DataType::Type::kFloat32) { |
| __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000), |
| neg->GetBaseMethodAddress(), |
| constant_area)); |
| __ xorps(out.AsFpuRegister<XmmRegister>(), mask); |
| } else { |
| __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000), |
| neg->GetBaseMethodAddress(), |
| constant_area)); |
| __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) { |
| DataType::Type result_type = conversion->GetResultType(); |
| DataType::Type input_type = conversion->GetInputType(); |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| |
| // The float-to-long and double-to-long type conversions rely on a |
| // call to the runtime. |
| LocationSummary::CallKind call_kind = |
| ((input_type == DataType::Type::kFloat32 || input_type == DataType::Type::kFloat64) |
| && result_type == DataType::Type::kInt64) |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind); |
| |
| switch (result_type) { |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| switch (input_type) { |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0))); |
| // Make the output overlap to please the register allocator. This greatly simplifies |
| // the validation of the linear scan implementation |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| case DataType::Type::kInt64: { |
| HInstruction* input = conversion->InputAt(0); |
| Location input_location = input->IsConstant() |
| ? Location::ConstantLocation(input) |
| : Location::RegisterPairLocation(EAX, EDX); |
| locations->SetInAt(0, input_location); |
| // Make the output overlap to please the register allocator. This greatly simplifies |
| // the validation of the linear scan implementation |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| DCHECK(DataType::IsIntegralType(input_type)) << input_type; |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kInt32: |
| switch (input_type) { |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kInt64: |
| switch (input_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| InvokeRuntimeCallingConvention calling_convention; |
| XmmRegister parameter = calling_convention.GetFpuRegisterAt(0); |
| locations->SetInAt(0, Location::FpuRegisterLocation(parameter)); |
| |
| // The runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kFloat32: |
| switch (input_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::Any()); |
| break; |
| |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kFloat64: |
| switch (input_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::Any()); |
| break; |
| |
| case DataType::Type::kFloat32: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = conversion->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| DataType::Type result_type = conversion->GetResultType(); |
| DataType::Type input_type = conversion->GetInputType(); |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| switch (result_type) { |
| case DataType::Type::kUint8: |
| switch (input_type) { |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| if (in.IsRegister()) { |
| __ movzxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>()); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint8_t>(value))); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (in.IsRegisterPair()) { |
| __ movzxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>()); |
| } else { |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint8_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kInt8: |
| switch (input_type) { |
| case DataType::Type::kUint8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| if (in.IsRegister()) { |
| __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>()); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (in.IsRegisterPair()) { |
| __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>()); |
| } else { |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kUint16: |
| switch (input_type) { |
| case DataType::Type::kInt8: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| if (in.IsRegister()) { |
| __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>()); |
| } else if (in.IsStackSlot()) { |
| __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (in.IsRegisterPair()) { |
| __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kInt16: |
| switch (input_type) { |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt32: |
| if (in.IsRegister()) { |
| __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>()); |
| } else if (in.IsStackSlot()) { |
| __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsIntConstant()); |
| int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (in.IsRegisterPair()) { |
| __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kInt32: |
| switch (input_type) { |
| case DataType::Type::kInt64: |
| if (in.IsRegisterPair()) { |
| __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); |
| } else { |
| DCHECK(in.IsConstant()); |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value))); |
| } |
| break; |
| |
| case DataType::Type::kFloat32: { |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| Register output = out.AsRegister<Register>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| NearLabel done, nan; |
| |
| __ movl(output, Immediate(kPrimIntMax)); |
| // temp = int-to-float(output) |
| __ cvtsi2ss(temp, output); |
| // if input >= temp goto done |
| __ comiss(input, temp); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = float-to-int-truncate(input) |
| __ cvttss2si(output, input); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| Register output = out.AsRegister<Register>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| NearLabel done, nan; |
| |
| __ movl(output, Immediate(kPrimIntMax)); |
| // temp = int-to-double(output) |
| __ cvtsi2sd(temp, output); |
| // if input >= temp goto done |
| __ comisd(input, temp); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = double-to-int-truncate(input) |
| __ cvttsd2si(output, input); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kInt64: |
| switch (input_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX); |
| DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX); |
| DCHECK_EQ(in.AsRegister<Register>(), EAX); |
| __ cdq(); |
| break; |
| |
| case DataType::Type::kFloat32: |
| codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc()); |
| CheckEntrypointTypes<kQuickF2l, int64_t, float>(); |
| break; |
| |
| case DataType::Type::kFloat64: |
| codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc()); |
| CheckEntrypointTypes<kQuickD2l, int64_t, double>(); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kFloat32: |
| switch (input_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); |
| break; |
| |
| case DataType::Type::kInt64: { |
| size_t adjustment = 0; |
| |
| // Create stack space for the call to |
| // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) { |
| adjustment = DataType::Size(DataType::Type::kInt64); |
| codegen_->IncreaseFrame(adjustment); |
| } |
| |
| // Load the value to the FP stack, using temporaries if needed. |
| PushOntoFPStack(in, 0, adjustment, false, true); |
| |
| if (out.IsStackSlot()) { |
| __ fstps(Address(ESP, out.GetStackIndex() + adjustment)); |
| } else { |
| __ fstps(Address(ESP, 0)); |
| Location stack_temp = Location::StackSlot(0); |
| codegen_->Move32(out, stack_temp); |
| } |
| |
| // Remove the temporary stack space we allocated. |
| if (adjustment != 0) { |
| codegen_->DecreaseFrame(adjustment); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: |
| __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case DataType::Type::kFloat64: |
| switch (input_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); |
| break; |
| |
| case DataType::Type::kInt64: { |
| size_t adjustment = 0; |
| |
| // Create stack space for the call to |
| // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) { |
| adjustment = DataType::Size(DataType::Type::kInt64); |
| codegen_->IncreaseFrame(adjustment); |
| } |
| |
| // Load the value to the FP stack, using temporaries if needed. |
| PushOntoFPStack(in, 0, adjustment, false, true); |
| |
| if (out.IsDoubleStackSlot()) { |
| __ fstpl(Address(ESP, out.GetStackIndex() + adjustment)); |
| } else { |
| __ fstpl(Address(ESP, 0)); |
| Location stack_temp = Location::DoubleStackSlot(0); |
| codegen_->Move64(out, stack_temp); |
| } |
| |
| // Remove the temporary stack space we allocated. |
| if (adjustment != 0) { |
| codegen_->DecreaseFrame(adjustment); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderX86::VisitAdd(HAdd* add) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(add, LocationSummary::kNoCall); |
| switch (add->GetResultType()) { |
| case DataType::Type::kInt32: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (add->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(add->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (add->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) { |
| LocationSummary* locations = add->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| switch (add->GetResultType()) { |
| case DataType::Type::kInt32: { |
| if (second.IsRegister()) { |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), first.AsRegister<Register>()); |
| } else { |
| __ leal(out.AsRegister<Register>(), Address( |
| first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0)); |
| } |
| } else if (second.IsConstant()) { |
| int32_t value = second.GetConstant()->AsIntConstant()->GetValue(); |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addl(out.AsRegister<Register>(), Immediate(value)); |
| } else { |
| __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value)); |
| } |
| } else { |
| DCHECK(first.Equals(locations->Out())); |
| __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| if (second.IsRegisterPair()) { |
| __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (second.IsDoubleStackSlot()) { |
| __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ adcl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); |
| __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| if (second.IsFpuRegister()) { |
| __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ addss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| if (second.IsFpuRegister()) { |
| __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ addsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitSub(HSub* sub) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(sub, LocationSummary::kNoCall); |
| switch (sub->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(sub->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (sub->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitSub(HSub* sub) { |
| LocationSummary* locations = sub->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| switch (sub->GetResultType()) { |
| case DataType::Type::kInt32: { |
| if (second.IsRegister()) { |
| __ subl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (second.IsConstant()) { |
| __ subl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| if (second.IsRegisterPair()) { |
| __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (second.IsDoubleStackSlot()) { |
| __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); |
| __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| if (second.IsFpuRegister()) { |
| __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ subss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| if (second.IsFpuRegister()) { |
| __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ subsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (mul->InputAt(1)->IsIntConstant()) { |
| // Can use 3 operand multiply. |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| break; |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Needed for imul on 32bits with 64bits output. |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(mul->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (mul->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMul(HMul* mul) { |
| LocationSummary* locations = mul->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| switch (mul->GetResultType()) { |
| case DataType::Type::kInt32: |
| // The constant may have ended up in a register, so test explicitly to avoid |
| // problems where the output may not be the same as the first operand. |
| if (mul->InputAt(1)->IsIntConstant()) { |
| Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue()); |
| __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm); |
| } else if (second.IsRegister()) { |
| DCHECK(first.Equals(out)); |
| __ imull(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| DCHECK(first.Equals(out)); |
| __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| |
| case DataType::Type::kInt64: { |
| Register in1_hi = first.AsRegisterPairHigh<Register>(); |
| Register in1_lo = first.AsRegisterPairLow<Register>(); |
| Register eax = locations->GetTemp(0).AsRegister<Register>(); |
| Register edx = locations->GetTemp(1).AsRegister<Register>(); |
| |
| DCHECK_EQ(EAX, eax); |
| DCHECK_EQ(EDX, edx); |
| |
| // input: in1 - 64 bits, in2 - 64 bits. |
| // output: in1 |
| // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo |
| // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] |
| // parts: in1.lo = (in1.lo * in2.lo)[31:0] |
| if (second.IsConstant()) { |
| DCHECK(second.GetConstant()->IsLongConstant()); |
| |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| |
| __ movl(eax, high); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, low); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in2_lo to eax to prepare for double precision |
| __ movl(eax, low); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in1_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } else if (second.IsRegisterPair()) { |
| Register in2_hi = second.AsRegisterPairHigh<Register>(); |
| Register in2_lo = second.AsRegisterPairLow<Register>(); |
| |
| __ movl(eax, in2_hi); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, in2_lo); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in1_lo to eax to prepare for double precision |
| __ movl(eax, in1_lo); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in2_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()) << second; |
| Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize)); |
| Address in2_lo(ESP, second.GetStackIndex()); |
| |
| __ movl(eax, in2_hi); |
| // eax <- in1.lo * in2.hi |
| __ imull(eax, in1_lo); |
| // in1.hi <- in1.hi * in2.lo |
| __ imull(in1_hi, in2_lo); |
| // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ addl(in1_hi, eax); |
| // move in1_lo to eax to prepare for double precision |
| __ movl(eax, in1_lo); |
| // edx:eax <- in1.lo * in2.lo |
| __ mull(in2_lo); |
| // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ addl(in1_hi, edx); |
| // in1.lo <- (in1.lo * in2.lo)[31:0]; |
| __ movl(in1_lo, eax); |
| } |
| |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| DCHECK(first.Equals(locations->Out())); |
| if (second.IsFpuRegister()) { |
| __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ mulss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| DCHECK(first.Equals(locations->Out())); |
| if (second.IsFpuRegister()) { |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::PushOntoFPStack(Location source, |
| uint32_t temp_offset, |
| uint32_t stack_adjustment, |
| bool is_fp, |
| bool is_wide) { |
| if (source.IsStackSlot()) { |
| DCHECK(!is_wide); |
| if (is_fp) { |
| __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } else { |
| __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| DCHECK(is_wide); |
| if (is_fp) { |
| __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } else { |
| __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment)); |
| } |
| } else { |
| // Write the value to the temporary location on the stack and load to FP stack. |
| if (!is_wide) { |
| Location stack_temp = Location::StackSlot(temp_offset); |
| codegen_->Move32(stack_temp, source); |
| if (is_fp) { |
| __ flds(Address(ESP, temp_offset)); |
| } else { |
| __ filds(Address(ESP, temp_offset)); |
| } |
| } else { |
| Location stack_temp = Location::DoubleStackSlot(temp_offset); |
| codegen_->Move64(stack_temp, source); |
| if (is_fp) { |
| __ fldl(Address(ESP, temp_offset)); |
| } else { |
| __ fildl(Address(ESP, temp_offset)); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) { |
| DataType::Type type = rem->GetResultType(); |
| bool is_float = type == DataType::Type::kFloat32; |
| size_t elem_size = DataType::Size(type); |
| LocationSummary* locations = rem->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| // Create stack space for 2 elements. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| codegen_->IncreaseFrame(2 * elem_size); |
| |
| // Load the values to the FP stack in reverse order, using temporaries if needed. |
| const bool is_wide = !is_float; |
| PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp= */ true, is_wide); |
| PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp= */ true, is_wide); |
| |
| // Loop doing FPREM until we stabilize. |
| NearLabel retry; |
| __ Bind(&retry); |
| __ fprem(); |
| |
| // Move FP status to AX. |
| __ fstsw(); |
| |
| // And see if the argument reduction is complete. This is signaled by the |
| // C2 FPU flag bit set to 0. |
| __ andl(EAX, Immediate(kC2ConditionMask)); |
| __ j(kNotEqual, &retry); |
| |
| // We have settled on the final value. Retrieve it into an XMM register. |
| // Store FP top of stack to real stack. |
| if (is_float) { |
| __ fsts(Address(ESP, 0)); |
| } else { |
| __ fstl(Address(ESP, 0)); |
| } |
| |
| // Pop the 2 items from the FP stack. |
| __ fucompp(); |
| |
| // Load the value from the stack into an XMM register. |
| DCHECK(out.IsFpuRegister()) << out; |
| if (is_float) { |
| __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| } else { |
| __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| } |
| |
| // And remove the temporary stack space we allocated. |
| codegen_->DecreaseFrame(2 * elem_size); |
| } |
| |
| |
| void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| DCHECK(locations->InAt(1).IsConstant()); |
| DCHECK(locations->InAt(1).GetConstant()->IsIntConstant()); |
| |
| Register out_register = locations->Out().AsRegister<Register>(); |
| Register input_register = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ xorl(out_register, out_register); |
| } else { |
| __ movl(out_register, input_register); |
| if (imm == -1) { |
| __ negl(out_register); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::RemByPowerOfTwo(HRem* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| |
| Register out = locations->Out().AsRegister<Register>(); |
| Register numerator = locations->InAt(0).AsRegister<Register>(); |
| |
| int32_t imm = Int64FromConstant(second.GetConstant()); |
| DCHECK(IsPowerOfTwo(AbsOrMin(imm))); |
| uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); |
| |
| Register tmp = locations->GetTemp(0).AsRegister<Register>(); |
| NearLabel done; |
| __ movl(out, numerator); |
| __ andl(out, Immediate(abs_imm-1)); |
| __ j(Condition::kZero, &done); |
| __ leal(tmp, Address(out, static_cast<int32_t>(~(abs_imm-1)))); |
| __ testl(numerator, numerator); |
| __ cmovl(Condition::kLess, out, tmp); |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| Register out_register = locations->Out().AsRegister<Register>(); |
| Register input_register = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| DCHECK(IsPowerOfTwo(AbsOrMin(imm))); |
| uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); |
| |
| Register num = locations->GetTemp(0).AsRegister<Register>(); |
| |
| __ leal(num, Address(input_register, abs_imm - 1)); |
| __ testl(input_register, input_register); |
| __ cmovl(kGreaterEqual, num, input_register); |
| int shift = CTZ(imm); |
| __ sarl(num, Immediate(shift)); |
| |
| if (imm < 0) { |
| __ negl(num); |
| } |
| |
| __ movl(out_register, num); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); |
| |
| Register eax = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Register num; |
| Register edx; |
| |
| if (instruction->IsDiv()) { |
| edx = locations->GetTemp(0).AsRegister<Register>(); |
| num = locations->GetTemp(1).AsRegister<Register>(); |
| } else { |
| edx = locations->Out().AsRegister<Register>(); |
| num = locations->GetTemp(0).AsRegister<Register>(); |
| } |
| |
| DCHECK_EQ(EAX, eax); |
| DCHECK_EQ(EDX, edx); |
| if (instruction->IsDiv()) { |
| DCHECK_EQ(EAX, out); |
| } else { |
| DCHECK_EQ(EDX, out); |
| } |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift); |
| |
| // Save the numerator. |
| __ movl(num, eax); |
| |
| // EAX = magic |
| __ movl(eax, Immediate(magic)); |
| |
| // EDX:EAX = magic * numerator |
| __ imull(num); |
| |
| if (imm > 0 && magic < 0) { |
| // EDX += num |
| __ addl(edx, num); |
| } else if (imm < 0 && magic > 0) { |
| __ subl(edx, num); |
| } |
| |
| // Shift if needed. |
| if (shift != 0) { |
| __ sarl(edx, Immediate(shift)); |
| } |
| |
| // EDX += 1 if EDX < 0 |
| __ movl(eax, edx); |
| __ shrl(edx, Immediate(31)); |
| __ addl(edx, eax); |
| |
| if (instruction->IsRem()) { |
| __ movl(eax, num); |
| __ imull(edx, Immediate(imm)); |
| __ subl(eax, edx); |
| __ movl(edx, eax); |
| } else { |
| __ movl(eax, edx); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| bool is_div = instruction->IsDiv(); |
| |
| switch (instruction->GetResultType()) { |
| case DataType::Type::kInt32: { |
| DCHECK_EQ(EAX, first.AsRegister<Register>()); |
| DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>()); |
| |
| if (second.IsConstant()) { |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| |
| if (imm == 0) { |
| // Do not generate anything for 0. DivZeroCheck would forbid any generated code. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (IsPowerOfTwo(AbsOrMin(imm))) { |
| if (is_div) { |
| DivByPowerOfTwo(instruction->AsDiv()); |
| } else { |
| RemByPowerOfTwo(instruction->AsRem()); |
| } |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) DivRemMinusOneSlowPathX86( |
| instruction, out.AsRegister<Register>(), is_div); |
| codegen_->AddSlowPath(slow_path); |
| |
| Register second_reg = second.AsRegister<Register>(); |
| // 0x80000000/-1 triggers an arithmetic exception! |
| // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so |
| // it's safe to just use negl instead of more complex comparisons. |
| |
| __ cmpl(second_reg, Immediate(-1)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // edx:eax <- sign-extended of eax |
| __ cdq(); |
| // eax = quotient, edx = remainder |
| __ idivl(second_reg); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>()); |
| DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>()); |
| |
| if (is_div) { |
| codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); |
| } else { |
| codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitDiv(HDiv* div) { |
| LocationSummary::CallKind call_kind = (div->GetResultType() == DataType::Type::kInt64) |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind); |
| |
| switch (div->GetResultType()) { |
| case DataType::Type::kInt32: { |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Intel uses edx:eax as the dividend. |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| // We need to save the numerator while we tweak eax and edx. As we are using imul in a way |
| // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as |
| // output and request another temp. |
| if (div->InputAt(1)->IsIntConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case DataType::Type::kInt64: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| // Runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (div->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(div->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (div->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) { |
| LocationSummary* locations = div->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| switch (div->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GenerateDivRemIntegral(div); |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| if (second.IsFpuRegister()) { |
| __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ divss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| const_area->GetConstant()->AsFloatConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| if (second.IsFpuRegister()) { |
| __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { |
| HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); |
| DCHECK(const_area->IsEmittedAtUseSite()); |
| __ divsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| const_area->GetConstant()->AsDoubleConstant()->GetValue(), |
| const_area->GetBaseMethodAddress(), |
| const_area->GetLocations()->InAt(0).AsRegister<Register>())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitRem(HRem* rem) { |
| DataType::Type type = rem->GetResultType(); |
| |
| LocationSummary::CallKind call_kind = (rem->GetResultType() == DataType::Type::kInt64) |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case DataType::Type::kInt32: { |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| locations->SetOut(Location::RegisterLocation(EDX)); |
| // We need to save the numerator while we tweak eax and edx. As we are using imul in a way |
| // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as |
| // output and request another temp. |
| if (rem->InputAt(1)->IsIntConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| case DataType::Type::kInt64: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| // Runtime helper puts the result in EAX, EDX. |
| locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); |
| break; |
| } |
| case DataType::Type::kFloat64: |
| case DataType::Type::kFloat32: { |
| locations->SetInAt(0, Location::Any()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RegisterLocation(EAX)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitRem(HRem* rem) { |
| DataType::Type type = rem->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GenerateDivRemIntegral(rem); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| GenerateRemFP(rem); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) { |
| LocationSummary* locations = new (allocator) LocationSummary(minmax); |
| switch (minmax->GetResultType()) { |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Register to use to perform a long subtract to set cc. |
| locations->AddTemp(Location::RequiresRegister()); |
| break; |
| case DataType::Type::kFloat32: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| break; |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateMinMaxInt(LocationSummary* locations, |
| bool is_min, |
| DataType::Type type) { |
| Location op1_loc = locations->InAt(0); |
| Location op2_loc = locations->InAt(1); |
| |
| // Shortcut for same input locations. |
| if (op1_loc.Equals(op2_loc)) { |
| // Can return immediately, as op1_loc == out_loc. |
| // Note: if we ever support separate registers, e.g., output into memory, we need to check for |
| // a copy here. |
| DCHECK(locations->Out().Equals(op1_loc)); |
| return; |
| } |
| |
| if (type == DataType::Type::kInt64) { |
| // Need to perform a subtract to get the sign right. |
| // op1 is already in the same location as the output. |
| Location output = locations->Out(); |
| Register output_lo = output.AsRegisterPairLow<Register>(); |
| Register output_hi = output.AsRegisterPairHigh<Register>(); |
| |
| Register op2_lo = op2_loc.AsRegisterPairLow<Register>(); |
| Register op2_hi = op2_loc.AsRegisterPairHigh<Register>(); |
| |
| // The comparison is performed by subtracting the second operand from |
| // the first operand and then setting the status flags in the same |
| // manner as the SUB instruction." |
| __ cmpl(output_lo, op2_lo); |
| |
| // Now use a temp and the borrow to finish the subtraction of op2_hi. |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, output_hi); |
| __ sbbl(temp, op2_hi); |
| |
| // Now the condition code is correct. |
| Condition cond = is_min ? Condition::kGreaterEqual : Condition::kLess; |
| __ cmovl(cond, output_lo, op2_lo); |
| __ cmovl(cond, output_hi, op2_hi); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt32); |
| Register out = locations->Out().AsRegister<Register>(); |
| Register op2 = op2_loc.AsRegister<Register>(); |
| |
| // (out := op1) |
| // out <=? op2 |
| // if out is min jmp done |
| // out := op2 |
| // done: |
| |
| __ cmpl(out, op2); |
| Condition cond = is_min ? Condition::kGreater : Condition::kLess; |
| __ cmovl(cond, out, op2); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateMinMaxFP(LocationSummary* locations, |
| bool is_min, |
| DataType::Type type) { |
| Location op1_loc = locations->InAt(0); |
| Location op2_loc = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); |
| |
| // Shortcut for same input locations. |
| if (op1_loc.Equals(op2_loc)) { |
| DCHECK(out_loc.Equals(op1_loc)); |
| return; |
| } |
| |
| // (out := op1) |
| // out <=? op2 |
| // if Nan jmp Nan_label |
| // if out is min jmp done |
| // if op2 is min jmp op2_label |
| // handle -0/+0 |
| // jmp done |
| // Nan_label: |
| // out := NaN |
| // op2_label: |
| // out := op2 |
| // done: |
| // |
| // This removes one jmp, but needs to copy one input (op1) to out. |
| // |
| // TODO: This is straight from Quick (except literal pool). Make NaN an out-of-line slowpath? |
| |
| XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>(); |
| |
| NearLabel nan, done, op2_label; |
| if (type == DataType::Type::kFloat64) { |
| __ ucomisd(out, op2); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| __ ucomiss(out, op2); |
| } |
| |
| __ j(Condition::kParityEven, &nan); |
| |
| __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label); |
| __ j(is_min ? Condition::kBelow : Condition::kAbove, &done); |
| |
| // Handle 0.0/-0.0. |
| if (is_min) { |
| if (type == DataType::Type::kFloat64) { |
| __ orpd(out, op2); |
| } else { |
| __ orps(out, op2); |
| } |
| } else { |
| if (type == DataType::Type::kFloat64) { |
| __ andpd(out, op2); |
| } else { |
| __ andps(out, op2); |
| } |
| } |
| __ jmp(&done); |
| |
| // NaN handling. |
| __ Bind(&nan); |
| if (type == DataType::Type::kFloat64) { |
| // TODO: Use a constant from the constant table (requires extra input). |
| __ LoadLongConstant(out, kDoubleNaN); |
| } else { |
| Register constant = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(constant, Immediate(kFloatNaN)); |
| __ movd(out, constant); |
| } |
| __ jmp(&done); |
| |
| // out := op2; |
| __ Bind(&op2_label); |
| if (type == DataType::Type::kFloat64) { |
| __ movsd(out, op2); |
| } else { |
| __ movss(out, op2); |
| } |
| |
| // Done. |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateMinMax(HBinaryOperation* minmax, bool is_min) { |
| DataType::Type type = minmax->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| GenerateMinMaxInt(minmax->GetLocations(), is_min, type); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateMinMaxFP(minmax->GetLocations(), is_min, type); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for HMinMax " << type; |
| } |
| } |
| |
| void LocationsBuilderX86::VisitMin(HMin* min) { |
| CreateMinMaxLocations(GetGraph()->GetAllocator(), min); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMin(HMin* min) { |
| GenerateMinMax(min, /*is_min*/ true); |
| } |
| |
| void LocationsBuilderX86::VisitMax(HMax* max) { |
| CreateMinMaxLocations(GetGraph()->GetAllocator(), max); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMax(HMax* max) { |
| GenerateMinMax(max, /*is_min*/ false); |
| } |
| |
| void LocationsBuilderX86::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RegisterLocation(EAX)); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RegisterLocation(EDX)); |
| break; |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| locations->AddTemp(Location::RequiresRegister()); |
| break; |
| case DataType::Type::kFloat32: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| break; |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for HAbs " << abs->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = abs->GetLocations(); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: { |
| Register out = locations->Out().AsRegister<Register>(); |
| DCHECK_EQ(out, EAX); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| DCHECK_EQ(temp, EDX); |
| // Sign extend EAX into EDX. |
| __ cdq(); |
| // XOR EAX with sign. |
| __ xorl(EAX, EDX); |
| // Subtract out sign to correct. |
| __ subl(EAX, EDX); |
| // The result is in EAX. |
| break; |
| } |
| case DataType::Type::kInt64: { |
| Location input = locations->InAt(0); |
| Register input_lo = input.AsRegisterPairLow<Register>(); |
| Register input_hi = input.AsRegisterPairHigh<Register>(); |
| Location output = locations->Out(); |
| Register output_lo = output.AsRegisterPairLow<Register>(); |
| Register output_hi = output.AsRegisterPairHigh<Register>(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| // Compute the sign into the temporary. |
| __ movl(temp, input_hi); |
| __ sarl(temp, Immediate(31)); |
| // Store the sign into the output. |
| __ movl(output_lo, temp); |
| __ movl(output_hi, temp); |
| // XOR the input to the output. |
| __ xorl(output_lo, input_lo); |
| __ xorl(output_hi, input_hi); |
| // Subtract the sign. |
| __ subl(output_lo, temp); |
| __ sbbl(output_hi, temp); |
| break; |
| } |
| case DataType::Type::kFloat32: { |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| Register constant = locations->GetTemp(1).AsRegister<Register>(); |
| __ movl(constant, Immediate(INT32_C(0x7FFFFFFF))); |
| __ movd(temp, constant); |
| __ andps(out, temp); |
| break; |
| } |
| case DataType::Type::kFloat64: { |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| // TODO: Use a constant from the constant table (requires extra input). |
| __ LoadLongConstant(temp, INT64_C(0x7FFFFFFFFFFFFFFF)); |
| __ andpd(out, temp); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HAbs " << abs->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| switch (instruction->GetType()) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: { |
| locations->SetInAt(0, Location::Any()); |
| break; |
| } |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| if (!instruction->IsConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCode* slow_path = |
| new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location value = locations->InAt(0); |
| |
| switch (instruction->GetType()) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: { |
| if (value.IsRegister()) { |
| __ testl(value.AsRegister<Register>(), value.AsRegister<Register>()); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else if (value.IsStackSlot()) { |
| __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| case DataType::Type::kInt64: { |
| if (value.IsRegisterPair()) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value.AsRegisterPairLow<Register>()); |
| __ orl(temp, value.AsRegisterPairHigh<Register>()); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType(); |
| } |
| } |
| |
| void LocationsBuilderX86::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(op, LocationSummary::kNoCall); |
| |
| switch (op->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| // Can't have Location::Any() and output SameAsFirstInput() |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // The shift count needs to be in CL or a constant. |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected op type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = op->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| |
| switch (op->GetResultType()) { |
| case DataType::Type::kInt32: { |
| DCHECK(first.IsRegister()); |
| Register first_reg = first.AsRegister<Register>(); |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| DCHECK_EQ(ECX, second_reg); |
| if (op->IsShl()) { |
| __ shll(first_reg, second_reg); |
| } else if (op->IsShr()) { |
| __ sarl(first_reg, second_reg); |
| } else { |
| __ shrl(first_reg, second_reg); |
| } |
| } else { |
| int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance; |
| if (shift == 0) { |
| return; |
| } |
| Immediate imm(shift); |
| if (op->IsShl()) { |
| __ shll(first_reg, imm); |
| } else if (op->IsShr()) { |
| __ sarl(first_reg, imm); |
| } else { |
| __ shrl(first_reg, imm); |
| } |
| } |
| break; |
| } |
| case DataType::Type::kInt64: { |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| DCHECK_EQ(ECX, second_reg); |
| if (op->IsShl()) { |
| GenerateShlLong(first, second_reg); |
| } else if (op->IsShr()) { |
| GenerateShrLong(first, second_reg); |
| } else { |
| GenerateUShrLong(first, second_reg); |
| } |
| } else { |
| // Shift by a constant. |
| int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance; |
| // Nothing to do if the shift is 0, as the input is already the output. |
| if (shift != 0) { |
| if (op->IsShl()) { |
| GenerateShlLong(first, shift); |
| } else if (op->IsShr()) { |
| GenerateShrLong(first, shift); |
| } else { |
| GenerateUShrLong(first, shift); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected op type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 1) { |
| // This is just an addition. |
| __ addl(low, low); |
| __ adcl(high, high); |
| } else if (shift == 32) { |
| // Shift by 32 is easy. High gets low, and low gets 0. |
| codegen_->EmitParallelMoves( |
| loc.ToLow(), |
| loc.ToHigh(), |
| DataType::Type::kInt32, |
| Location::ConstantLocation(GetGraph()->GetIntConstant(0)), |
| loc.ToLow(), |
| DataType::Type::kInt32); |
| } else if (shift > 32) { |
| // Low part becomes 0. High part is low part << (shift-32). |
| __ movl(high, low); |
| __ shll(high, Immediate(shift - 32)); |
| __ xorl(low, low); |
| } else { |
| // Between 1 and 31. |
| __ shld(high, low, Immediate(shift)); |
| __ shll(low, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter); |
| __ shll(loc.AsRegisterPairLow<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>()); |
| __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0)); |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 32) { |
| // Need to copy the sign. |
| DCHECK_NE(low, high); |
| __ movl(low, high); |
| __ sarl(high, Immediate(31)); |
| } else if (shift > 32) { |
| DCHECK_NE(low, high); |
| // High part becomes sign. Low part is shifted by shift - 32. |
| __ movl(low, high); |
| __ sarl(high, Immediate(31)); |
| __ sarl(low, Immediate(shift - 32)); |
| } else { |
| // Between 1 and 31. |
| __ shrd(low, high, Immediate(shift)); |
| __ sarl(high, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); |
| __ sarl(loc.AsRegisterPairHigh<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); |
| __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31)); |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) { |
| Register low = loc.AsRegisterPairLow<Register>(); |
| Register high = loc.AsRegisterPairHigh<Register>(); |
| if (shift == 32) { |
| // Shift by 32 is easy. Low gets high, and high gets 0. |
| codegen_->EmitParallelMoves( |
| loc.ToHigh(), |
| loc.ToLow(), |
| DataType::Type::kInt32, |
| Location::ConstantLocation(GetGraph()->GetIntConstant(0)), |
| loc.ToHigh(), |
| DataType::Type::kInt32); |
| } else if (shift > 32) { |
| // Low part is high >> (shift - 32). High part becomes 0. |
| __ movl(low, high); |
| __ shrl(low, Immediate(shift - 32)); |
| __ xorl(high, high); |
| } else { |
| // Between 1 and 31. |
| __ shrd(low, high, Immediate(shift)); |
| __ shrl(high, Immediate(shift)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) { |
| NearLabel done; |
| __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); |
| __ shrl(loc.AsRegisterPairHigh<Register>(), shifter); |
| __ testl(shifter, Immediate(32)); |
| __ j(kEqual, &done); |
| __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); |
| __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0)); |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderX86::VisitRor(HRor* ror) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(ror, LocationSummary::kNoCall); |
| |
| switch (ror->GetResultType()) { |
| case DataType::Type::kInt64: |
| // Add the temporary needed. |
| locations->AddTemp(Location::RequiresRegister()); |
| FALLTHROUGH_INTENDED; |
| case DataType::Type::kInt32: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // The shift count needs to be in CL (unless it is a constant). |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitRor(HRor* ror) { |
| LocationSummary* locations = ror->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| if (ror->GetResultType() == DataType::Type::kInt32) { |
| Register first_reg = first.AsRegister<Register>(); |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| __ rorl(first_reg, second_reg); |
| } else { |
| Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance); |
| __ rorl(first_reg, imm); |
| } |
| return; |
| } |
| |
| DCHECK_EQ(ror->GetResultType(), DataType::Type::kInt64); |
| Register first_reg_lo = first.AsRegisterPairLow<Register>(); |
| Register first_reg_hi = first.AsRegisterPairHigh<Register>(); |
| Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| DCHECK_EQ(second_reg, ECX); |
| __ movl(temp_reg, first_reg_hi); |
| __ shrd(first_reg_hi, first_reg_lo, second_reg); |
| __ shrd(first_reg_lo, temp_reg, second_reg); |
| __ movl(temp_reg, first_reg_hi); |
| __ testl(second_reg, Immediate(32)); |
| __ cmovl(kNotEqual, first_reg_hi, first_reg_lo); |
| __ cmovl(kNotEqual, first_reg_lo, temp_reg); |
| } else { |
| int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance; |
| if (shift_amt == 0) { |
| // Already fine. |
| return; |
| } |
| if (shift_amt == 32) { |
| // Just swap. |
| __ movl(temp_reg, first_reg_lo); |
| __ movl(first_reg_lo, first_reg_hi); |
| __ movl(first_reg_hi, temp_reg); |
| return; |
| } |
| |
| Immediate imm(shift_amt); |
| // Save the constents of the low value. |
| __ movl(temp_reg, first_reg_lo); |
| |
| // Shift right into low, feeding bits from high. |
| __ shrd(first_reg_lo, first_reg_hi, imm); |
| |
| // Shift right into high, feeding bits from the original low. |
| __ shrd(first_reg_hi, temp_reg, imm); |
| |
| // Swap if needed. |
| if (shift_amt > 32) { |
| __ movl(temp_reg, first_reg_lo); |
| __ movl(first_reg_lo, first_reg_hi); |
| __ movl(first_reg_hi, temp_reg); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderX86::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderX86::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference. |
| QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction); |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kX86PointerSize).SizeValue(); |
| __ movl(locations->Out().AsRegister<Register>(), |
| Address(locations->InAt(0).AsRegister<Register>(), method_offset)); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kX86PointerSize)); |
| __ movl(locations->Out().AsRegister<Register>(), |
| Address(locations->InAt(0).AsRegister<Register>(), |
| mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value())); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ movl(locations->Out().AsRegister<Register>(), |
| Address(locations->Out().AsRegister<Register>(), method_offset)); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitNot(HNot* not_) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(not_, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNot(HNot* not_) { |
| LocationSummary* locations = not_->GetLocations(); |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| DCHECK(in.Equals(out)); |
| switch (not_->GetResultType()) { |
| case DataType::Type::kInt32: |
| __ notl(out.AsRegister<Register>()); |
| break; |
| |
| case DataType::Type::kInt64: |
| __ notl(out.AsRegisterPairLow<Register>()); |
| __ notl(out.AsRegisterPairHigh<Register>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(bool_not, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = bool_not->GetLocations(); |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| DCHECK(in.Equals(out)); |
| __ xorl(out.AsRegister<Register>(), Immediate(1)); |
| } |
| |
| void LocationsBuilderX86::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall); |
| switch (compare->InputAt(0)->GetType()) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| if (compare->InputAt(1)->IsX86LoadFromConstantTable()) { |
| DCHECK(compare->InputAt(1)->IsEmittedAtUseSite()); |
| } else if (compare->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = compare->GetLocations(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| NearLabel less, greater, done; |
| Condition less_cond = kLess; |
| |
| switch (compare->InputAt(0)->GetType()) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: { |
| codegen_->GenerateIntCompare(left, right); |
| break; |
| } |
| case DataType::Type::kInt64: { |
| Register left_low = left.AsRegisterPairLow<Register>(); |
| Register left_high = left.AsRegisterPairHigh<Register>(); |
| int32_t val_low = 0; |
| int32_t val_high = 0; |
| bool right_is_const = false; |
| |
| if (right.IsConstant()) { |
| DCHECK(right.GetConstant()->IsLongConstant()); |
| right_is_const = true; |
| int64_t val = right.GetConstant()->AsLongConstant()->GetValue(); |
| val_low = Low32Bits(val); |
| val_high = High32Bits(val); |
| } |
| |
| if (right.IsRegisterPair()) { |
| __ cmpl(left_high, right.AsRegisterPairHigh<Register>()); |
| } else if (right.IsDoubleStackSlot()) { |
| __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(right_is_const) << right; |
| codegen_->Compare32BitValue(left_high, val_high); |
| } |
| __ j(kLess, &less); // Signed compare. |
| __ j(kGreater, &greater); // Signed compare. |
| if (right.IsRegisterPair()) { |
| __ cmpl(left_low, right.AsRegisterPairLow<Register>()); |
| } else if (right.IsDoubleStackSlot()) { |
| __ cmpl(left_low, Address(ESP, right.GetStackIndex())); |
| } else { |
| DCHECK(right_is_const) << right; |
| codegen_->Compare32BitValue(left_low, val_low); |
| } |
| less_cond = kBelow; // for CF (unsigned). |
| break; |
| } |
| case DataType::Type::kFloat32: { |
| GenerateFPCompare(left, right, compare, false); |
| __ j(kUnordered, compare->IsGtBias() ? &greater : &less); |
| less_cond = kBelow; // for CF (floats). |
| break; |
| } |
| case DataType::Type::kFloat64: { |
| GenerateFPCompare(left, right, compare, true); |
| __ j(kUnordered, compare->IsGtBias() ? &greater : &less); |
| less_cond = kBelow; // for CF (floats). |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| |
| __ movl(out, Immediate(0)); |
| __ j(kEqual, &done); |
| __ j(less_cond, &less); |
| |
| __ Bind(&greater); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| |
| __ Bind(&less); |
| __ movl(out, Immediate(-1)); |
| |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderX86::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) { |
| /* |
| * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. |
| * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. |
| * For those cases, all we need to ensure is that there is a scheduling barrier in place. |
| */ |
| switch (kind) { |
| case MemBarrierKind::kAnyAny: { |
| MemoryFence(); |
| break; |
| } |
| case MemBarrierKind::kAnyStore: |
| case MemBarrierKind::kLoadAny: |
| case MemBarrierKind::kStoreStore: { |
| // nop |
| break; |
| } |
| case MemBarrierKind::kNTStoreStore: |
| // Non-Temporal Store/Store needs an explicit fence. |
| MemoryFence(/* non-temporal= */ true); |
| break; |
| } |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| ArtMethod* method ATTRIBUTE_UNUSED) { |
| return desired_dispatch_info; |
| } |
| |
| Register CodeGeneratorX86::GetInvokeExtraParameter(HInvoke* invoke, Register temp) { |
| if (invoke->IsInvokeStaticOrDirect()) { |
| return GetInvokeStaticOrDirectExtraParameter(invoke->AsInvokeStaticOrDirect(), temp); |
| } |
| DCHECK(invoke->IsInvokeInterface()); |
| Location location = |
| invoke->GetLocations()->InAt(invoke->AsInvokeInterface()->GetSpecialInputIndex()); |
| return location.AsRegister<Register>(); |
| } |
| |
| Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, |
| Register temp) { |
| Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| if (!invoke->GetLocations()->Intrinsified()) { |
| return location.AsRegister<Register>(); |
| } |
| // For intrinsics we allow any location, so it may be on the stack. |
| if (!location.IsRegister()) { |
| __ movl(temp, Address(ESP, location.GetStackIndex())); |
| return temp; |
| } |
| // For register locations, check if the register was saved. If so, get it from the stack. |
| // Note: There is a chance that the register was saved but not overwritten, so we could |
| // save one load. However, since this is just an intrinsic slow path we prefer this |
| // simple and more robust approach rather that trying to determine if that's the case. |
| SlowPathCode* slow_path = GetCurrentSlowPath(); |
| DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path. |
| if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) { |
| int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>()); |
| __ movl(temp, Address(ESP, stack_offset)); |
| return temp; |
| } |
| return location.AsRegister<Register>(); |
| } |
| |
| void CodeGeneratorX86::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) { |
| switch (load_kind) { |
| case MethodLoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); |
| Register base_reg = GetInvokeExtraParameter(invoke, temp.AsRegister<Register>()); |
| __ leal(temp.AsRegister<Register>(), |
| Address(base_reg, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| RecordBootImageMethodPatch(invoke); |
| break; |
| } |
| case MethodLoadKind::kBootImageRelRo: { |
| size_t index = invoke->IsInvokeInterface() |
| ? invoke->AsInvokeInterface()->GetSpecialInputIndex() |
| : invoke->AsInvokeStaticOrDirect()->GetSpecialInputIndex(); |
| Register base_reg = GetInvokeExtraParameter(invoke, temp.AsRegister<Register>()); |
| __ movl(temp.AsRegister<Register>(), Address(base_reg, kPlaceholder32BitOffset)); |
| RecordBootImageRelRoPatch( |
| invoke->InputAt(index)->AsX86ComputeBaseMethodAddress(), |
| GetBootImageOffset(invoke)); |
| break; |
| } |
| case MethodLoadKind::kBssEntry: { |
| Register base_reg = GetInvokeExtraParameter(invoke, temp.AsRegister<Register>()); |
| __ movl(temp.AsRegister<Register>(), Address(base_reg, kPlaceholder32BitOffset)); |
| RecordMethodBssEntryPatch(invoke); |
| // No need for memory fence, thanks to the x86 memory model. |
| break; |
| } |
| case MethodLoadKind::kJitDirectAddress: { |
| __ movl(temp.AsRegister<Register>(), |
| Immediate(reinterpret_cast32<uint32_t>(invoke->GetResolvedMethod()))); |
| break; |
| } |
| case MethodLoadKind::kRuntimeCall: { |
| // Test situation, don't do anything. |
| break; |
| } |
| default: { |
| LOG(FATAL) << "Load kind should have already been handled " << load_kind; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void CodeGeneratorX86::GenerateStaticOrDirectCall( |
| HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case MethodLoadKind::kStringInit: { |
| // temp = thread->string_init_entrypoint |
| uint32_t offset = |
| GetThreadOffset<kX86PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(offset)); |
| break; |
| } |
| case MethodLoadKind::kRecursive: { |
| callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex()); |
| break; |
| } |
| case MethodLoadKind::kRuntimeCall: { |
| GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); |
| return; // No code pointer retrieval; the runtime performs the call directly. |
| } |
| case MethodLoadKind::kBootImageLinkTimePcRelative: |
| // For kCallCriticalNative we skip loading the method and do the call directly. |
| if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| default: { |
| LoadMethod(invoke->GetMethodLoadKind(), callee_method, invoke); |
| } |
| } |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case CodePtrLocation::kCallSelf: |
| DCHECK(!GetGraph()->HasShouldDeoptimizeFlag()); |
| __ call(GetFrameEntryLabel()); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| break; |
| case CodePtrLocation::kCallCriticalNative: { |
| size_t out_frame_size = |
| PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorX86, |
| kNativeStackAlignment, |
| GetCriticalNativeDirectCallFrameSize>(invoke); |
| if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) { |
| DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); |
| Register base_reg = GetInvokeExtraParameter(invoke, temp.AsRegister<Register>()); |
| __ call(Address(base_reg, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| RecordBootImageJniEntrypointPatch(invoke); |
| } else { |
| // (callee_method + offset_of_jni_entry_point)() |
| __ call(Address(callee_method.AsRegister<Register>(), |
| ArtMethod::EntryPointFromJniOffset(kX86PointerSize).Int32Value())); |
| } |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| if (out_frame_size == 0u && DataType::IsFloatingPointType(invoke->GetType())) { |
| // Create space for conversion. |
| out_frame_size = 8u; |
| IncreaseFrame(out_frame_size); |
| } |
| // Zero-/sign-extend or move the result when needed due to native and managed ABI mismatch. |
| switch (invoke->GetType()) { |
| case DataType::Type::kBool: |
| __ movzxb(EAX, AL); |
| break; |
| case DataType::Type::kInt8: |
| __ movsxb(EAX, AL); |
| break; |
| case DataType::Type::kUint16: |
| __ movzxw(EAX, EAX); |
| break; |
| case DataType::Type::kInt16: |
| __ movsxw(EAX, EAX); |
| break; |
| case DataType::Type::kFloat32: |
| __ fstps(Address(ESP, 0)); |
| __ movss(XMM0, Address(ESP, 0)); |
| break; |
| case DataType::Type::kFloat64: |
| __ fstpl(Address(ESP, 0)); |
| __ movsd(XMM0, Address(ESP, 0)); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| case DataType::Type::kVoid: |
| break; |
| default: |
| DCHECK(false) << invoke->GetType(); |
| break; |
| } |
| if (out_frame_size != 0u) { |
| DecreaseFrame(out_frame_size); |
| } |
| break; |
| } |
| case CodePtrLocation::kCallArtMethod: |
| // (callee_method + offset_of_quick_compiled_code)() |
| __ call(Address(callee_method.AsRegister<Register>(), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kX86PointerSize).Int32Value())); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| break; |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorX86::GenerateVirtualCall( |
| HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) { |
| Register temp = temp_in.AsRegister<Register>(); |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kX86PointerSize).Uint32Value(); |
| |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| Register receiver = calling_convention.GetRegisterAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ movl(temp, Address(receiver, class_offset)); |
| MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| MaybeGenerateInlineCacheCheck(invoke, temp); |
| |
| // temp = temp->GetMethodAt(method_offset); |
| __ movl(temp, Address(temp, method_offset)); |
| // call temp->GetEntryPoint(); |
| __ call(Address( |
| temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value())); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| |
| void CodeGeneratorX86::RecordBootImageIntrinsicPatch(HX86ComputeBaseMethodAddress* method_address, |
| uint32_t intrinsic_data) { |
| boot_image_other_patches_.emplace_back( |
| method_address, /* target_dex_file= */ nullptr, intrinsic_data); |
| __ Bind(&boot_image_other_patches_.back().label); |
| } |
| |
| void CodeGeneratorX86::RecordBootImageRelRoPatch(HX86ComputeBaseMethodAddress* method_address, |
| uint32_t boot_image_offset) { |
| boot_image_other_patches_.emplace_back( |
| method_address, /* target_dex_file= */ nullptr, boot_image_offset); |
| __ Bind(&boot_image_other_patches_.back().label); |
| } |
| |
| void CodeGeneratorX86::RecordBootImageMethodPatch(HInvoke* invoke) { |
| size_t index = invoke->IsInvokeInterface() |
| ? invoke->AsInvokeInterface()->GetSpecialInputIndex() |
| : invoke->AsInvokeStaticOrDirect()->GetSpecialInputIndex(); |
| HX86ComputeBaseMethodAddress* method_address = |
| invoke->InputAt(index)->AsX86ComputeBaseMethodAddress(); |
| boot_image_method_patches_.emplace_back( |
| method_address, |
| invoke->GetResolvedMethodReference().dex_file, |
| invoke->GetResolvedMethodReference().index); |
| __ Bind(&boot_image_method_patches_.back().label); |
| } |
| |
| void CodeGeneratorX86::RecordMethodBssEntryPatch(HInvoke* invoke) { |
| size_t index = invoke->IsInvokeInterface() |
| ? invoke->AsInvokeInterface()->GetSpecialInputIndex() |
| : invoke->AsInvokeStaticOrDirect()->GetSpecialInputIndex(); |
| DCHECK(IsSameDexFile(GetGraph()->GetDexFile(), *invoke->GetMethodReference().dex_file) || |
| GetCompilerOptions().WithinOatFile(invoke->GetMethodReference().dex_file) || |
| ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(), |
| invoke->GetMethodReference().dex_file)); |
| HX86ComputeBaseMethodAddress* method_address = |
| invoke->InputAt(index)->AsX86ComputeBaseMethodAddress(); |
| // Add the patch entry and bind its label at the end of the instruction. |
| method_bss_entry_patches_.emplace_back( |
| method_address, |
| invoke->GetMethodReference().dex_file, |
| invoke->GetMethodReference().index); |
| __ Bind(&method_bss_entry_patches_.back().label); |
| } |
| |
| void CodeGeneratorX86::RecordBootImageTypePatch(HLoadClass* load_class) { |
| HX86ComputeBaseMethodAddress* method_address = |
| load_class->InputAt(0)->AsX86ComputeBaseMethodAddress(); |
| boot_image_type_patches_.emplace_back( |
| method_address, &load_class->GetDexFile(), load_class->GetTypeIndex().index_); |
| __ Bind(&boot_image_type_patches_.back().label); |
| } |
| |
| Label* CodeGeneratorX86::NewTypeBssEntryPatch(HLoadClass* load_class) { |
| HX86ComputeBaseMethodAddress* method_address = |
| load_class->InputAt(0)->AsX86ComputeBaseMethodAddress(); |
| ArenaDeque<X86PcRelativePatchInfo>* patches = nullptr; |
| switch (load_class->GetLoadKind()) { |
| case HLoadClass::LoadKind::kBssEntry: |
| patches = &type_bss_entry_patches_; |
| break; |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| patches = &public_type_bss_entry_patches_; |
| break; |
| case HLoadClass::LoadKind::kBssEntryPackage: |
| patches = &package_type_bss_entry_patches_; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind(); |
| UNREACHABLE(); |
| } |
| patches->emplace_back( |
| method_address, &load_class->GetDexFile(), load_class->GetTypeIndex().index_); |
| return &patches->back().label; |
| } |
| |
| void CodeGeneratorX86::RecordBootImageStringPatch(HLoadString* load_string) { |
| HX86ComputeBaseMethodAddress* method_address = |
| load_string->InputAt(0)->AsX86ComputeBaseMethodAddress(); |
| boot_image_string_patches_.emplace_back( |
| method_address, &load_string->GetDexFile(), load_string->GetStringIndex().index_); |
| __ Bind(&boot_image_string_patches_.back().label); |
| } |
| |
| Label* CodeGeneratorX86::NewStringBssEntryPatch(HLoadString* load_string) { |
| HX86ComputeBaseMethodAddress* method_address = |
| load_string->InputAt(0)->AsX86ComputeBaseMethodAddress(); |
| string_bss_entry_patches_.emplace_back( |
| method_address, &load_string->GetDexFile(), load_string->GetStringIndex().index_); |
| return &string_bss_entry_patches_.back().label; |
| } |
| |
| void CodeGeneratorX86::RecordBootImageJniEntrypointPatch(HInvokeStaticOrDirect* invoke) { |
| HX86ComputeBaseMethodAddress* method_address = |
| invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress(); |
| boot_image_jni_entrypoint_patches_.emplace_back( |
| method_address, |
| invoke->GetResolvedMethodReference().dex_file, |
| invoke->GetResolvedMethodReference().index); |
| __ Bind(&boot_image_jni_entrypoint_patches_.back().label); |
| } |
| |
| void CodeGeneratorX86::LoadBootImageAddress(Register reg, |
| uint32_t boot_image_reference, |
| HInvokeStaticOrDirect* invoke) { |
| if (GetCompilerOptions().IsBootImage()) { |
| HX86ComputeBaseMethodAddress* method_address = |
| invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress(); |
| DCHECK(method_address != nullptr); |
| Register method_address_reg = |
| invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()).AsRegister<Register>(); |
| __ leal(reg, Address(method_address_reg, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| RecordBootImageIntrinsicPatch(method_address, boot_image_reference); |
| } else if (GetCompilerOptions().GetCompilePic()) { |
| HX86ComputeBaseMethodAddress* method_address = |
| invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress(); |
| DCHECK(method_address != nullptr); |
| Register method_address_reg = |
| invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()).AsRegister<Register>(); |
| __ movl(reg, Address(method_address_reg, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| RecordBootImageRelRoPatch(method_address, boot_image_reference); |
| } else { |
| DCHECK(GetCompilerOptions().IsJitCompiler()); |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| DCHECK(!heap->GetBootImageSpaces().empty()); |
| const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference; |
| __ movl(reg, Immediate(dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(address)))); |
| } |
| } |
| |
| void CodeGeneratorX86::LoadIntrinsicDeclaringClass(Register reg, HInvokeStaticOrDirect* invoke) { |
| DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone); |
| if (GetCompilerOptions().IsBootImage()) { |
| // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. |
| HX86ComputeBaseMethodAddress* method_address = |
| invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress(); |
| DCHECK(method_address != nullptr); |
| Register method_address_reg = |
| invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()).AsRegister<Register>(); |
| __ leal(reg, Address(method_address_reg, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| MethodReference target_method = invoke->GetResolvedMethodReference(); |
| dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; |
| boot_image_type_patches_.emplace_back(method_address, target_method.dex_file, type_idx.index_); |
| __ Bind(&boot_image_type_patches_.back().label); |
| } else { |
| uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke); |
| LoadBootImageAddress(reg, boot_image_offset, invoke); |
| } |
| } |
| |
| // The label points to the end of the "movl" or another instruction but the literal offset |
| // for method patch needs to point to the embedded constant which occupies the last 4 bytes. |
| constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u; |
| |
| template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorX86::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<X86PcRelativePatchInfo>& infos, |
| ArenaVector<linker::LinkerPatch>* linker_patches) { |
| for (const X86PcRelativePatchInfo& info : infos) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back(Factory(literal_offset, |
| info.target_dex_file, |
| GetMethodAddressOffset(info.method_address), |
| info.offset_or_index)); |
| } |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)> |
| linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, |
| const DexFile* target_dex_file, |
| uint32_t pc_insn_offset, |
| uint32_t boot_image_offset) { |
| DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null. |
| return Factory(literal_offset, pc_insn_offset, boot_image_offset); |
| } |
| |
| void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| boot_image_method_patches_.size() + |
| method_bss_entry_patches_.size() + |
| boot_image_type_patches_.size() + |
| type_bss_entry_patches_.size() + |
| public_type_bss_entry_patches_.size() + |
| package_type_bss_entry_patches_.size() + |
| boot_image_string_patches_.size() + |
| string_bss_entry_patches_.size() + |
| boot_image_jni_entrypoint_patches_.size() + |
| boot_image_other_patches_.size(); |
| linker_patches->reserve(size); |
| if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>( |
| boot_image_method_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>( |
| boot_image_type_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>( |
| boot_image_string_patches_, linker_patches); |
| } else { |
| DCHECK(boot_image_method_patches_.empty()); |
| DCHECK(boot_image_type_patches_.empty()); |
| DCHECK(boot_image_string_patches_.empty()); |
| } |
| if (GetCompilerOptions().IsBootImage()) { |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>( |
| boot_image_other_patches_, linker_patches); |
| } else { |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>( |
| boot_image_other_patches_, linker_patches); |
| } |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>( |
| method_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>( |
| type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>( |
| public_type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>( |
| package_type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>( |
| string_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>( |
| boot_image_jni_entrypoint_patches_, linker_patches); |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| void CodeGeneratorX86::MarkGCCard( |
| Register temp, Register card, Register object, Register value, bool emit_null_check) { |
| NearLabel is_null; |
| if (emit_null_check) { |
| __ testl(value, value); |
| __ j(kEqual, &is_null); |
| } |
| // Load the address of the card table into `card`. |
| __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86PointerSize>().Int32Value())); |
| // Calculate the offset (in the card table) of the card corresponding to |
| // `object`. |
| __ movl(temp, object); |
| __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift)); |
| // Write the `art::gc::accounting::CardTable::kCardDirty` value into the |
| // `object`'s card. |
| // |
| // Register `card` contains the address of the card table. Note that the card |
| // table's base is biased during its creation so that it always starts at an |
| // address whose least-significant byte is equal to `kCardDirty` (see |
| // art::gc::accounting::CardTable::Create). Therefore the MOVB instruction |
| // below writes the `kCardDirty` (byte) value into the `object`'s card |
| // (located at `card + object >> kCardShift`). |
| // |
| // This dual use of the value in register `card` (1. to calculate the location |
| // of the card to mark; and 2. to load the `kCardDirty` value) saves a load |
| // (no need to explicitly load `kCardDirty` as an immediate value). |
| __ movb(Address(temp, card, TIMES_1, 0), |
| X86ManagedRegister::FromCpuRegister(card).AsByteRegister()); |
| if (emit_null_check) { |
| __ Bind(&is_null); |
| } |
| } |
| |
| void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsPredicatedInstanceFieldGet()); |
| |
| bool object_field_get_with_read_barrier = |
| gUseReadBarrier && (instruction->GetType() == DataType::Type::kReference); |
| bool is_predicated = instruction->IsPredicatedInstanceFieldGet(); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, |
| gUseReadBarrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| // receiver_input |
| locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister()); |
| if (is_predicated) { |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(is_predicated ? Location::SameAsFirstInput() |
| : Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps in case of long: we don't want the low move |
| // to overwrite the object's location. Likewise, in the case of |
| // an object field get with read barriers enabled, we do not want |
| // the move to overwrite the object's location, as we need it to emit |
| // the read barrier. |
| locations->SetOut(is_predicated ? Location::SameAsFirstInput() : Location::RequiresRegister(), |
| (object_field_get_with_read_barrier || |
| instruction->GetType() == DataType::Type::kInt64 || |
| is_predicated) |
| ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| |
| if (field_info.IsVolatile() && (field_info.GetFieldType() == DataType::Type::kInt64)) { |
| // Long values can be loaded atomically into an XMM using movsd. |
| // So we use an XMM register as a temp to achieve atomicity (first |
| // load the temp into the XMM and then copy the XMM into the |
| // output, 32 bits at a time). |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsPredicatedInstanceFieldGet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location base_loc = locations->InAt(instruction->IsPredicatedInstanceFieldGet() ? 1 : 0); |
| Register base = base_loc.AsRegister<Register>(); |
| Location out = locations->Out(); |
| bool is_volatile = field_info.IsVolatile(); |
| DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); |
| DataType::Type load_type = instruction->GetType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| if (load_type == DataType::Type::kReference) { |
| // /* HeapReference<Object> */ out = *(base + offset) |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, base, offset, /* needs_null_check= */ true); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } else { |
| __ movl(out.AsRegister<Register>(), Address(base, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); |
| } |
| } else { |
| Address src(base, offset); |
| XmmRegister temp = (load_type == DataType::Type::kInt64 && is_volatile) |
| ? locations->GetTemp(0).AsFpuRegister<XmmRegister>() |
| : kNoXmmRegister; |
| codegen_->LoadFromMemoryNoBarrier(load_type, out, src, instruction, temp, is_volatile); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| WriteBarrierKind write_barrier_kind) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| bool is_volatile = field_info.IsVolatile(); |
| DataType::Type field_type = field_info.GetFieldType(); |
| bool is_byte_type = DataType::Size(field_type) == 1u; |
| |
| // The register allocator does not support multiple |
| // inputs that die at entry with one in a specific register. |
| if (is_byte_type) { |
| // Ensure the value is in a byte register. |
| locations->SetInAt(1, Location::RegisterLocation(EAX)); |
| } else if (DataType::IsFloatingPointType(field_type)) { |
| if (is_volatile && field_type == DataType::Type::kFloat64) { |
| // In order to satisfy the semantics of volatile, this must be a single instruction store. |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1))); |
| } |
| } else if (is_volatile && field_type == DataType::Type::kInt64) { |
| // In order to satisfy the semantics of volatile, this must be a single instruction store. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // 64bits value can be atomically written to an address with movsd and an XMM register. |
| // We need two XMM registers because there's no easier way to (bit) copy a register pair |
| // into a single XMM register (we copy each pair part into the XMMs and then interleave them). |
| // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the |
| // isolated cases when we need this it isn't worth adding the extra complexity. |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| if (write_barrier_kind != WriteBarrierKind::kDontEmit) { |
| locations->AddTemp(Location::RequiresRegister()); |
| // Ensure the card is in a byte register. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } else if (kPoisonHeapReferences) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction, |
| uint32_t value_index, |
| DataType::Type field_type, |
| Address field_addr, |
| Register base, |
| bool is_volatile, |
| bool value_can_be_null, |
| WriteBarrierKind write_barrier_kind) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location value = locations->InAt(value_index); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(value_index)); |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| bool maybe_record_implicit_null_check_done = false; |
| |
| switch (field_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: { |
| if (value.IsConstant()) { |
| __ movb(field_addr, Immediate(CodeGenerator::GetInt8ValueOf(value.GetConstant()))); |
| } else { |
| __ movb(field_addr, value.AsRegister<ByteRegister>()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: { |
| if (value.IsConstant()) { |
| __ movw(field_addr, Immediate(CodeGenerator::GetInt16ValueOf(value.GetConstant()))); |
| } else { |
| __ movw(field_addr, value.AsRegister<Register>()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: { |
| if (kPoisonHeapReferences && needs_write_barrier) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as the reference does not |
| // need poisoning. |
| DCHECK_EQ(field_type, DataType::Type::kReference); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(temp, value.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ movl(field_addr, temp); |
| } else if (value.IsConstant()) { |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movl(field_addr, Immediate(v)); |
| } else { |
| DCHECK(value.IsRegister()) << value; |
| __ movl(field_addr, value.AsRegister<Register>()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| if (is_volatile) { |
| XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| __ movd(temp1, value.AsRegisterPairLow<Register>()); |
| __ movd(temp2, value.AsRegisterPairHigh<Register>()); |
| __ punpckldq(temp1, temp2); |
| __ movsd(field_addr, temp1); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } else if (value.IsConstant()) { |
| int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant()); |
| __ movl(field_addr, Immediate(Low32Bits(v))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address::displace(field_addr, kX86WordSize), Immediate(High32Bits(v))); |
| } else { |
| __ movl(field_addr, value.AsRegisterPairLow<Register>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address::displace(field_addr, kX86WordSize), value.AsRegisterPairHigh<Register>()); |
| } |
| maybe_record_implicit_null_check_done = true; |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| if (value.IsConstant()) { |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movl(field_addr, Immediate(v)); |
| } else { |
| __ movss(field_addr, value.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| if (value.IsConstant()) { |
| DCHECK(!is_volatile); |
| int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant()); |
| __ movl(field_addr, Immediate(Low32Bits(v))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(Address::displace(field_addr, kX86WordSize), Immediate(High32Bits(v))); |
| maybe_record_implicit_null_check_done = true; |
| } else { |
| __ movsd(field_addr, value.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| if (!maybe_record_implicit_null_check_done) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (needs_write_barrier && write_barrier_kind != WriteBarrierKind::kDontEmit) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| Register card = locations->GetTemp(1).AsRegister<Register>(); |
| codegen_->MarkGCCard( |
| temp, |
| card, |
| base, |
| value.AsRegister<Register>(), |
| value_can_be_null && write_barrier_kind == WriteBarrierKind::kEmitWithNullCheck); |
| } |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null, |
| WriteBarrierKind write_barrier_kind) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register base = locations->InAt(0).AsRegister<Register>(); |
| bool is_volatile = field_info.IsVolatile(); |
| DataType::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| bool is_predicated = |
| instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet(); |
| |
| Address field_addr(base, offset); |
| |
| NearLabel pred_is_null; |
| if (is_predicated) { |
| __ testl(base, base); |
| __ j(kEqual, &pred_is_null); |
| } |
| |
| HandleFieldSet(instruction, |
| /* value_index= */ 1, |
| field_type, |
| field_addr, |
| base, |
| is_volatile, |
| value_can_be_null, |
| write_barrier_kind); |
| |
| if (is_predicated) { |
| __ Bind(&pred_is_null); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetWriteBarrierKind()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, |
| instruction->GetFieldInfo(), |
| instruction->GetValueCanBeNull(), |
| instruction->GetWriteBarrierKind()); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetWriteBarrierKind()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, |
| instruction->GetFieldInfo(), |
| instruction->GetValueCanBeNull(), |
| instruction->GetWriteBarrierKind()); |
| } |
| |
| void LocationsBuilderX86::VisitPredicatedInstanceFieldGet( |
| HPredicatedInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitPredicatedInstanceFieldGet( |
| HPredicatedInstanceFieldGet* instruction) { |
| NearLabel finish; |
| LocationSummary* locations = instruction->GetLocations(); |
| Register recv = locations->InAt(1).AsRegister<Register>(); |
| __ testl(recv, recv); |
| __ j(kZero, &finish); |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| __ Bind(&finish); |
| } |
| void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { |
| codegen_->CreateStringBuilderAppendLocations(instruction, Location::RegisterLocation(EAX)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { |
| __ movl(EAX, Immediate(instruction->GetFormat()->GetValue())); |
| codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionX86 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks() |
| ? Location::RequiresRegister() |
| : Location::Any(); |
| locations->SetInAt(0, loc); |
| } |
| |
| void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| __ testl(EAX, Address(obj.AsRegister<Register>(), 0)); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCode* slow_path = new (GetScopedAllocator()) NullCheckSlowPathX86(instruction); |
| AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| if (obj.IsRegister()) { |
| __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>()); |
| } else if (obj.IsStackSlot()) { |
| __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0)); |
| } else { |
| DCHECK(obj.IsConstant()) << obj; |
| DCHECK(obj.GetConstant()->IsNullConstant()); |
| __ jmp(slow_path->GetEntryLabel()); |
| return; |
| } |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) { |
| bool object_array_get_with_read_barrier = |
| gUseReadBarrier && (instruction->GetType() == DataType::Type::kReference); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, |
| object_array_get_with_read_barrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in case of long: we don't want the low move |
| // to overwrite the array's location. Likewise, in the case of an |
| // object array get with read barriers enabled, we do not want the |
| // move to overwrite the array's location, as we need it to emit |
| // the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| (instruction->GetType() == DataType::Type::kInt64 || object_array_get_with_read_barrier) |
| ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); |
| |
| DataType::Type type = instruction->GetType(); |
| if (type == DataType::Type::kReference) { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ out = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call. |
| codegen_->GenerateArrayLoadWithBakerReadBarrier( |
| instruction, out_loc, obj, data_offset, index, /* needs_null_check= */ true); |
| } else { |
| Register out = out_loc.AsRegister<Register>(); |
| __ movl(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| if (index.IsConstant()) { |
| uint32_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); |
| } else { |
| codegen_->MaybeGenerateReadBarrierSlow( |
| instruction, out_loc, out_loc, obj_loc, data_offset, index); |
| } |
| } |
| } else if (type == DataType::Type::kUint16 |
| && mirror::kUseStringCompression |
| && instruction->IsStringCharAt()) { |
| // Branch cases into compressed and uncompressed for each index's type. |
| Register out = out_loc.AsRegister<Register>(); |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| NearLabel done, not_compressed; |
| __ testb(Address(obj, count_offset), Immediate(1)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ j(kNotZero, ¬_compressed); |
| __ movzxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset)); |
| __ jmp(&done); |
| __ Bind(¬_compressed); |
| __ movzxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset)); |
| __ Bind(&done); |
| } else { |
| ScaleFactor scale = CodeGenerator::ScaleFactorForType(type); |
| Address src = CodeGeneratorX86::ArrayAddress(obj, index, scale, data_offset); |
| codegen_->LoadFromMemoryNoBarrier(type, out_loc, src, instruction); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) { |
| DataType::Type value_type = instruction->GetComponentType(); |
| |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| bool needs_type_check = instruction->NeedsTypeCheck(); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, |
| needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); |
| |
| bool is_byte_type = DataType::Size(value_type) == 1u; |
| // We need the inputs to be different than the output in case of long operation. |
| // In case of a byte operation, the register allocator does not support multiple |
| // inputs that die at entry with one in a specific register. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (is_byte_type) { |
| // Ensure the value is in a byte register. |
| locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2))); |
| } else if (DataType::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2))); |
| } else { |
| locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2))); |
| } |
| if (needs_write_barrier) { |
| // Used by reference poisoning or emitting write barrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| if (instruction->GetWriteBarrierKind() != WriteBarrierKind::kDontEmit) { |
| // Only used when emitting a write barrier. Ensure the card is in a byte register. |
| locations->AddTemp(Location::RegisterLocation(ECX)); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location array_loc = locations->InAt(0); |
| Register array = array_loc.AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| Location value = locations->InAt(2); |
| DataType::Type value_type = instruction->GetComponentType(); |
| bool needs_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| |
| switch (value_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); |
| Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_1, offset); |
| if (value.IsRegister()) { |
| __ movb(address, value.AsRegister<ByteRegister>()); |
| } else { |
| __ movb(address, Immediate(CodeGenerator::GetInt8ValueOf(value.GetConstant()))); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); |
| Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_2, offset); |
| if (value.IsRegister()) { |
| __ movw(address, value.AsRegister<Register>()); |
| } else { |
| __ movw(address, Immediate(CodeGenerator::GetInt16ValueOf(value.GetConstant()))); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case DataType::Type::kReference: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset); |
| |
| if (!value.IsRegister()) { |
| // Just setting null. |
| DCHECK(instruction->InputAt(2)->IsNullConstant()); |
| DCHECK(value.IsConstant()) << value; |
| __ movl(address, Immediate(0)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| DCHECK(!needs_write_barrier); |
| DCHECK(!needs_type_check); |
| break; |
| } |
| |
| DCHECK(needs_write_barrier); |
| Register register_value = value.AsRegister<Register>(); |
| Location temp_loc = locations->GetTemp(0); |
| Register temp = temp_loc.AsRegister<Register>(); |
| |
| bool can_value_be_null = instruction->GetValueCanBeNull(); |
| NearLabel do_store; |
| if (can_value_be_null) { |
| __ testl(register_value, register_value); |
| __ j(kEqual, &do_store); |
| } |
| |
| SlowPathCode* slow_path = nullptr; |
| if (needs_type_check) { |
| slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathX86(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| |
| // Note that when Baker read barriers are enabled, the type |
| // checks are performed without read barriers. This is fine, |
| // even in the case where a class object is in the from-space |
| // after the flip, as a comparison involving such a type would |
| // not produce a false positive; it may of course produce a |
| // false negative, in which case we would take the ArraySet |
| // slow path. |
| |
| // /* HeapReference<Class> */ temp = array->klass_ |
| __ movl(temp, Address(array, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| __ movl(temp, Address(temp, component_offset)); |
| // If heap poisoning is enabled, no need to unpoison `temp` |
| // nor the object reference in `register_value->klass`, as |
| // we are comparing two poisoned references. |
| __ cmpl(temp, Address(register_value, class_offset)); |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| NearLabel do_put; |
| __ j(kEqual, &do_put); |
| // If heap poisoning is enabled, the `temp` reference has |
| // not been unpoisoned yet; unpoison it now. |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| // If heap poisoning is enabled, no need to unpoison the |
| // heap reference loaded below, as it is only used for a |
| // comparison with null. |
| __ cmpl(Address(temp, super_offset), Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| if (instruction->GetWriteBarrierKind() != WriteBarrierKind::kDontEmit) { |
| DCHECK_EQ(instruction->GetWriteBarrierKind(), WriteBarrierKind::kEmitNoNullCheck) |
| << " Already null checked so we shouldn't do it again."; |
| Register card = locations->GetTemp(1).AsRegister<Register>(); |
| codegen_->MarkGCCard(temp, |
| card, |
| array, |
| value.AsRegister<Register>(), |
| /* emit_null_check= */ false); |
| } |
| |
| if (can_value_be_null) { |
| DCHECK(do_store.IsLinked()); |
| __ Bind(&do_store); |
| } |
| |
| Register source = register_value; |
| if (kPoisonHeapReferences) { |
| __ movl(temp, register_value); |
| __ PoisonHeapReference(temp); |
| source = temp; |
| } |
| |
| __ movl(address, source); |
| |
| if (can_value_be_null || !needs_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| break; |
| } |
| |
| case DataType::Type::kInt32: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset); |
| if (value.IsRegister()) { |
| __ movl(address, value.AsRegister<Register>()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movl(address, Immediate(v)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); |
| if (value.IsRegisterPair()) { |
| __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset), |
| value.AsRegisterPairLow<Register>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize), |
| value.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| int64_t val = value.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset), |
| Immediate(Low32Bits(val))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize), |
| Immediate(High32Bits(val))); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); |
| Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset); |
| if (value.IsFpuRegister()) { |
| __ movss(address, value.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue()); |
| __ movl(address, Immediate(v)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); |
| Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset); |
| if (value.IsFpuRegister()) { |
| __ movsd(address, value.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| Address address_hi = |
| CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset + kX86WordSize); |
| int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue()); |
| __ movl(address, Immediate(Low32Bits(v))); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ movl(address_hi, Immediate(High32Bits(v))); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << instruction->GetType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| __ movl(out, Address(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // Mask out most significant bit in case the array is String's array of char. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ shrl(out, Immediate(1)); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| HInstruction* length = instruction->InputAt(1); |
| if (!length->IsEmittedAtUseSite()) { |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| } |
| // Need register to see array's length. |
| if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) { |
| const bool is_string_compressed_char_at = |
| mirror::kUseStringCompression && instruction->IsStringCharAt(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| SlowPathCode* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathX86(instruction); |
| |
| if (length_loc.IsConstant()) { |
| int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant()); |
| if (index_loc.IsConstant()) { |
| // BCE will remove the bounds check if we are guarenteed to pass. |
| int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| if (index < 0 || index >= length) { |
| codegen_->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| } else { |
| // Some optimization after BCE may have generated this, and we should not |
| // generate a bounds check if it is a valid range. |
| } |
| return; |
| } |
| |
| // We have to reverse the jump condition because the length is the constant. |
| Register index_reg = index_loc.AsRegister<Register>(); |
| __ cmpl(index_reg, Immediate(length)); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kAboveEqual, slow_path->GetEntryLabel()); |
| } else { |
| HInstruction* array_length = instruction->InputAt(1); |
| if (array_length->IsEmittedAtUseSite()) { |
| // Address the length field in the array. |
| DCHECK(array_length->IsArrayLength()); |
| uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength()); |
| Location array_loc = array_length->GetLocations()->InAt(0); |
| Address array_len(array_loc.AsRegister<Register>(), len_offset); |
| if (is_string_compressed_char_at) { |
| // TODO: if index_loc.IsConstant(), compare twice the index (to compensate for |
| // the string compression flag) with the in-memory length and avoid the temporary. |
| Register length_reg = locations->GetTemp(0).AsRegister<Register>(); |
| __ movl(length_reg, array_len); |
| codegen_->MaybeRecordImplicitNullCheck(array_length); |
| __ shrl(length_reg, Immediate(1)); |
| codegen_->GenerateIntCompare(length_reg, index_loc); |
| } else { |
| // Checking bounds for general case: |
| // Array of char or string's array with feature compression off. |
| if (index_loc.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| __ cmpl(array_len, Immediate(value)); |
| } else { |
| __ cmpl(array_len, index_loc.AsRegister<Register>()); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(array_length); |
| } |
| } else { |
| codegen_->GenerateIntCompare(length_loc, index_loc); |
| } |
| codegen_->AddSlowPath(slow_path); |
| __ j(kBelowEqual, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) { |
| if (instruction->GetNext()->IsSuspendCheck() && |
| instruction->GetBlock()->GetLoopInformation() != nullptr) { |
| HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); |
| // The back edge will generate the suspend check. |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); |
| } |
| |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnSlowPath); |
| // In suspend check slow path, usually there are no caller-save registers at all. |
| // If SIMD instructions are present, however, we force spilling all live SIMD |
| // registers in full width (since the runtime only saves/restores lower part). |
| locations->SetCustomSlowPathCallerSaves( |
| GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathX86* slow_path = |
| down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = |
| new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathX86(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| __ fs()->testl(Address::Absolute(Thread::ThreadFlagsOffset<kX86PointerSize>().Int32Value()), |
| Immediate(Thread::SuspendOrCheckpointRequestFlags())); |
| if (successor == nullptr) { |
| __ j(kNotZero, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ j(kZero, codegen_->GetLabelOf(successor)); |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| |
| X86Assembler* ParallelMoveResolverX86::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverX86::MoveMemoryToMemory(int dst, int src, int number_of_words) { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| |
| // Now that temp register is available (possibly spilled), move blocks of memory. |
| for (int i = 0; i < number_of_words; i++) { |
| __ movl(temp_reg, Address(ESP, src + stack_offset)); |
| __ movl(Address(ESP, dst + stack_offset), temp_reg); |
| stack_offset += kX86WordSize; |
| } |
| } |
| |
| void ParallelMoveResolverX86::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (destination.IsFpuRegister()) { |
| __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); |
| } |
| } else if (source.IsRegisterPair()) { |
| if (destination.IsRegisterPair()) { |
| __ movl(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>()); |
| DCHECK_NE(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>()); |
| __ movl(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>()); |
| } else if (destination.IsFpuRegister()) { |
| size_t elem_size = DataType::Size(DataType::Type::kInt32); |
| // Push the 2 source registers to the stack. |
| __ pushl(source.AsRegisterPairHigh<Register>()); |
| __ cfi().AdjustCFAOffset(elem_size); |
| __ pushl(source.AsRegisterPairLow<Register>()); |
| __ cfi().AdjustCFAOffset(elem_size); |
| // Load the destination register. |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); |
| // And remove the temporary stack space we allocated. |
| codegen_->DecreaseFrame(2 * elem_size); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()); |
| __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>()); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), |
| source.AsRegisterPairHigh<Register>()); |
| } |
| } else if (source.IsFpuRegister()) { |
| if (destination.IsRegister()) { |
| __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (destination.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (destination.IsRegisterPair()) { |
| size_t elem_size = DataType::Size(DataType::Type::kInt32); |
| // Create stack space for 2 elements. |
| codegen_->IncreaseFrame(2 * elem_size); |
| // Store the source register. |
| __ movsd(Address(ESP, 0), source.AsFpuRegister<XmmRegister>()); |
| // And pop the values into destination registers. |
| __ popl(destination.AsRegisterPairLow<Register>()); |
| __ cfi().AdjustCFAOffset(-elem_size); |
| __ popl(destination.AsRegisterPairHigh<Register>()); |
| __ cfi().AdjustCFAOffset(-elem_size); |
| } else if (destination.IsStackSlot()) { |
| __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else if (destination.IsDoubleStackSlot()) { |
| __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(destination.IsSIMDStackSlot()); |
| __ movups(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); |
| } |
| } else if (source.IsStackSlot()) { |
| if (destination.IsRegister()) { |
| __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); |
| } else if (destination.IsFpuRegister()) { |
| __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| MoveMemoryToMemory(destination.GetStackIndex(), source.GetStackIndex(), 1); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| if (destination.IsRegisterPair()) { |
| __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); |
| __ movl(destination.AsRegisterPairHigh<Register>(), |
| Address(ESP, source.GetHighStackIndex(kX86WordSize))); |
| } else if (destination.IsFpuRegister()) { |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| MoveMemoryToMemory(destination.GetStackIndex(), source.GetStackIndex(), 2); |
| } |
| } else if (source.IsSIMDStackSlot()) { |
| if (destination.IsFpuRegister()) { |
| __ movups(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsSIMDStackSlot()); |
| MoveMemoryToMemory(destination.GetStackIndex(), source.GetStackIndex(), 4); |
| } |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| if (constant->IsIntConstant() || constant->IsNullConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(constant); |
| if (destination.IsRegister()) { |
| if (value == 0) { |
| __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>()); |
| } else { |
| __ movl(destination.AsRegister<Register>(), Immediate(value)); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); |
| } |
| } else if (constant->IsFloatConstant()) { |
| float fp_value = constant->AsFloatConstant()->GetValue(); |
| int32_t value = bit_cast<int32_t, float>(fp_value); |
| Immediate imm(value); |
| if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| if (value == 0) { |
| // Easy handling of 0.0. |
| __ xorps(dest, dest); |
| } else { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| Register temp = static_cast<Register>(ensure_scratch.GetRegister()); |
| __ movl(temp, Immediate(value)); |
| __ movd(dest, temp); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), imm); |
| } |
| } else if (constant->IsLongConstant()) { |
| int64_t value = constant->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| if (destination.IsDoubleStackSlot()) { |
| __ movl(Address(ESP, destination.GetStackIndex()), low); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); |
| } else { |
| __ movl(destination.AsRegisterPairLow<Register>(), low); |
| __ movl(destination.AsRegisterPairHigh<Register>(), high); |
| } |
| } else { |
| DCHECK(constant->IsDoubleConstant()); |
| double dbl_value = constant->AsDoubleConstant()->GetValue(); |
| int64_t value = bit_cast<int64_t, double>(dbl_value); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| if (value == 0) { |
| // Easy handling of 0.0. |
| __ xorpd(dest, dest); |
| } else { |
| __ pushl(high); |
| __ cfi().AdjustCFAOffset(4); |
| __ pushl(low); |
| __ cfi().AdjustCFAOffset(4); |
| __ movsd(dest, Address(ESP, 0)); |
| codegen_->DecreaseFrame(8); |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| __ movl(Address(ESP, destination.GetStackIndex()), low); |
| __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); |
| } |
| } |
| } else { |
| LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source; |
| } |
| } |
| |
| void ParallelMoveResolverX86::Exchange(Register reg, int mem) { |
| Register suggested_scratch = reg == EAX ? EBX : EAX; |
| ScratchRegisterScope ensure_scratch( |
| this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters()); |
| |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset)); |
| __ movl(Address(ESP, mem + stack_offset), reg); |
| __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister())); |
| } |
| |
| void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) { |
| ScratchRegisterScope ensure_scratch( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| |
| Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; |
| __ movl(temp_reg, Address(ESP, mem + stack_offset)); |
| __ movss(Address(ESP, mem + stack_offset), reg); |
| __ movd(reg, temp_reg); |
| } |
| |
| void ParallelMoveResolverX86::Exchange128(XmmRegister reg, int mem) { |
| size_t extra_slot = 4 * kX86WordSize; |
| codegen_->IncreaseFrame(extra_slot); |
| __ movups(Address(ESP, 0), XmmRegister(reg)); |
| ExchangeMemory(0, mem + extra_slot, 4); |
| __ movups(XmmRegister(reg), Address(ESP, 0)); |
| codegen_->DecreaseFrame(extra_slot); |
| } |
| |
| void ParallelMoveResolverX86::ExchangeMemory(int mem1, int mem2, int number_of_words) { |
| ScratchRegisterScope ensure_scratch1( |
| this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); |
| |
| Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX; |
| ScratchRegisterScope ensure_scratch2( |
| this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters()); |
| |
| int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0; |
| stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0; |
| |
| // Now that temp registers are available (possibly spilled), exchange blocks of memory. |
| for (int i = 0; i < number_of_words; i++) { |
| __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset)); |
| __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset)); |
| __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister())); |
| __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister())); |
| stack_offset += kX86WordSize; |
| } |
| } |
| |
| void ParallelMoveResolverX86::EmitSwap(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister() && destination.IsRegister()) { |
| // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary. |
| DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>()); |
| __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (source.IsRegister() && destination.IsStackSlot()) { |
| Exchange(source.AsRegister<Register>(), destination.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsRegister()) { |
| Exchange(destination.AsRegister<Register>(), source.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsStackSlot()) { |
| ExchangeMemory(destination.GetStackIndex(), source.GetStackIndex(), 1); |
| } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { |
| // Use XOR Swap algorithm to avoid a temporary. |
| DCHECK_NE(source.reg(), destination.reg()); |
| __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>()); |
| __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsFpuRegister() && destination.IsStackSlot()) { |
| Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); |
| } else if (destination.IsFpuRegister() && source.IsStackSlot()) { |
| Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) { |
| // Take advantage of the 16 bytes in the XMM register. |
| XmmRegister reg = source.AsFpuRegister<XmmRegister>(); |
| Address stack(ESP, destination.GetStackIndex()); |
| // Load the double into the high doubleword. |
| __ movhpd(reg, stack); |
| |
| // Store the low double into the destination. |
| __ movsd(stack, reg); |
| |
| // Move the high double to the low double. |
| __ psrldq(reg, Immediate(8)); |
| } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) { |
| // Take advantage of the 16 bytes in the XMM register. |
| XmmRegister reg = destination.AsFpuRegister<XmmRegister>(); |
| Address stack(ESP, source.GetStackIndex()); |
| // Load the double into the high doubleword. |
| __ movhpd(reg, stack); |
| |
| // Store the low double into the destination. |
| __ movsd(stack, reg); |
| |
| // Move the high double to the low double. |
| __ psrldq(reg, Immediate(8)); |
| } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) { |
| ExchangeMemory(destination.GetStackIndex(), source.GetStackIndex(), 2); |
| } else if (source.IsSIMDStackSlot() && destination.IsSIMDStackSlot()) { |
| ExchangeMemory(destination.GetStackIndex(), source.GetStackIndex(), 4); |
| } else if (source.IsFpuRegister() && destination.IsSIMDStackSlot()) { |
| Exchange128(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); |
| } else if (destination.IsFpuRegister() && source.IsSIMDStackSlot()) { |
| Exchange128(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); |
| } else { |
| LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination; |
| } |
| } |
| |
| void ParallelMoveResolverX86::SpillScratch(int reg) { |
| __ pushl(static_cast<Register>(reg)); |
| } |
| |
| void ParallelMoveResolverX86::RestoreScratch(int reg) { |
| __ popl(static_cast<Register>(reg)); |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorX86::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBootImageRelRo: |
| case HLoadClass::LoadKind::kBssEntry: |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| case HLoadClass::LoadKind::kBssEntryPackage: |
| DCHECK(!GetCompilerOptions().IsJitCompiler()); |
| break; |
| case HLoadClass::LoadKind::kJitBootImageAddress: |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(GetCompilerOptions().IsJitCompiler()); |
| break; |
| case HLoadClass::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( |
| cls, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Location::RegisterLocation(EAX)); |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), EAX); |
| return; |
| } |
| DCHECK_EQ(cls->NeedsAccessCheck(), |
| load_kind == HLoadClass::LoadKind::kBssEntryPublic || |
| load_kind == HLoadClass::LoadKind::kBssEntryPackage); |
| |
| const bool requires_read_barrier = gUseReadBarrier && !cls->IsInBootImage(); |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass || cls->HasPcRelativeLoadKind()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| if (call_kind == LocationSummary::kCallOnSlowPath && cls->HasPcRelativeLoadKind()) { |
| if (!gUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the type resolution and/or initialization to save everything. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| |
| Label* CodeGeneratorX86::NewJitRootClassPatch(const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| Handle<mirror::Class> handle) { |
| ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); |
| // Add a patch entry and return the label. |
| jit_class_patches_.emplace_back(&dex_file, type_index.index_); |
| PatchInfo<Label>* info = &jit_class_patches_.back(); |
| return &info->label; |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| codegen_->GenerateLoadClassRuntimeCall(cls); |
| return; |
| } |
| DCHECK_EQ(cls->NeedsAccessCheck(), |
| load_kind == HLoadClass::LoadKind::kBssEntryPublic || |
| load_kind == HLoadClass::LoadKind::kBssEntryPackage); |
| |
| LocationSummary* locations = cls->GetLocations(); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| |
| bool generate_null_check = false; |
| const ReadBarrierOption read_barrier_option = cls->IsInBootImage() |
| ? kWithoutReadBarrier |
| : gCompilerReadBarrierOption; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| Register current_method = locations->InAt(0).AsRegister<Register>(); |
| GenerateGcRootFieldLoad( |
| cls, |
| out_loc, |
| Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()), |
| /* fixup_label= */ nullptr, |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage() || |
| codegen_->GetCompilerOptions().IsBootImageExtension()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| Register method_address = locations->InAt(0).AsRegister<Register>(); |
| __ leal(out, Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| codegen_->RecordBootImageTypePatch(cls); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| Register method_address = locations->InAt(0).AsRegister<Register>(); |
| __ movl(out, Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| codegen_->RecordBootImageRelRoPatch(cls->InputAt(0)->AsX86ComputeBaseMethodAddress(), |
| CodeGenerator::GetBootImageOffset(cls)); |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| case HLoadClass::LoadKind::kBssEntryPackage: { |
| Register method_address = locations->InAt(0).AsRegister<Register>(); |
| Address address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset); |
| Label* fixup_label = codegen_->NewTypeBssEntryPatch(cls); |
| GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option); |
| // No need for memory fence, thanks to the x86 memory model. |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get()); |
| DCHECK_NE(address, 0u); |
| __ movl(out, Immediate(address)); |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: { |
| Address address = Address::Absolute(CodeGeneratorX86::kPlaceholder32BitOffset); |
| Label* fixup_label = codegen_->NewJitRootClassPatch( |
| cls->GetDexFile(), cls->GetTypeIndex(), cls->GetClass()); |
| // /* GcRoot<mirror::Class> */ out = *address |
| GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kRuntimeCall: |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| if (generate_null_check || cls->MustGenerateClinitCheck()) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathX86(cls, cls); |
| codegen_->AddSlowPath(slow_path); |
| |
| if (generate_null_check) { |
| __ testl(out, out); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } |
| |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86::VisitLoadMethodHandle(HLoadMethodHandle* load) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location location = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadMethodHandle(HLoadMethodHandle* load) { |
| codegen_->GenerateLoadMethodHandleRuntimeCall(load); |
| } |
| |
| void LocationsBuilderX86::VisitLoadMethodType(HLoadMethodType* load) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location location = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadMethodType(HLoadMethodType* load) { |
| codegen_->GenerateLoadMethodTypeRuntimeCall(load); |
| } |
| |
| void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| // Rely on the type initialization to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class to not be null. |
| SlowPathCode* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadClassSlowPathX86(check->GetLoadClass(), check); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, |
| check->GetLocations()->InAt(0).AsRegister<Register>()); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateClassInitializationCheck( |
| SlowPathCode* slow_path, Register class_reg) { |
| __ cmpb(Address(class_reg, status_byte_offset), Immediate(shifted_visibly_initialized_value)); |
| __ j(kBelow, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check, |
| Register temp) { |
| uint32_t path_to_root = check->GetBitstringPathToRoot(); |
| uint32_t mask = check->GetBitstringMask(); |
| DCHECK(IsPowerOfTwo(mask + 1)); |
| size_t mask_bits = WhichPowerOf2(mask + 1); |
| |
| if (mask_bits == 16u) { |
| // Compare the bitstring in memory. |
| __ cmpw(Address(temp, mirror::Class::StatusOffset()), Immediate(path_to_root)); |
| } else { |
| // /* uint32_t */ temp = temp->status_ |
| __ movl(temp, Address(temp, mirror::Class::StatusOffset())); |
| // Compare the bitstring bits using SUB. |
| __ subl(temp, Immediate(path_to_root)); |
| // Shift out bits that do not contribute to the comparison. |
| __ shll(temp, Immediate(32u - mask_bits)); |
| } |
| } |
| |
| HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageRelRo: |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!GetCompilerOptions().IsJitCompiler()); |
| break; |
| case HLoadString::LoadKind::kJitBootImageAddress: |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(GetCompilerOptions().IsJitCompiler()); |
| break; |
| case HLoadString::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| void LocationsBuilderX86::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| if (load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative || |
| load_kind == HLoadString::LoadKind::kBootImageRelRo || |
| load_kind == HLoadString::LoadKind::kBssEntry) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| if (load_kind == HLoadString::LoadKind::kRuntimeCall) { |
| locations->SetOut(Location::RegisterLocation(EAX)); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadString::LoadKind::kBssEntry) { |
| if (!gUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the pResolveString to save everything. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| } |
| |
| Label* CodeGeneratorX86::NewJitRootStringPatch(const DexFile& dex_file, |
| dex::StringIndex string_index, |
| Handle<mirror::String> handle) { |
| ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); |
| // Add a patch entry and return the label. |
| jit_string_patches_.emplace_back(&dex_file, string_index.index_); |
| PatchInfo<Label>* info = &jit_string_patches_.back(); |
| return &info->label; |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { |
| LocationSummary* locations = load->GetLocations(); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| |
| switch (load->GetLoadKind()) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage() || |
| codegen_->GetCompilerOptions().IsBootImageExtension()); |
| Register method_address = locations->InAt(0).AsRegister<Register>(); |
| __ leal(out, Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| codegen_->RecordBootImageStringPatch(load); |
| return; |
| } |
| case HLoadString::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| Register method_address = locations->InAt(0).AsRegister<Register>(); |
| __ movl(out, Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset)); |
| codegen_->RecordBootImageRelRoPatch(load->InputAt(0)->AsX86ComputeBaseMethodAddress(), |
| CodeGenerator::GetBootImageOffset(load)); |
| return; |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| Register method_address = locations->InAt(0).AsRegister<Register>(); |
| Address address = Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset); |
| Label* fixup_label = codegen_->NewStringBssEntryPatch(load); |
| // /* GcRoot<mirror::String> */ out = *address /* PC-relative */ |
| GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, gCompilerReadBarrierOption); |
| // No need for memory fence, thanks to the x86 memory model. |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) LoadStringSlowPathX86(load); |
| codegen_->AddSlowPath(slow_path); |
| __ testl(out, out); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| case HLoadString::LoadKind::kJitBootImageAddress: { |
| uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get()); |
| DCHECK_NE(address, 0u); |
| __ movl(out, Immediate(address)); |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: { |
| Address address = Address::Absolute(CodeGeneratorX86::kPlaceholder32BitOffset); |
| Label* fixup_label = codegen_->NewJitRootStringPatch( |
| load->GetDexFile(), load->GetStringIndex(), load->GetString()); |
| // /* GcRoot<mirror::String> */ out = *address |
| GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, gCompilerReadBarrierOption); |
| return; |
| } |
| default: |
| break; |
| } |
| |
| // TODO: Re-add the compiler code to do string dex cache lookup again. |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), out); |
| __ movl(calling_convention.GetRegisterAt(0), Immediate(load->GetStringIndex().index_)); |
| codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| } |
| |
| static Address GetExceptionTlsAddress() { |
| return Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>().Int32Value()); |
| } |
| |
| void LocationsBuilderX86::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) { |
| __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress()); |
| } |
| |
| void LocationsBuilderX86::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ fs()->movl(GetExceptionTlsAddress(), Immediate(0)); |
| } |
| |
| void LocationsBuilderX86::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| // Temp is used for read barrier. |
| static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { |
| if (gUseReadBarrier && |
| !kUseBakerReadBarrier && |
| (type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Interface case has 2 temps, one for holding the number of interfaces, one for the current |
| // interface pointer, the current interface is compared in memory. |
| // The other checks have one temp for loading the object's class. |
| static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck) { |
| return 2; |
| } |
| return 1 + NumberOfInstanceOfTemps(type_check_kind); |
| } |
| |
| void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: { |
| bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); |
| call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; |
| break; |
| } |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| case TypeCheckKind::kBitstringCheck: |
| break; |
| } |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1))); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2))); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3))); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| // Note that TypeCheckSlowPathX86 uses this "out" register too. |
| locations->SetOut(Location::RequiresRegister()); |
| // When read barriers are enabled, we need a temporary register for some cases. |
| locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location cls = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); |
| DCHECK_LE(num_temps, 1u); |
| Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| SlowPathCode* slow_path = nullptr; |
| NearLabel done, zero; |
| |
| // Return 0 if `obj` is null. |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ testl(obj, obj); |
| __ j(kEqual, &zero); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| read_barrier_option); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| |
| // Classes must be equal for the instanceof to succeed. |
| __ j(kNotEqual, &zero); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| read_barrier_option); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| NearLabel loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| __ testl(out, out); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ j(kEqual, &done); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kNotEqual, &loop); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| read_barrier_option); |
| // Walk over the class hierarchy to find a match. |
| NearLabel loop, success; |
| __ Bind(&loop); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kEqual, &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| __ testl(out, out); |
| __ j(kNotEqual, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ jmp(&done); |
| __ Bind(&success); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| read_barrier_option); |
| // Do an exact check. |
| NearLabel exact_check; |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kEqual, &exact_check); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| component_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| __ testl(out, out); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ j(kEqual, &done); |
| __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, &zero); |
| __ Bind(&exact_check); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(ESP, cls.GetStackIndex())); |
| } |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathX86( |
| instruction, /* is_fatal= */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathX86( |
| instruction, /* is_fatal= */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, out); |
| __ j(kNotEqual, &zero); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| break; |
| } |
| } |
| |
| if (zero.IsLinked()) { |
| __ Bind(&zero); |
| __ xorl(out, out); |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck) { |
| // Require a register for the interface check since there is a loop that compares the class to |
| // a memory address. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1))); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2))); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3))); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathX86. |
| locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location cls = locations->InAt(1); |
| Location temp_loc = locations->GetTemp(0); |
| Register temp = temp_loc.AsRegister<Register>(); |
| const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); |
| DCHECK_GE(num_temps, 1u); |
| DCHECK_LE(num_temps, 2u); |
| Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| |
| bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); |
| SlowPathCode* type_check_slow_path = |
| new (codegen_->GetScopedAllocator()) TypeCheckSlowPathX86( |
| instruction, is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(type_check_slow_path); |
| |
| NearLabel done; |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ testl(obj, obj); |
| __ j(kEqual, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| NearLabel loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ testl(temp, temp); |
| __ j(kZero, type_check_slow_path->GetEntryLabel()); |
| |
| // Otherwise, compare the classes |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kNotEqual, &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| |
| // Walk over the class hierarchy to find a match. |
| NearLabel loop; |
| __ Bind(&loop); |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kEqual, &done); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is not null, jump |
| // back at the beginning of the loop. |
| __ testl(temp, temp); |
| __ j(kNotZero, &loop); |
| // Otherwise, jump to the slow path to throw the exception.; |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| |
| // Do an exact check. |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<Register>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(ESP, cls.GetStackIndex())); |
| } |
| __ j(kEqual, &done); |
| |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the component type is null (i.e. the object not an array), jump to the slow path to |
| // throw the exception. Otherwise proceed with the check. |
| __ testl(temp, temp); |
| __ j(kZero, type_check_slow_path->GetEntryLabel()); |
| |
| __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| // We always go into the type check slow path for the unresolved check case. |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| break; |
| |
| case TypeCheckKind::kInterfaceCheck: { |
| // Fast path for the interface check. Try to avoid read barriers to improve the fast path. |
| // We can not get false positives by doing this. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| temp_loc, |
| iftable_offset, |
| kWithoutReadBarrier); |
| // Iftable is never null. |
| __ movl(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset)); |
| // Maybe poison the `cls` for direct comparison with memory. |
| __ MaybePoisonHeapReference(cls.AsRegister<Register>()); |
| // Loop through the iftable and check if any class matches. |
| NearLabel start_loop; |
| __ Bind(&start_loop); |
| // Need to subtract first to handle the empty array case. |
| __ subl(maybe_temp2_loc.AsRegister<Register>(), Immediate(2)); |
| __ j(kNegative, type_check_slow_path->GetEntryLabel()); |
| // Go to next interface if the classes do not match. |
| __ cmpl(cls.AsRegister<Register>(), |
| CodeGeneratorX86::ArrayAddress(temp, |
| maybe_temp2_loc, |
| TIMES_4, |
| object_array_data_offset)); |
| __ j(kNotEqual, &start_loop); |
| // If `cls` was poisoned above, unpoison it. |
| __ MaybeUnpoisonHeapReference(cls.AsRegister<Register>()); |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, temp); |
| __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| } |
| __ Bind(&done); |
| |
| __ Bind(type_check_slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject |
| : kQuickUnlockObject, |
| instruction, |
| instruction->GetDexPc()); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitX86AndNot(HX86AndNot* instruction) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2()); |
| DCHECK(DataType::IsIntOrLongType(instruction->GetType())) << instruction->GetType(); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86AndNot(HX86AndNot* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location dest = locations->Out(); |
| if (instruction->GetResultType() == DataType::Type::kInt32) { |
| __ andn(dest.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| second.AsRegister<Register>()); |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); |
| __ andn(dest.AsRegisterPairLow<Register>(), |
| first.AsRegisterPairLow<Register>(), |
| second.AsRegisterPairLow<Register>()); |
| __ andn(dest.AsRegisterPairHigh<Register>(), |
| first.AsRegisterPairHigh<Register>(), |
| second.AsRegisterPairHigh<Register>()); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitX86MaskOrResetLeastSetBit(HX86MaskOrResetLeastSetBit* instruction) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2()); |
| DCHECK(instruction->GetType() == DataType::Type::kInt32) << instruction->GetType(); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86MaskOrResetLeastSetBit( |
| HX86MaskOrResetLeastSetBit* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location src = locations->InAt(0); |
| Location dest = locations->Out(); |
| DCHECK(instruction->GetResultType() == DataType::Type::kInt32); |
| switch (instruction->GetOpKind()) { |
| case HInstruction::kAnd: |
| __ blsr(dest.AsRegister<Register>(), src.AsRegister<Register>()); |
| break; |
| case HInstruction::kXor: |
| __ blsmsk(dest.AsRegister<Register>(), src.AsRegister<Register>()); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| } |
| } |
| |
| void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } |
| void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } |
| void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } |
| |
| void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| DCHECK(instruction->GetResultType() == DataType::Type::kInt32 |
| || instruction->GetResultType() == DataType::Type::kInt64); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| |
| if (instruction->GetResultType() == DataType::Type::kInt32) { |
| if (second.IsRegister()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>()); |
| } |
| } else if (second.IsConstant()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| } else { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); |
| } |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); |
| if (second.IsRegisterPair()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); |
| __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); |
| } |
| } else if (second.IsDoubleStackSlot()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ andl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ orl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); |
| __ xorl(first.AsRegisterPairHigh<Register>(), |
| Address(ESP, second.GetHighStackIndex(kX86WordSize))); |
| } |
| } else { |
| DCHECK(second.IsConstant()) << second; |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t low_value = Low32Bits(value); |
| int32_t high_value = High32Bits(value); |
| Immediate low(low_value); |
| Immediate high(high_value); |
| Register first_low = first.AsRegisterPairLow<Register>(); |
| Register first_high = first.AsRegisterPairHigh<Register>(); |
| if (instruction->IsAnd()) { |
| if (low_value == 0) { |
| __ xorl(first_low, first_low); |
| } else if (low_value != -1) { |
| __ andl(first_low, low); |
| } |
| if (high_value == 0) { |
| __ xorl(first_high, first_high); |
| } else if (high_value != -1) { |
| __ andl(first_high, high); |
| } |
| } else if (instruction->IsOr()) { |
| if (low_value != 0) { |
| __ orl(first_low, low); |
| } |
| if (high_value != 0) { |
| __ orl(first_high, high); |
| } |
| } else { |
| DCHECK(instruction->IsXor()); |
| if (low_value != 0) { |
| __ xorl(first_low, low); |
| } |
| if (high_value != 0) { |
| __ xorl(first_high, high); |
| } |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| Register out_reg = out.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(gUseReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, out_reg, offset, /* needs_null_check= */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| __ movl(maybe_temp.AsRegister<Register>(), out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ movl(out_reg, Address(out_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ movl(out_reg, Address(out_reg, offset)); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| ReadBarrierOption read_barrier_option) { |
| Register out_reg = out.AsRegister<Register>(); |
| Register obj_reg = obj.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(gUseReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, obj_reg, offset, /* needs_null_check= */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ movl(out_reg, Address(obj_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ movl(out_reg, Address(obj_reg, offset)); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad( |
| HInstruction* instruction, |
| Location root, |
| const Address& address, |
| Label* fixup_label, |
| ReadBarrierOption read_barrier_option) { |
| Register root_reg = root.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(gUseReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used: |
| // |
| // root = obj.field; |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp != null) { |
| // root = temp(root) |
| // } |
| |
| // /* GcRoot<mirror::Object> */ root = *address |
| __ movl(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // Slow path marking the GC root `root`. |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) ReadBarrierMarkSlowPathX86( |
| instruction, root, /* unpoison_ref_before_marking= */ false); |
| codegen_->AddSlowPath(slow_path); |
| |
| // Test the entrypoint (`Thread::Current()->pReadBarrierMarkReg ## root.reg()`). |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(root.reg()); |
| __ fs()->cmpl(Address::Absolute(entry_point_offset), Immediate(0)); |
| // The entrypoint is null when the GC is not marking. |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = address |
| __ leal(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *address |
| __ movl(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| bool needs_null_check) { |
| DCHECK(gUseReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Address src(obj, offset); |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check); |
| } |
| |
| void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t data_offset, |
| Location index, |
| bool needs_null_check) { |
| DCHECK(gUseReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| Address src = CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset); |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check); |
| } |
| |
| void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| const Address& src, |
| bool needs_null_check, |
| bool always_update_field, |
| Register* temp) { |
| DCHECK(gUseReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // In slow path based read barriers, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The fast path/slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as: |
| // - it implements the load-load fence using a data dependency on |
| // the high-bits of rb_state, which are expected to be all zeroes |
| // (we use CodeGeneratorX86::GenerateMemoryBarrier instead here, |
| // which is a no-op thanks to the x86 memory model); |
| // - it performs additional checks that we do not do here for |
| // performance reasons. |
| |
| Register ref_reg = ref.AsRegister<Register>(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; |
| constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; |
| constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position); |
| |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // At this point, just do the "if" and make sure that flags are preserved until the branch. |
| __ testb(Address(obj, monitor_offset + gray_byte_position), Immediate(test_value)); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| // Load fence to prevent load-load reordering. |
| // Note that this is a no-op, thanks to the x86 memory model. |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| |
| // The actual reference load. |
| // /* HeapReference<Object> */ ref = *src |
| __ movl(ref_reg, src); // Flags are unaffected. |
| |
| // Note: Reference unpoisoning modifies the flags, so we need to delay it after the branch. |
| // Slow path marking the object `ref` when it is gray. |
| SlowPathCode* slow_path; |
| if (always_update_field) { |
| DCHECK(temp != nullptr); |
| slow_path = new (GetScopedAllocator()) ReadBarrierMarkAndUpdateFieldSlowPathX86( |
| instruction, ref, obj, src, /* unpoison_ref_before_marking= */ true, *temp); |
| } else { |
| slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathX86( |
| instruction, ref, /* unpoison_ref_before_marking= */ true); |
| } |
| AddSlowPath(slow_path); |
| |
| // We have done the "if" of the gray bit check above, now branch based on the flags. |
| __ j(kNotZero, slow_path->GetEntryLabel()); |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(gUseReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCode* slow_path = new (GetScopedAllocator()) |
| ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (gUseReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(out.AsRegister<Register>()); |
| } |
| } |
| |
| void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(gUseReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCode* slow_path = |
| new (GetScopedAllocator()) ReadBarrierForRootSlowPathX86(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg, |
| int32_t lower_bound, |
| uint32_t num_entries, |
| HBasicBlock* switch_block, |
| HBasicBlock* default_block) { |
| // Figure out the correct compare values and jump conditions. |
| // Handle the first compare/branch as a special case because it might |
| // jump to the default case. |
| DCHECK_GT(num_entries, 2u); |
| Condition first_condition; |
| uint32_t index; |
| const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); |
| if (lower_bound != 0) { |
| first_condition = kLess; |
| __ cmpl(value_reg, Immediate(lower_bound)); |
| __ j(first_condition, codegen_->GetLabelOf(default_block)); |
| __ j(kEqual, codegen_->GetLabelOf(successors[0])); |
| |
| index = 1; |
| } else { |
| // Handle all the compare/jumps below. |
| first_condition = kBelow; |
| index = 0; |
| } |
| |
| // Handle the rest of the compare/jumps. |
| for (; index + 1 < num_entries; index += 2) { |
| int32_t compare_to_value = lower_bound + index + 1; |
| __ cmpl(value_reg, Immediate(compare_to_value)); |
| // Jump to successors[index] if value < case_value[index]. |
| __ j(first_condition, codegen_->GetLabelOf(successors[index])); |
| // Jump to successors[index + 1] if value == case_value[index + 1]. |
| __ j(kEqual, codegen_->GetLabelOf(successors[index + 1])); |
| } |
| |
| if (index != num_entries) { |
| // There are an odd number of entries. Handle the last one. |
| DCHECK_EQ(index + 1, num_entries); |
| __ cmpl(value_reg, Immediate(lower_bound + index)); |
| __ j(kEqual, codegen_->GetLabelOf(successors[index])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_block, default_block)) { |
| __ jmp(codegen_->GetLabelOf(default_block)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| Register value_reg = locations->InAt(0).AsRegister<Register>(); |
| |
| GenPackedSwitchWithCompares(value_reg, |
| lower_bound, |
| num_entries, |
| switch_instr->GetBlock(), |
| switch_instr->GetDefaultBlock()); |
| } |
| |
| void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| // Constant area pointer. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // And the temporary we need. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| Register value_reg = locations->InAt(0).AsRegister<Register>(); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| if (num_entries <= kPackedSwitchJumpTableThreshold) { |
| GenPackedSwitchWithCompares(value_reg, |
| lower_bound, |
| num_entries, |
| switch_instr->GetBlock(), |
| default_block); |
| return; |
| } |
| |
| // Optimizing has a jump area. |
| Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); |
| Register constant_area = locations->InAt(1).AsRegister<Register>(); |
| |
| // Remove the bias, if needed. |
| if (lower_bound != 0) { |
| __ leal(temp_reg, Address(value_reg, -lower_bound)); |
| value_reg = temp_reg; |
| } |
| |
| // Is the value in range? |
| DCHECK_GE(num_entries, 1u); |
| __ cmpl(value_reg, Immediate(num_entries - 1)); |
| __ j(kAbove, codegen_->GetLabelOf(default_block)); |
| |
| // We are in the range of the table. |
| // Load (target-constant_area) from the jump table, indexing by the value. |
| __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg)); |
| |
| // Compute the actual target address by adding in constant_area. |
| __ addl(temp_reg, constant_area); |
| |
| // And jump. |
| __ jmp(temp_reg); |
| } |
| |
| void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress( |
| HX86ComputeBaseMethodAddress* insn) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(insn, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress( |
| HX86ComputeBaseMethodAddress* insn) { |
| LocationSummary* locations = insn->GetLocations(); |
| Register reg = locations->Out().AsRegister<Register>(); |
| |
| // Generate call to next instruction. |
| Label next_instruction; |
| __ call(&next_instruction); |
| __ Bind(&next_instruction); |
| |
| // Remember this offset for later use with constant area. |
| codegen_->AddMethodAddressOffset(insn, GetAssembler()->CodeSize()); |
| |
| // Grab the return address off the stack. |
| __ popl(reg); |
| } |
| |
| void LocationsBuilderX86::VisitX86LoadFromConstantTable( |
| HX86LoadFromConstantTable* insn) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(insn, LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant())); |
| |
| // If we don't need to be materialized, we only need the inputs to be set. |
| if (insn->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| switch (insn->GetType()) { |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case DataType::Type::kInt32: |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) { |
| if (insn->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = insn->GetLocations(); |
| Location out = locations->Out(); |
| Register const_area = locations->InAt(0).AsRegister<Register>(); |
| HConstant *value = insn->GetConstant(); |
| |
| switch (insn->GetType()) { |
| case DataType::Type::kFloat32: |
| __ movss(out.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| value->AsFloatConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area)); |
| break; |
| |
| case DataType::Type::kFloat64: |
| __ movsd(out.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| value->AsDoubleConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area)); |
| break; |
| |
| case DataType::Type::kInt32: |
| __ movl(out.AsRegister<Register>(), |
| codegen_->LiteralInt32Address( |
| value->AsIntConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); |
| } |
| } |
| |
| /** |
| * Class to handle late fixup of offsets into constant area. |
| */ |
| class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> { |
| public: |
| RIPFixup(CodeGeneratorX86& codegen, |
| HX86ComputeBaseMethodAddress* base_method_address, |
| size_t offset) |
| : codegen_(&codegen), |
| base_method_address_(base_method_address), |
| offset_into_constant_area_(offset) {} |
| |
| protected: |
| void SetOffset(size_t offset) { offset_into_constant_area_ = offset; } |
| |
| CodeGeneratorX86* codegen_; |
| HX86ComputeBaseMethodAddress* base_method_address_; |
| |
| private: |
| void Process(const MemoryRegion& region, int pos) override { |
| // Patch the correct offset for the instruction. The place to patch is the |
| // last 4 bytes of the instruction. |
| // The value to patch is the distance from the offset in the constant area |
| // from the address computed by the HX86ComputeBaseMethodAddress instruction. |
| int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_; |
| int32_t relative_position = |
| constant_offset - codegen_->GetMethodAddressOffset(base_method_address_); |
| |
| // Patch in the right value. |
| region.StoreUnaligned<int32_t>(pos - 4, relative_position); |
| } |
| |
| // Location in constant area that the fixup refers to. |
| int32_t offset_into_constant_area_; |
| }; |
| |
| /** |
| * Class to handle late fixup of offsets to a jump table that will be created in the |
| * constant area. |
| */ |
| class JumpTableRIPFixup : public RIPFixup { |
| public: |
| JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr) |
| : RIPFixup(codegen, switch_instr->GetBaseMethodAddress(), static_cast<size_t>(-1)), |
| switch_instr_(switch_instr) {} |
| |
| void CreateJumpTable() { |
| X86Assembler* assembler = codegen_->GetAssembler(); |
| |
| // Ensure that the reference to the jump table has the correct offset. |
| const int32_t offset_in_constant_table = assembler->ConstantAreaSize(); |
| SetOffset(offset_in_constant_table); |
| |
| // The label values in the jump table are computed relative to the |
| // instruction addressing the constant area. |
| const int32_t relative_offset = codegen_->GetMethodAddressOffset(base_method_address_); |
| |
| // Populate the jump table with the correct values for the jump table. |
| int32_t num_entries = switch_instr_->GetNumEntries(); |
| HBasicBlock* block = switch_instr_->GetBlock(); |
| const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors(); |
| // The value that we want is the target offset - the position of the table. |
| for (int32_t i = 0; i < num_entries; i++) { |
| HBasicBlock* b = successors[i]; |
| Label* l = codegen_->GetLabelOf(b); |
| DCHECK(l->IsBound()); |
| int32_t offset_to_block = l->Position() - relative_offset; |
| assembler->AppendInt32(offset_to_block); |
| } |
| } |
| |
| private: |
| const HX86PackedSwitch* switch_instr_; |
| }; |
| |
| void CodeGeneratorX86::Finalize(CodeAllocator* allocator) { |
| // Generate the constant area if needed. |
| X86Assembler* assembler = GetAssembler(); |
| |
| if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) { |
| // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8 |
| // byte values. |
| assembler->Align(4, 0); |
| constant_area_start_ = assembler->CodeSize(); |
| |
| // Populate any jump tables. |
| for (JumpTableRIPFixup* jump_table : fixups_to_jump_tables_) { |
| jump_table->CreateJumpTable(); |
| } |
| |
| // And now add the constant area to the generated code. |
| assembler->AddConstantArea(); |
| } |
| |
| // And finish up. |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| Address CodeGeneratorX86::LiteralDoubleAddress(double v, |
| HX86ComputeBaseMethodAddress* method_base, |
| Register reg) { |
| AssemblerFixup* fixup = |
| new (GetGraph()->GetAllocator()) RIPFixup(*this, method_base, __ AddDouble(v)); |
| return Address(reg, kPlaceholder32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralFloatAddress(float v, |
| HX86ComputeBaseMethodAddress* method_base, |
| Register reg) { |
| AssemblerFixup* fixup = |
| new (GetGraph()->GetAllocator()) RIPFixup(*this, method_base, __ AddFloat(v)); |
| return Address(reg, kPlaceholder32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralInt32Address(int32_t v, |
| HX86ComputeBaseMethodAddress* method_base, |
| Register reg) { |
| AssemblerFixup* fixup = |
| new (GetGraph()->GetAllocator()) RIPFixup(*this, method_base, __ AddInt32(v)); |
| return Address(reg, kPlaceholder32BitOffset, fixup); |
| } |
| |
| Address CodeGeneratorX86::LiteralInt64Address(int64_t v, |
| HX86ComputeBaseMethodAddress* method_base, |
| Register reg) { |
| AssemblerFixup* fixup = |
| new (GetGraph()->GetAllocator()) RIPFixup(*this, method_base, __ AddInt64(v)); |
| return Address(reg, kPlaceholder32BitOffset, fixup); |
| } |
| |
| void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) { |
| if (value == 0) { |
| __ xorl(dest, dest); |
| } else { |
| __ movl(dest, Immediate(value)); |
| } |
| } |
| |
| void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) { |
| if (value == 0) { |
| __ testl(dest, dest); |
| } else { |
| __ cmpl(dest, Immediate(value)); |
| } |
| } |
| |
| void CodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) { |
| Register lhs_reg = lhs.AsRegister<Register>(); |
| GenerateIntCompare(lhs_reg, rhs); |
| } |
| |
| void CodeGeneratorX86::GenerateIntCompare(Register lhs, Location rhs) { |
| if (rhs.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); |
| Compare32BitValue(lhs, value); |
| } else if (rhs.IsStackSlot()) { |
| __ cmpl(lhs, Address(ESP, rhs.GetStackIndex())); |
| } else { |
| __ cmpl(lhs, rhs.AsRegister<Register>()); |
| } |
| } |
| |
| Address CodeGeneratorX86::ArrayAddress(Register obj, |
| Location index, |
| ScaleFactor scale, |
| uint32_t data_offset) { |
| return index.IsConstant() ? |
| Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << scale) + data_offset) : |
| Address(obj, index.AsRegister<Register>(), scale, data_offset); |
| } |
| |
| Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr, |
| Register reg, |
| Register value) { |
| // Create a fixup to be used to create and address the jump table. |
| JumpTableRIPFixup* table_fixup = |
| new (GetGraph()->GetAllocator()) JumpTableRIPFixup(*this, switch_instr); |
| |
| // We have to populate the jump tables. |
| fixups_to_jump_tables_.push_back(table_fixup); |
| |
| // We want a scaled address, as we are extracting the correct offset from the table. |
| return Address(reg, value, TIMES_4, kPlaceholder32BitOffset, table_fixup); |
| } |
| |
| // TODO: target as memory. |
| void CodeGeneratorX86::MoveFromReturnRegister(Location target, DataType::Type type) { |
| if (!target.IsValid()) { |
| DCHECK_EQ(type, DataType::Type::kVoid); |
| return; |
| } |
| |
| DCHECK_NE(type, DataType::Type::kVoid); |
| |
| Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type); |
| if (target.Equals(return_loc)) { |
| return; |
| } |
| |
| // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged |
| // with the else branch. |
| if (type == DataType::Type::kInt64) { |
| HParallelMove parallel_move(GetGraph()->GetAllocator()); |
| parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), DataType::Type::kInt32, nullptr); |
| parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), DataType::Type::kInt32, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| // Let the parallel move resolver take care of all of this. |
| HParallelMove parallel_move(GetGraph()->GetAllocator()); |
| parallel_move.AddMove(return_loc, target, type, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } |
| } |
| |
| void CodeGeneratorX86::PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| const PatchInfo<Label>& info, |
| uint64_t index_in_table) const { |
| uint32_t code_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| using unaligned_uint32_t __attribute__((__aligned__(1))) = uint32_t; |
| reinterpret_cast<unaligned_uint32_t*>(code + code_offset)[0] = |
| dchecked_integral_cast<uint32_t>(address); |
| } |
| |
| void CodeGeneratorX86::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const PatchInfo<Label>& info : jit_string_patches_) { |
| StringReference string_reference(info.target_dex_file, dex::StringIndex(info.offset_or_index)); |
| uint64_t index_in_table = GetJitStringRootIndex(string_reference); |
| PatchJitRootUse(code, roots_data, info, index_in_table); |
| } |
| |
| for (const PatchInfo<Label>& info : jit_class_patches_) { |
| TypeReference type_reference(info.target_dex_file, dex::TypeIndex(info.offset_or_index)); |
| uint64_t index_in_table = GetJitClassRootIndex(type_reference); |
| PatchJitRootUse(code, roots_data, info, index_in_table); |
| } |
| } |
| |
| void LocationsBuilderX86::VisitIntermediateAddress(HIntermediateAddress* instruction |
| ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86::VisitIntermediateAddress(HIntermediateAddress* instruction |
| ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| bool LocationsBuilderX86::CpuHasAvxFeatureFlag() { |
| return codegen_->GetInstructionSetFeatures().HasAVX(); |
| } |
| bool LocationsBuilderX86::CpuHasAvx2FeatureFlag() { |
| return codegen_->GetInstructionSetFeatures().HasAVX2(); |
| } |
| bool InstructionCodeGeneratorX86::CpuHasAvxFeatureFlag() { |
| return codegen_->GetInstructionSetFeatures().HasAVX(); |
| } |
| bool InstructionCodeGeneratorX86::CpuHasAvx2FeatureFlag() { |
| return codegen_->GetInstructionSetFeatures().HasAVX2(); |
| } |
| |
| #undef __ |
| |
| } // namespace x86 |
| } // namespace art |